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Abstract: Facial expressions are divided into micro- and macro-expressions. Micro-expressions are
low-intensity emotions presented for a short moment of about 0.25 s, whereas macro-expressions
last up to 4 s. To derive micro-expressions, participants are asked to suppress their emotions as
much as possible while watching emotion-inducing videos. However, it is a challenging process, and
the number of samples collected tends to be less than those of macro-expressions. Because training
models with insufficient data may lead to decreased performance, this study proposes two ways to
solve the problem of insufficient data for micro-expression training. The first method involves N-step
pre-training, which performs multiple transfer learning from action recognition datasets to those in
the facial domain. Second, we propose Décalcomanie data augmentation, which is based on facial
symmetry, to create a composite image by cutting and pasting both faces around their center lines.
The results show that the proposed methods can successfully overcome the data shortage problem
and achieve high performance.

Keywords: deep learning; image processing; facial micro-expression; emotion recognition; convolu-
tional neural network (CNN)

1. Introduction

Humans reveal personal feelings, intentions, and emotional conditions through their
facial expressions. Generally, a person reveals emotions through explicit macro-expressions
that last between 0.25 and 4 s. During these periods, the emotions expressed on the face
and the actual feelings felt coincide. Conversely, when a person unconsciously reveals a
hidden emotion in fractional time (e.g., 0.25 s), it is considered to be a micro-expression.
These are likely to be missed or misinterpreted, even in laboratory settings. Figure 1 shows
a comparison between the micro- and macro-expressions.

Happiness

Surprise

Disgust

Figure 1. Examples of macro-expression (left) and micro-expression (right). Macro-expression
samples have high intensity, while micro-expression samples show little change in facial expression.

In 1966, Haggard et al. [1] first proposed the concept of micro-expressions. About three
years later, Ekman et al. [2] witnessed this phenomenon while researching lie detection
using interview videos of psychologists and patients. Robust micro-expression recogni-
tion systems are used in various fields, such as criminal recognition, lie detection, and
psychological diagnosis. Owing to the broad applicability of micro-expression recognition,
many studies have been conducted in recent years. These studies are primarily divided
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into hand-crafted feature-based methods [3–8] and deep learning-based methods [9–14].
The hand-crafted feature extraction was widely used at the beginning of the develop-
ment of micro-expression detection technology because it extracts direct-designed features
according to the given learning method.

On the other hand, the deep learning-based method automatically extracts features
to solve specific tasks. Because such models are more convenient and achieve higher
performance than hand-crafted feature-based methods, more studies using deep learning-
based methods have recently emerged. Although micro-expression samples are limited
and have a low intensity which causes difficulties, deep learning-based networks, such
as convolutional neural networks (CNNs) and long short-term memory models, have
achieved excellent progress.

Even though micro-expression datasets [4,15,16] consist of sequential frames, most
studies thus far have used static images or optical flows [13,17–19], and few have used the
frame sequence as input to the network [9,20]. Additionally, some studies have simultane-
ously used macro-expression data for learning with sequential inputs. However, to the best
of our knowledge, no studies have transferred a model pre-trained on other more extensive
datasets, such as action recognition datasets, to micro-expression datasets several times.

Therefore, in this paper, we propose a novel framework to overcome the insufficient
number of clips in the micro-expression dataset. Our main contributions can be summarized
as follows:

1. N-step pre-training is proposed which use extensive datasets in addition to
facial datasets;

2. We propose a new augmentation method specialized for facial data, called “Décalcomanie”;
3. The combination of N-step pre-training and Décalcomanie augmentation outperforms

state-of-the-art approaches in micro-expression recognition.

The remainder of this paper is organized as follows: Section 2 describes the related
studies on micro-expression recognition. Section 3 describes the data preprocessing meth-
ods prior to training and the details of the proposed approach. We present the experimental
settings and results in Section 4, and we conclude this paper in Section 5.

2. Related Work

In facial expression recognition, two methods are mainly used: hand-crafted feature-
based methods and deep learning-based methods. In the hand-crafted feature extraction,
LBP variants-based methods [3,4] and optical flow-based methods [13,19] are widely used.
However, because micro-expression images have little movement and implied change, it is
difficult for the hand-crafted feature-based method to achieve high performance.

Deep learning-based methods have performed better than hand-crafted feature-based
methods in the field of computer vision in recent years. Therefore, studies using the deep
learning-based method have been actively proposed even in micro-expression recognition.
Wu et al. [9] used a three-stream combining 2D and 3D convolutional neural network
to classify expressions and proposed two variants: intermediate fusion and late fusion.
Xia et al. [10] improved the performance by adversarial learning using both the micro-
expression dataset and the macro-expression dataset. Recently, Hung et al. [20] proposed
multilevel transfer learning for a macro-expression dataset. They used related domain
datasets for pre-training and performed experiments on the macro-expression dataset.

