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Abstract: Rolling bearings are key components that support the rotation of motor shafts, operating
with a quite high failure rate among all the motor components. Early bearing fault diagnosis has great
significance to the operation security of motors. The main contribution of this paper is to illustrate
Gaussian white noise in bearing vibration signals seriously masks the weak fault characteristics in
the diagnosis based on the Teager–Kaiser energy operator envelope, and to propose improved TKEO
taking both accuracy and calculation speed into account. Improved TKEO can attenuate noise in
consideration of computational efficiency while preserving information about the possible fault. The
proposed method can be characterized as follows: a series of band-pass filters were set up to extract
several component signals from the original vibration signals; then a denoised target signal including
fault information was reconstructed by weighted summation of these component signals; finally, the
Fourier spectrum of TKEO energy of the resulting target signal was used for bearing fault diagnosis.
The improved TKEO was applied to a vibration signal dataset of run-to-failure rolling bearings and
compared with two advanced diagnosis methods. The experimental results verify the effectiveness
and superiority of the proposed method in early bearing fault detection.

Keywords: rolling bearing; early bearing fault diagnosis; Teager–Kaiser energy operator (TKEO);
vibration analysis

1. Introduction

Rolling bearings are key components that support the rotation of motor shafts, per-
forming an important role in almost all the types of rotating machinery. High speed,
high load, and limited lubrication make rolling bearings the parts with a high failure rate
among all the motor components. Therefore, bearing fault diagnosis, especially early fault
diagnosis, performs great significance to the operation security of motors.

Many relevant analysis methods have been proposed in recent decades. Thermal
analysis is a valuable approach for the non-intrusive detection. The thermal images are
effective features to reflect the operation states of bearings and the many impressive efforts
made [1–3]. Applications of the acoustic emission signals deserve attention as well [4–6].
As an irreplaceable advantage in particular conditions, the acoustic sensors are able to
record the signals in distance from the monitoring objectives. This technology greatly
depends on the characteristics of background noise, which limits its industrial applications
sometimes. In a broader view, stator current signals and the stray flux signals have also
been applied for bearing fault diagnosis [7–10], and even the feasibility of the diagnosis
based on variable reluctance signals has been discussed [11].

Vibration analysis is one of the most widely used technologies for bearing condition
monitoring and performs satisfactory results in the diagnosis accuracy. The dynamic
characteristics of machinery can be richly expressed by vibration signals. So, the vibration
analysis is an appropriate choice for the early fault diagnosis in this research. In a case
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of a rotating faulty bearing, with its rolling elements periodically passing over a defect,
impulses with the corresponding bearing fault characteristic frequency are contained in its
vibration signals. Hence time-domain statistical parameters which are sensitive to such
impulses, such as kurtosis and amplitude of vibration signal, can act as common bearing
fault characteristics. However, locations and causes of faults are not detectable by the
methods only based on these time-domain statistical parameters [12]. Moreover, in the
early stage of bearing faults, the weak impact caused by the defect is hardly reflected on
time-domain statistical parameters.

Through comparison with the statistical parameters, the envelope analysis on bearing
vibration signals has greater potential to detect more detailed information about weak fault
characteristics. It treats bearing vibration signals as amplitude modulated (AM) signals.
A commonly applied method called the Hilbert envelope analysis extracts the resonant
band signal with strong impulses through a band-pass filter, and demodulates the filtered
signal with Hilbert transform to construct an amplitude envelope signal. Finally, the
fault characteristic frequencies are easily identified in the envelope spectrum. The major
challenge for the Hilbert envelope analysis is to appropriately estimate the center frequency
and the bandwidth of the filter. To improve its robustness and sensitivity, many researches
combine Hilbert envelope analysis with various signal processing technologies such as
spectral kurtosis (SK) [13,14], empirical mode decomposition (EMD) [15,16], and variational
mode decomposition (VMD) [17], providing different schemes for setting optimal filters.
Meanwhile, there are particular shortcomings in these technologies: SK is vulnerable on
some strong impact industrial occasions; EMD has the problems of endpoint effect and
mode mixing; and VMD is difficult to configure the optimal parameters. As a result, there
occur further improvement schemes [18–23].

As an alternative solution to calculate the (squared) amplitude envelope, the Teager–
Kaiser energy operator (TKEO) is proposed to demodulate the instantaneous amplitude
and the instantaneous frequency from a mono-component amplitude-modulated and
frequency-modulated (AM-FM) signal [24]. Especially for AM signals, including bearing
vibration signals, the TKEO energy is approximate to the squared envelope. Therefore,
the bearing fault characteristic frequencies can be identified in the Fourier spectrum of
TKEO energy of bearing vibration signals when a defect exists. Combined with signal
processing technologies, TKEO has demonstrated a great potential to improve the accuracy
of bearing fault diagnosis. A. Galezia et al. separated the bearing vibration signal into
multiple frequency bands and applied the demodulation based on TKEO, to isolate and
trace the strongest modulation components in each band [25]. D.-H. Kwak et al. combined
TKEO with minimum entropy deconvolution to enhance bearing fault characteristics [26].
M. Azergui et al. used statistical parameters to select the optimal frequency band for
wavelet packet transform and use TKEO to detect the hidden impact [27]. In the research
of X. Pei, et al., the vibration signals preprocessed with TKEO were used as the input of an
unsupervised machine-learning model for the capture of richer fault diagnosis informa-
tion [28]. Z. Wang, et al. developed two novel cyclostationary methodologies with high
computational speed based on the effective demodulation by TKEO for mono-component
modulated signals [29]. Some researches have noted the unique advantages of TKEO as
well [30–32]: TKEO energy of the origin signal avoids the estimation of extra band-pass
filters; calculation of TKEO energy only requires three adjacent samples, which is simple
and computationally efficient; TKEO has high time resolution and hence is sensitive to the
fault under high-speed; and TKEO considers both the amplitude and frequency modulation
information thereby potentially leading to more reliable detection results. However, TKEO
is susceptible to wideband noise, especially when the energy of noise is close to or even
greater than that of the signal to demodulate, which probably reduces the accuracy of the
early bearing fault diagnosis.

Based on the assumption that the bearing vibration signal is an AM signal, this paper
focuses on the following work: (1) The influence of Gaussian white noise on TKEO envelope
analysis is discussed through theoretical analysis and simulation experiments, providing a
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basis for the denoising processing in the bearing fault diagnosis based on TKEO analysis.
(2) A denoising method suitable for bearing fault vibration analysis is proposed to reduce the
white noise of original vibration signals and retain the fault information in the target signal.
Then, improved TKEO, combined TKEO with the proposed denoising method, is introduced.

The paper hereafter is organized as follows: Section 2 introduces TKEO and analyzes
the influence of the noise in bearing vibration signals on TKEO; Section 3 proposes a
denoising method suitable for bearing vibration analysis, and accordingly provides the
complete flow of improved TKEO; the experimental results of several early bearing fault
cases are presented in Section 4. Section 5 concludes the paper.

2. TKEO Envelope Analysis
2.1. Envelope Analysis of the Vibration Signal

Motor bearing vibration signals can be considered as a joint action of two parts. One
part is the vibration with specific physical significance related to the natural frequency
or motor speed. The other part is ordinarily the noise generated by random vibration,
measurement error, or other factors, which can be regarded as the white noise subject to
Gaussian distribution. Then the motor vibration displacement signal can be modeled as:

s(t) = sm(t) + ησ(t) (1)

ησ(t) ∼ N(0, σ) (2)

where sm(t) and ησ(t) present the two parts of the vibration displacement signal s(t),
respectively. ησ(t) is Gaussian white noise with standard variance σ.

When a bearing fault occurs, the shaft rotation causes rollers passing through the de-
fect point periodically to generate impulses with the fault characteristic frequencies. Each
impulse appears as a very sharp rise and then decays with an approximately exponential
envelope as its energy is dissipated by the internal damping. Namely, the impulse compo-
nent, which is non-existent when the bearing is healthy, appears in sm(t) as a result of the
joint action of natural vibration and fault impact. The impulse component is approximately
expressed as:

si(t) = ai(t) cos(2π fbft) cos(2π fbt) = Ai(t) cos(2π fbt) (3)

where ai(t) is the instantaneous amplitude of the impact component, fbf is fault characteris-
tic frequency, and fb is the natural vibration frequency of the bearing.