In this paper, we also propose a deep learning-based micro-expression recognition
method. The methods mentioned earlier have not adequately utilized the pre-trained model
and are dependent on additional information such as landmarks and optical flow. Therefore,
we propose a novel method that uses a pre-trained model that learns large amounts of data
across the N-step and a transformation method specialized in facial datasets called Decal-
comanie. We emphasize that we utilize massive datasets with unrelated domains to facial
in multistep pre-training, although Hung et al. [20] only utilized relevant domain datasets.
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3. Proposed Method

Insufficient data may lead to poor model performance. This section presents two
methods to overcome the problem: N-step pre-training and Décalcomanie data augmenta-
tion. Before explaining the proposed methods in detail, we first show the preprocessing
methods used to deal with the sequential data. The framework of the proposed method is
shown in Figure 2.
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Figure 2. Framework of our proposed method (three-step pre-training with Décalcomanie augmenta-
tion). First, we train the model from scratch on Kinetics-400 and transfer it to UCF101. Next, we train
the model on the macro-expression dataset. Finally, the model is fine-tuned on the micro-expression
dataset by applying the Décalcomanie augmentation method. In each step, we replace the extant
fully-connected (FC) layer of the model with a randomly initialized FC layer. CNN, convolutional
neural network.

3.1. Preprocessing
3.1.1. Oversampling with Synthetic Samples

The micro-expression datasets have an imbalanced distribution. For example, in
the Spontaneous Micro-expression (SMIC) dataset, the negative class has 70 samples,
the positive class has 51, and the surprise class has 43. Training a model with such an
imbalanced data may lead to overfitting. To handle this problem, Wu et al. [9] used an
extension of the synthetic minority oversampling technique (SMOTE) [21] algorithm. They
modified the SMOTE algorithm by using two samples to generate a new one using the
following formula:

xnew,i = λ · x1,i + (1− λ) · x2,i, (1)

where x1,i and x2,i are random samples belonging to the same category, and x1,i indicates
the i-th frame of the sequence of sample x1. λ is sampled from a uniform distribution
(0, 1). They attempted to solve the class imbalance by creating a new sample belonging
to the insufficient class using the algorithm. We also adopted this method to alleviate the
imbalance problem.

3.1.2. Frame Interpolation

The micro-expression dataset comprises sequence samples having different numbers
of frames. Before training, all frames of the samples must be fixed at the same number to
capture the appropriate temporal information. We adopted a linear interpolation method,
provided by PyTorch, to fix the number of frames. The method samples down or up to
the desired size through linear interpolation. We used this method because it is easy to
implement, and there is no redundancy or loss of information.
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3.2. N-Step Pre-Training

Transfer learning uses a pre-trained model to solve another task. Many studies
have attempted to improve performance by transferring a pre-trained model that learned
macro-expression data first to another micro-expression case. However, to the best of our
knowledge, no studies have applied multistep transfer learning using massive sequential
datasets that have even unrelated domains for micro-expression datasets (e.g., Kinetics-
400 [22], UCF101 [23]), and a large-scale visual recognition dataset (e.g., ImageNet [24]).
Although the micro-expression dataset has a different domain from the action recognition
dataset, it is the same in that it contains temporal and spatial information. Therefore, we
assumed that, if the model learns this helpful information first, there will be a benefit in the
micro-expression data.

Multistep pre-training is composed of multiple-transfer learning. With one dataset,
we can train the model from scratch and replace the fully-connected layer with a randomly
initialized one. We can then fine-tune the model again on another dataset. A method of
performing such transfer learning multiple times on different datasets is the multistep pre-
training method that we propose. However, we emphasize that N-step pre-training does
not simply attempt to implement multiple transfer learning; the sequence of datasets used
in multiple steps is important. Figure 3 shows the procedure of two-step pre-training. Here,
we train the model on the action recognition dataset first and then on the macro-expression
dataset again. Lastly, we fine-tune the model on the micro-expression dataset.
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Inference using the pre-trained model

Figure 3. Procedure of two-step pre-training. We trained the model with the massive action recog-
nition dataset, initialized the FC layer, and transferred the model to the macro-expression dataset.
The pre-trained model was fine-tuned to the micro-expression training set again and then evaluated
against the test set to obtain the final performance. CNN, convolutional neural network.