Generally, because fb � fbf, the fault characteristic term Ai(t) = ai(t) cos(2π fbft)
generated by roller impact can be regarded as a modulation signal, and the natural vibration
frequency term cos(2π fbt) can be regarded as a carrier signal. Thus, si(t) is an AM signal.
Therefore, modulated fault features or information can be extracted from bearing vibration
signals by amplitude envelope analysis.

2.2. Teager–Kaiser Energy Operator

TKEO was proposed by Kaiser in 1990 to measure the energy of mechanical processes
that generates a single time-variant signal. It is considered as a high-resolution energy
estimation. The TKEO of a continuous-time signal s(t) is:

ψ[s(t)] =
[ .
s(t)

]2 − s(t)
..
s(t) (4)

where
.
s = ds

dt ,
..
s = d

.
s

dt .
For an AM-FM signal s(t) = A(t) cos[ϕ(t)] with a time-variant amplitude A(t) and a

time-variant phase cos[ϕ(t)], its instantaneous frequency is ω(t) =
.
ϕ(t). TKEO is applied

to s(t), i.e.,

ψ[s(t)] =
[
A(t)

.
ϕ(t)

]2
+ cos2[ϕ(t)]

[
.
A

2
(t)− A(t)

..
A(t)

]
+

1
2

A2(t)
..
ϕ(t) sin[2ϕ(t)] (5)
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The change in amplitude and frequency of the modulation signal is often much slower
than that of the carrier signal, that is,

.
A(t)� A(t),

..
A(t)� A(t), and

.
ω(t) =

..
ϕ(t)� ω(t).

So in Equation (5), the terms of cos2[ϕ(t)]
[

.
A

2
(t)− A(t)

..
A(t)

]
and 1

2 A2(t)
..
ϕ(t) sin[2ϕ(t)]

can be omitted. Then Equation (5) is simplified as:

ψ[s(t)] ≈ A2(t)ω2(t) (6)

That means, TKEO extracts information about the modulation signal from the AM-FM
signal by tracking the product of instantaneous amplitude and instantaneous frequency.
For the single AM signal, its TKEO energy ψ[s(t)] is approximate to the squared envelope.
Hence TKEO becomes a tool to demodulate fault characteristic signals as envelope analysis
in bearing fault diagnosis.

In engineering practice, it is accelerometers that are the measurement tools of vibration
signals. The measured (acceleration) signals x(t) and the bearing vibration displacement
signal s(t) subject to x(t) =

..
s(t). According to s(t) = A(t) cos[ϕ(t)], it yields to:

x(t) ≈ −A(t)ω2(t) cos[ϕ(t)] = −ω2(t)s(t) (7)

If TKEO is applied to x(t) and the similar approximation is made above, then we have:

ψ[x(t)] = ψ
[..
s(t)

]
≈ A2(t)ω6(t) (8)

That is, when TKEO is used to demodulate an acceleration signal, TKEO energy,
or signal energy defined by TKEO, is the product of the instantaneous amplitude of the
vibration displacement signal to power 2 and the corresponding instantaneous frequency
to power 6. According to Equation (3), the instantaneous amplitude A(t) contains the
impulses with the fault characteristic frequency fbf. Therefore, fbf and its higher harmonics
in TKEO energy is a feasible indicator of the bearing fault.

For a discrete acceleration signal, the discrete version of the TKEO is provided in [24] by:

ψ[x(n)] = [x(n)]2 − x(n− 1)x(n + 1) (9)

2.3. Influence of Noise on TKEO

Although TKEO shows unique advantages in bearing fault diagnosis, Gaussian white
noise easily interferes with the bearing fault detection by TKEO energy. The analysis is
as follows:

As shown in Equation (1), bearing vibration signals can be considered as two parts
acting together. The first contains effective information about possible faults, the energy
of which is often focused near a series of specific frequencies with physical meaning.
Moreover, the second is the Gaussian white noise.