3.3. Décalcomanie Augmentation

According to Mandal et al. [25], the left side of the human face is more expressive
of middle-intensity happiness and minimum-intensity happiness and sadness. The right
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side is more expressive in the most intense expressions of happiness and sadness. Because
both sides of the face reveal slightly different information about emotion, we devised
Décalcomanie augmentation. Originally, Décalcomanie was a drawing technique that
draws only half of a picture, folds it, and transcribes it to the other side, similar to the
stamping principle. Décalcomanie augmentation also divides the face in half and tran-
scribes back to the other side to create a new sample. Figure 4 illustrates the procedure of
Décalcomanie augmentation.

As the video clips of micro-expression datasets used in this paper are not inverted, as
when looking in a mirror, the left face and right face of the subject are originally right-side
and left-side, respectively. However, to facilitate understanding and avoid confusion, we
refer to the left and right faces as the left and right sides when looking at the video clip.
If Décalcomanie is applied, the left- and right-side frames can be obtained alongside the
original ones. Because three kinds of the frames can be obtained, a new training process was
required to learn the additional samples. Therefore, we propose two versions of training
process: (1) shared backbone and multiple losses, and (2) fusion with shared backbone.

Original Left-side Right-side

(a) (b)

Original 
Cut

L  frame

Flip

Concat

Concat

R  frame
Flip

Figure 4. Procedure of Décalcomanie augmentation. First, we cut all the frames in half. We flip the
cut left and right face frames, respectively, and concatenate the half-frame before flipping it to create
new frames. We denote the new frame made of only the left faces and the new frame made of only
the right faces as the L and R frames, respectively.

3.3.1. Shared Backbone and Multiple Losses

This version shares the backbone network and adds up the losses obtained by feed-
forwarding each frame to the model. We used four subset cases consisting of OLR, OL, OR,
and LR, where O, L, and R denote the original, left-side, and right-side frames, respectively.
For each case, we calculated the training loss using Equation (2):

LOLR = λO · Loriginal + λL · Lle f t + λR · Lright,

LOL = λO · Loriginal + λL · Lle f t,

LOR = λO · Loriginal + λR · Lright,

LLR = λL · Lle f t + λR · Lright,

(2)

where L is cross-entropy loss. λO, λL, and λR are hyperparameters multiplied by each
corresponding loss, and we set the sum of each λ in each equation to one. Figure 5 illustrates
the procedure for using LR frames.
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Figure 5. Procedure of “shared backbone and multiple losses” version when using LR frames. Each
input frame shares the network and obtains each loss for each input frame. The training cost is
calculated by combining each loss.

In this version, we tested the model’s performance with two cases: (1) using only
the original frames and (2) using all frames as input. In the latter case, so f tmax(·) was
applied after summing the output values obtained by feed-forwarding each input to the
shared backbone.

3.3.2. Fusion with Shared Backbone

Each feature extracted from the shared backbone was concatenated and forwarded to
a single linear layer or multilayer perceptron (MLP). We set the hidden dimensions of the
MLP to 256. Like the shared backbone and multiple losses version, we used OLR, OL, OR,
and LR, which are possible input cases, and the combination of the frames used during
training was the same for testing. Figure 6 shows the procedure of fusion with the shared
backbone using LR frames.

CNN Backbone

FC
 layer

L

R

-dim
 vector

k

concat

Softm
ax

Loss Function

ℒ

Linear interpolation
Linear interpolation

-dim
 vector

k

-dim
 vector

2k

Figure 6. Procedure of “fusion with the shared backbone” version when using LR frames. Each input
was forwarded to the shared backbone network, and we obtained a k-dimensional vector for each.
After concatenating all vectors, we fed-forward the representation vector to calculate the training
loss. CNN, convolutional neural network; FC, fully-connected.

4. Experiments

First, we summarize the experimental setup and then verify the effectiveness of each
proposed method. Lastly, we show the performance of the model when the two proposed
methods are combined.
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4.1. Setup

Here, we summarize the dataset details used in the experiment, the metrics used to
evaluate the model performance, and the implementation details in order.

4.1.1. Datasets
Facial Dataset

Facial expressions can be divided into two main categories: macro-expression and
micro-expression. Macro-expressions appear on our faces without any oppression when
emotions are usually expressed. Macro-expressions are easy to recognize because of their
long duration (0.25–4 s), and the emotion to be revealed is clearly expressed. Examples of
each dataset we used are shown in Figure 7. The details of the macro-expression datasets
are as follows:

• Extended Cohn–Kanade (CK+) [26] initially contained 593 video sequences of 123 sub-
jects aged 18 to 50 with diverse genders and heritage. The samples were collected at
30 fps with a resolution of 640 × 490 or 640 × 480 pixels. These samples were divided
into seven categories: anger, disgust, fear, sadness, contempt, happiness, and surprise.

• Oulu-CASIA [27] consists of six emotion classes (i.e., anger, disgust, fear, sadness,
happiness, and surprise) from 80 people between 23 and 58 years old. The camera
recorded the expressions at 25 fps with a resolution of 320 × 240 pixels. This dataset
was collected under two conditions: near-infrared (NIR) and visible (VIS) light systems.
VIS images consist of three different versions: dark, strong, and weak. The dark
versions are created when samples are taken in a dark environment. The strong
version is the case where the emotion of the subject’s expression stands out, and the
weak version is the opposite.

(a) (b)

(c) (d) (e)

Figure 7. Samples of macro- and micro-expression datasets. CK+ and Oulu-CASIA are macro-
expression datasets, and SMIC, CASME2, and SAMM are micro-expression datasets. (a) CK+;
(b) Oulu-CASIA; (c) SMIC; (d) CASME2; (e) SAMM.

Micro-expressions, alternatively, are unconsciously short facial expressions typically
made under stress. They appear for only 0.5 s and are very subtle, making it difficult
to judge emotions, even when intentionally observed. There are many micro-expression
datasets, but high quality ones include SMIC [4], CASME2 [15], and SAMM [16]. These
datasets were recorded in a laboratory environment, and subjects were asked to maintain a
“poker face” without showing emotions as much as possible under different stimuli. The
details of each dataset are as follows:

• SMIC [4] consists of samples recorded by 100 fps high-speed cameras and samples
recorded at standard speed with 25 fps of both VIS and NIR light ranges. Each
subset is referred to as SMIC-HS, SMIC-VIS, and SMIC-NIR. The SMIC-HS consists of
164 samples taken from 16 subjects, each assigned a label of “negative”, “positive”,
or “surprise”.
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• CASME2 [15] is an improved version of the existing micro-expression dataset, CASME [28].
CASME2 was filmed using a high-speed 250 fps camera and crops only the face part at
a size of 280 × 340 pixels. The dataset has 247 samples generated from 26 subjects, but
some expressions are unevenly distributed because they were difficult to derive under
laboratory conditions. It provides five classes of micro-expressions.

• SAMM [16] comprises 159 samples collected from 32 participants. Although other
datasets lack ethnic diversity, the SAMM dataset consists of 13 different ethnicities;
the average age was 33.24 years, and the gender distribution was almost identi-
cal. Each sample was collected at a high speed of 200 fps with a high resolution of
2040 × 1088. The labels for each sample were emotion labels designated by partici-
pants through surveys.

Action Recognition Dataset

Because the facial dataset is sequential, the model learns spatial and temporal infor-
mation during training. The final model performance can be higher if a large-scale action
recognition dataset is used to learn spatiotemporal information in advance before learning
the facial dataset.

• Kinetics-400 [22] consists of 400 human action classes and has at least 400 video
clips per class. These videos were taken from YouTube and focus on human actions.
The dataset covers a broad range of classes that are largely divided into person (e.g.,
drawing, laughing, and fist-pumping), person-person (e.g., hugging and shaking
hands), and person–object actions (e.g., mowing the lawn and washing dishes). Unlike
facial datasets, the entire human body is often displayed on a video.

• UCF-101 [23] consists of 101 action categories and videos collected from YouTube. It
contains 13,320 videos and is one of the most challenging datasets because the videos
were filmed under significant variations of camera motion. The categories are largely
classified into five types: human–object interaction, body motion only, human–human
interaction, playing music instruments, and sports. Similar to Kinetics, UCF-101 is
a human action recognition dataset, but the proportion of videos capturing face or
upper body is slightly higher.

4.1.2. Evaluation Metrics

In this paper, we use the leave-one-subject-out (LOSO) cross-validation protocol to
evaluate the model. We adopted this protocol to make up for the micro-expression dataset
having a biased number of samples per subject. If K subjects are in the dataset, the LOSO
protocol divides the experiment into K folds. It uses one subject as the test set and the
remaining K− 1 subjects as the training set, which leads to K experiments. Meanwhile, the
micro-expression datasets also have a biased distribution of samples for emotion classes,
providing an imbalanced distribution. To reduce the potential bias, we used weighted
average recall (WAR), unweighted average recall (UAR), and unweighted F1 score (UF1) as
evaluation standards.

UF1 =
1
C

C

∑
c=1

F1c, UAR =
1
C

C

∑
c=1

TPc

Nc
, WAR =

∑C TPc

∑C
c=1 Nc

,
(3)

where
F1 =

2TPc

2TPc + FPc + FNc
(4)

In Equation (3), C is the number of classes, and TP, FN, and FP are the true posi-
tive, false negative, and false positive, respectively. Nc is the total number of samples in
category C.
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4.1.3. Implementation Details

We used one NVIDIA RTX A6000 48 GB GPU per experiment. For N-step pre-training
experiments, we trained 3D-ResNet-50 [29] for 30 epochs using Adam [30] with β1 = 0.9,
β2 = 0.999, a batch size of 30, and a learning rate of 0.0001, which decayed by 10 at the
13th, 18th, and 22nd epoch. We resized all frames to 112. In the case of Décalcomanie
experiments, we trained 3D-ResNeXt-101 [29] for 100 epochs. This is different in that
the learning rate is decayed by 10 at the 30th, 60th, and 80th epochs; however, all other
hyperparameters are the same as in the pre-training experiment. In the case of OLR frames,
we set λO, λL, and λR to 0.4, 0.4, and 0.2, respectively. For OL, OR, and LR, we set λ to 0.5.
We used synthetic samples generated using extended SMOTE with the N-step pre-training
experiments, but not in the Décalcomanie experiments. Because synthetic samples have
mixed faces, cutting them in half and combining them can cause noisy representations.
Furthermore, because the number of frames in each video sample of the micro-expression
datasets is different, it was necessary to fix the datasets’ frames to capture the temporal
information. We used the linear interpolation to set the number of frames to their average
number. As a result, we set the video lengths of SMIC, SAMM, and CASME2 to 34, 74, and
66, respectively.

4.2. Effect of N-Step Pre-Training

We conducted an N-step pre-training experiment for a micro-expression dataset using
3D-ResNet-50. The datasets used as source datasets were Kinetics-400, UCF101, ImageNet,
and macro-expression datasets CK+ and Oulu-CASIA. As Kinetics-400 and ImageNet are
massive, we use public pre-trained models on those without direct learning to reduce
learning costs. We used SMIC and SAMM as target datasets in this experiment. We showed
a visual comparison of the UF1 and UAR performance of each N-step pre-trained model
in Figure 8. We also presented the numerical results in Table 1. For convenience, We refer
to ImageNet, Kinetics-400, UCF101, and a combination of CK+ and Oulu-CASIA as IN,
Kinetics, UCF, and Macro, respectively. We analyzed the result with a particular focus on
UF1 and UAR. Through an experimental investigation, we found three interesting results.

(b) When the model was transferred to                   
      SAMM

(a)When the model was transferred to  
SMIC

Figure 8. Visualization of N-step pre-training performance (UF1 and UAR). In both cases, the
performance of Kinetics→ UCF→Macro achieves the best performance (Kin.: Kinetics-400).
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Table 1. Experimental results of N-step pre-training (IN: ImageNet, Kinetics: Kinetics-400, UCF:
UCF101, Macro: a combination of CK+ and Oulu-CASIA). (a) When training the 3D-ResNet-50 on
the SMIC. (b) When training the 3D-ResNet-50 on the SAMM.

(a) (b)

Pre-Trained Step UF1 UAR WAR Pre-Trained Step UF1 UAR WAR

Scratch 0 0.5540 0.5542 0.5549 scratch 0 0.4175 0.4091 0.5515
IN 1 0.5104 0.5549 0.5122 IN 1 0.3850 0.4077 0.4412
Kinetics 1 0.5638 0.5840 0.5610 Kinetics 1 0.4274 0.4174 0.5588
UCF 1 0.5721 0.5773 0.5793 UCF 1 0.4379 0.4527 0.5441
Macro 1 0.5997 0.5988 0.6098 Macro 1 0.4581 0.4539 0.5294
Kinetics→Macro 2 0.6060 0.6066 0.5976 Kinetics→Macro 2 0.4606 0.4712 0.5441
IN→ UCF→Macro 3 0.6388 0.6346 0.6585 IN→ UCF→Macro 3 0.4614 0.4741 0.5588
Kinetics→Macro→ UCF 3 0.5893 0.5893 0.5915 Kinetics→Macro→ UCF 3 0.4623 0.4637 0.5515
Kinetics→ UCF→Macro 3 0.6561 0.6733 0.6463 Kinetics→ UCF→Macro 3 0.4677 0.4833 0.5515

First, in one-step pre-training, we found that the model pre-trained on IN performed
worse than the scratch model, and in the case of the rest of the datasets, they performed
better, and their performance was higher in the order of kinetics, UCF, and Macro. Although
IN is large-scale, it hinders model performance because it is composed of still images
without temporal information. In addition, Kinetic has a higher proportion of frames
focusing on the whole body, and UCF has a higher proportion of frames with the upper
body and face than Kinetics. Hence, UCF is slightly closer than Kinetics, although its
domain is clearly different from the facial dataset. Therefore, we assumed for that reason
that the performance of the model pre-trained on UCF was higher than that of the model
pre-trained on Kinetics. For macro-expression datasets with a similar domain to micro-
expression datasets, the performance was the highest among one-step pre-training methods.

Second, we analyzed whether the order of datasets used for pre-training affects
performance in N-step pre-training. In Table 1, the last second lines show the experimental
results obtained by switching UCF and Macro with the dataset learned in the last step.
Training the model on Macro in the last step was better than UCF, suggesting that the
dataset order of the pre-training process could achieve higher performance as it proceeded
in the order of datasets with domains like the micro-expression domain.

Finally, when the macro-expression dataset was used for pre-training in the last
step, we compared the Scratch, Macro, Kinetics → Macro, IN → UCF → Macro, and
Kinetics→ UCF→Macro to evaluate whether performance improves as the number of
steps increases. As a result, we confirmed that, with more steps, performance improved.
Furthermore, when comparing IN→ UCF→Macro and Kinetics→ UCF→Macro, which
used the same three-step pre-training, the performance of Kinetics→ UCF→Macro was
better than that of IN→ UCF→Macro, which is presumed to have been caused by the
presence or absence of temporal information, as mentioned.

4.3. Effect of Décalcomanie Augmentation

We trained 3D-ResNeXt-101 from scratch without using the pre-trained model solely
to check the performance of Décalcomanie data augmentation. We did not use the afore-
mentioned oversampling method. The datasets used in experiments are SMIC, CASME II,
and SAMM. We resized each frame to 112 and applied scale, rotation, and horizontal flip
augmentation in addition to Décalcomanie.

The results of the shared backbone and multiple loss on SMIC, SAMM, and CASME
II using 3D-ResNeXt-101 from scratch are shown in Table 2. The first line of the table
means the result when we did not apply Décalcomanie augmentation. First, we tested if
Décalcomanie augmentation can be used as test time augmentation. During training time,
we only used the original frame as input and used various frames created via Décalcomanie
such as OLR, OL, and OR during test time. The top four lines of Table 2 prove that Décal-
comanie can be utilized as test time augmentation. The performances got higher for every
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dataset when our proposed augmentation method was used as test time augmentation. For
example, when test time augmentation was not used for the SMIC dataset, UF1, UAR, and
WAR were 0.5833, 0.5680, and 0.5671, respectively. However, UF1, UAR, and WAR rose to
0.5985, 0.5929, and 0.6098 when OLR frames created using the Décalcomanie augmentation
were input during the test, meaning that the performance was increased by 0.0152, 0.0246,
and 0.0427, respectively.

Table 2. Experimental results of Décalcomanie (Shared Backbone and Multiple Losses). (a) When
training the 3D-ResNeXt-101 on the SMIC. (b) When training the 3D-ResNeXt-101 on the CASME II.
(c) When training the 3D-ResNeXt-101 on the SAMM.

(a) (b) (c)

Train Test UF1 UAR WAR Train Test UF1 UAR WAR Train Test UF1 UAR WAR

O

O 0.5833 0.5680 0.5671

O

O 0.4586 0.4535 0.5181

O

O 0.4967 0.4994 0.6066
OLR 0.5985 0.5929 0.6098 OLR 0.5144 0.5144 0.5382 OLR 0.5333 0.5518 0.6177
OL 0.5856 0.5798 0.6159 OL 0.4973 0.4987 0.5261 OL 0.5160 0.5393 0.5882
OR 0.5884 0.5918 0.5915 OR 0.4809 0.4875 0.5141 OR 0.5415 0.5609 0.6103

OLR O 0.6242 0.6454 0.6220 OLR O 0.5581 0.5527 0.6104 OLR O 0.5413 0.5419 0.6103
OLR 0.6441 0.6369 0.6524 OLR 0.4607 0.4672 0.5783 OLR 0.4729 0.4653 0.5809

OL O 0.6114 0.6352 0.6098 OL O 0.5165 0.5229 0.5944 OL O 0.5647 0.5580 0.6471
OL 0.6225 0.6326 0.6220 OL 0.5432 0.5422 0.6104 OL 0.5699 0.5668 0.6471

OR O 0.6283 0.6303 0.6280 OR O 0.4809 0.4882 0.5622 OR O 0.5276 0.5265 0.6250
OR 0.6293 0.6125 0.6280 OR 0.5018 0.4987 0.5663 OR 0.6011 0.6157 0.6691

LR O 0.6150 0.6125 0.6159 LR O 0.5419 0.5399 0.6064 LR O 0.5169 0.5173 0.5956
LR 0.6227 0.6364 0.6220 LR 0.4933 0.4920 0.5783 LR 0.5087 0.4989 0.6029

Then, we also conducted experiments to verify the effect of Décalcomanie as data
augmentation during training. In most of the experiments, models with Décalcomanie
achieved higher performance than those without it. In addition, overall, the model with
a single linear layer obtained higher performance than the model with a multilayer per-
ceptron. In the experiments using SMIC and CASME II, the performance improvement
was the highest in the sub-experiment using OLR frames as input. We hypothesize that
these results occurred because emotional expressions were well represented on both sides
of the face. Unlike the results, in the case of SAMM, the performance improvement was
the greatest when using the OR frames. When we compared SAMM to other datasets,
the subjects’ expressions were significantly more emotionally inhibited. Although it is
difficult to detect changes due to minimal facial changes, we assume that the reason for the
highest performance when inserting the OR frames is that there was a little more minimum
intensity on the right side of the subject’s face.

The results of the fusion with the shared backbone are shown in Table 3. Overall, the
fusion with shared backbone version does not have a higher overall performance than
the shared backbone and multiple losses version. However, there was a performance
improvement compared to when Décalcomanie was not applied. Using a single linear as a
classifier performed better than using multilayer perceptron in most cases. Due to the small
number of data, the performance of the deeper model is not higher. In this experiment,
UF1, UAR, and WAR were highest in SMIC and CASME II when OL or OLR frames
were used, and in the case of SAMM, when OR frames were used achieved the highest
performance. As can be seen from the results, it can be assumed that SMIC and CASME II
contained facial expression information evenly on both faces. SAMM also showed more
minor performance improvements than did the other two datasets because emotional
expression was further suppressed.
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Table 3. Experimental For the MLP column, × denotes that a single fully-connected layer is used
for the classfier. results of Décalcomanie (Fusion with Shared Backbone). (a) When training the 3D-
ResNeXt-101 on the SMIC. (b) When training the 3D-ResNeXt-101 on the CASME II. (c) When training
the 3D-ResNeXt-101 on the SAMM. “×” in the MLP column indicates that a single fully-connected
layer is used for the classifier.

(a) (b) (c)

Train
/Test

MLP UF1 UAR WAR Train
/Test

MLP UF1 UAR WAR Train
/Test

MLP UF1 UAR WAR

O × 0.5833 0.5680 0.5671 O × 0.4586 0.4535 0.5181 O × 0.4967 0.4994 0.6066
© 0.5509 0.5507 0.5549 © 0.4235 0.4385 0.5181 © 0.4712 0.4753 0.5662

OLR × 0.6346 0.6438 0.6463 OLR × 0.4834 0.4974 0.5588 OLR × 0.5061 0.5159 0.6176
© 0.6068 0.6024 0.6220 © 0.4800 0.4703 0.5582 © 0.5093 0.5208 0.6029

OL × 0.6060 0.6177 0.6098 OL × 0.4697 0.4549 0.5261 OL × 0.4943 0.5018 0.5368
© 0.6172 0.6197 0.6159 © 0.4411 0.4549 0.5261 © 0.4626 0.5152 0.5055

OR × 0.6228 0.6261 0.6280 OR × 0.4656 0.4720 0.5141 OR × 0.5938 0.6126 0.6691
© 0.5866 0.5935 0.5915 © 0.4559 0.4724 0.4940 © 0.4895 0.4912 0.5809

LR × 0.5917 0.5992 0.6037 LR × 0.4536 0.4385 0.5422 LR × 0.5005 0.5056 0.5735
© 0.5919 0.5856 0.6098 © 0.4695 0.4675 0.5181 © 0.5048 0.5450 0.5441

To further research the effectiveness of the Décalcomanie method, we compared it
with other augmentation methods. The results are shown in Table 4. First, we compared it
with basic augmentation methods usually used. We rotated images with 30 degrees, resized
images with scale (1.1, 1.1), or flipped images horizontally. The results of applying primary
augmentations show low performances, which means that the simple transformation
of the frames does not have much effect. When we applied the SMOTE algorithm that
produces the synthetic samples used by Wu et al. [9] with simple augmentations, the
performance of all the metrics was over 0.6. However, when we applied our proposed
augmentation method, Decalcomanie, the models’ performance was much higher than
when using SMOTE. This result demonstrates that Décalcomanie has a remarkable effect
on facial data.

Table 4. Comparison between various data augmentation techniques on the SMIC dataset. SBML,
Shared backbone and multiple losses; FSB, Fusion with a shared backbone.

Method UF1 UAR WAR

RandomRotation 0.5768 0.5781 0.5976
RandomResize 0.5734 0.5773 0.5731
RandomHorizontalFlip 0.5719 0.5766 0.5792
SMOTE [9] (+Rotation,Resize,Flip) 0.6063 0.6006 0.6220
Décal-SBML (+Rotation,Resize,Flip) 0.6441 0.6369 0.6524
Décal-FSB (+Rotation,Resize,Flip) 0.6346 0.6438 0.6463

4.4. Overall Results

Here, we combined the N-step pre-training and Décalcomanie data augmentation
to evaluate the overall results. We used the best combination in the N-step pre-training
experiment (Kinetics → UCF → Macro). 3D-ResNeXt-101 was used as the backbone
network. After N-step pre-training, we fine-tuned the pre-trained model on the SMIC
dataset and evaluated its performance.

Table 5 shows the results. As stated, shared backbone and multiple losses experiments
had better performance than did fusion with shared backbone experiments. Earlier, the
performance was highest on the SMIC dataset when experimenting with OLR or OL
frames, showing the same results in this experiment. In the case of shared backbone and
multiple losses, when both N-step pre-training and the Décalcomanie method were applied
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compared to Scratch, UF1, UAR, and WAR increased by +0.2104, +0.2267, and +0.2256,
respectively. For fusion with shared backbone experiments, the performance was lower
than shared backbone and multiple losses; however, the performance was still significantly
better than scratch.

Table 5. Experimental results when training 3D-ResNeXt-101 using both N-step pre-training and
Décalcomanie on the SMIC dataset. (a) Shared Backbone and Multiple Losses. (b) Fusion with a
shared backbone. “×” in the MLP column denotes that a single fully-connected layer is used for
the classifier.

(a) (b)

Train Test UF1 UAR WAR Train/Test MLP UF1 UAR WAR

Scratch 0.5833 0.5680 0.5671 O × 0.5833 0.5680 0.5671

OLR O 0.7937 0.7947 0.7927 OLR × 0.7566 0.7554 0.7561
OLR 0.7382 0.7411 0.7378 © 0.7228 0.7209 0.7195

OL O 0.7350 0.7542 0.7317 OL × 0.7551 0.7673 0.7500
OL 0.7156 0.7226 0.7134 © 0.7043 0.7262 0.7012

OR O 0.7858 0.7893 0.7805 OR × 0.7262 0.7227 0.7317
OR 0.7719 0.7828 0.7683 © 0.7507 0.7506 0.7561

LR O 0.7460 0.7548 0.7439 LR × 0.7454 0.7470 0.7317
LR 0.7205 0.7257 0.7195 © 0.7341 0.7411 0.7317

We compared our proposed method with other state-of-the-art approaches which
used the LOSO protocol and the same number of classes for a fair comparison. Since the
results of the shared backbone and multiple losses were better than the fusion with shared
backbone in the previous experiments, we used the figures of the shared backbone and
multiple losses version for comparison. Refs. [3,4,13,19] are hand-crafted feature-based
methods and [10,31–33] are deep learning-based methods which used additional datasets
in addition to the micro-expression dataset. The comparison with these methods is shown
in Table 6. We achieve the best performance when our proposed methods, such as N-step
pre-training and Décalcomanie data augmentation, are combined.

Table 6. Comparison to other methods on the SMIC dataset. The performance of the proposed
method achieved the highest value when both N-step pre-training and Décalcomanie were used (font
in bold).

Method UF1 UAR WAR

LBP-TOP [4] - - 0.4878
STLBP-IP [3] - - 0.5951

Bi-WOOF [19] 0.6200 - 0.6220
3D flow-based CNN [13] - - 0.5549

TSCNN [31] 0.7236 - 0.7274
MTMNet [10] 0.7680 0.7440 -
SMA-STN [32] 0.7683 - 0.7744

MiNet [33] 0.7780 - 0.7860

Proposed 0.7937 0.7947 0.7927

5. Conclusions

In this paper, we proposed N-step pre-training and Décalcomanie augmentation to
avoid the data shortage problem in micro-expression recognition. In N-step pre-training,
we transferred the model multiple times on various datasets in a specific order. Furthermore,
we devised a data augmentation method specialized for the face called Décalcomanie. We
evaluate the effectiveness of each method on micro-expression datasets. When combining
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N-step pre-training and Décalcomanie augmentation, the experimental results show that
our proposed methods outperform the state-of-the-art methods on the SMIC dataset.
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