Let the ideal vibration accelerate signal xid be corrupted by additive zero-mean Gaus-
sian white noise ησ of standard deviation σ. The signal with noise is then provided by
x = xid + ησ, and ψ[x(n)] is the TKEO energy of x at the sample point n. Then after
simplification, the expectation and the variance of ψ[x(n)] are subject to

Eψ[x(n)] = Eψ[xid(n)] + σ2 (10)

Dψ[x(n)] = Dψ[xid(n)] + σ2Dxid(n− 1) + σ2Dxid(n + 1) + σ2[Exid(n− 1)]2 + σ2[Exid(n + 1)]2 + 4σ2Dxid(n)
+4σ2[Exid(n)]

2 + 3σ4 (11)

where E is the expectation operator and D is the variance operator.
xid(n− 1), xid(n), xid(n + 1) are just different expressions of the same signal, so let

Dxid(n) = σ2
x , and then statistically Dxid(n + 1) = Dxid(n− 1) = σ2

x as well. Because
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xid is a vibration acceleration signal, Exid = 0, and Exid(n + 1) = Exid(n− 1) = 0. Then
Equation (11) is simplified as

Dψ[x(n)] = Dψ[xid(n)] + 6σ2
x σ2 + 3σ4 (12)

Thus the expectation and the variance of TKEO energy are seriously distorted by
ησ, especially when the variance σ2 of ησ is close to or even above Dxid = σ2

x , which is
unfortunately a common situation in early bearing fault diagnosis. The impact caused by
the early bearing fault usually carries very little energy and the signal-to-noise ratio of fault
features in vibration signals is quite low for the fault diagnosis only with the identification
of characteristic frequency fbf in the TKEO energy spectrum.

From another perspective, fbf is commonly far less than the sampling frequency and
the natural bearing vibration frequency, so fault information in TKEO energy ψ[x] is mostly
in the lower frequency band (<10 fbf). According to Equation (6), the square envelope
of instantaneous amplitude, A2(t), receives a gain by the 6th power of the instantaneous
frequency, ω6(t), after TKEO. Compared with high-frequency noise, medium and low-
frequency modulated signals are far less gained, which reduces the reliability of diagnosis.

Some factors such as cogging effects and torque ripples also form peaks with specific
frequencies in Fourier spectrum. Different from white noise, these peaks generally interfere
little with bearing fault diagnosis and identification because their frequencies are incon-
sistent with the bearing fault characteristic frequencies. Therefore, Gaussian white noise
in original vibration signals has most serious implications for TKEO analysis. Removal of
white noise before TKEO can greatly improve the accuracy and sensitivity of early fault diagnosis.

2.4. Simulation Validation

This section validates the analysis in Section 2.3 using simulation signals with different
content of white noise. The ideal vibration acceleration signal without Gaussian noise
under bearing fault can be modeled as follows [33]:

xid(t) = 0.2 sin(2π f1t) + 0.1 sin[2π(2 f1)t] +
3

∑
i=1

aie−τit′ sin(2π fbit) (13)

t′ = mod
(

t,
1
fbf

)
(14)

where f1 is the rotating frequency of the shaft. fbi, i = 1, 2, 3 are three different frequency
resonances of the bearing. αi and τi are corresponding resonance amplitudes and attenuation
factors, respectively. t′ = mod

(
t, 1

fbf

)
is the remainder of time variable t divided by 1

fbf
.

The parameter settings of simulation signals are shown in Table 1. The unit of signals
is set to the gravity acceleration, g, consistent with common accelerometers. Sampling
frequency fs = 10 kHz. σx is the standard deviation of xid. ησ1 and ησ2 a are Gaussian white
noise with the standard deviation of σ1 and σ2, respectively. The signals with noise, xs1 and
xs2, are generated by adding ησ1 or ησ2 to xid, respectively, which are used to compare the
impact of Gaussian white noise on TKEO. xid is subtracted from its average value so that
its expectation is 0. All simulation signals above are shown in Figure 1a and the TKEO
energy of xid, xs1, and xs2, provided by Equation (9), is shown in Figure 1b.

Table 1. Parameters of simulation signals.

Parameters

fb1 (Hz) 500 fb2 (Hz) 2500 fb3 (Hz) 4000
τ1 (s−1) 100 τ2 (s−1) 500 τ3 (s−1) 300
a1 (g) 2 a2 (g) 0.5 a3 (g) 0.2

f1 (Hz) 20 fbf (Hz) 50 fs (Hz) 10,000
σx 0.7138 σ1/σx 1 σ2/σx 1.5
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Figure 1. Waveforms of simulation signals and TKEO energy. (a) The ideal vibration signal, additive
Gaussian noise and the signals with noise; (b) the TKEO energy of the ideal vibration signal and the
signals with noise.

As shown in Table 2, the theoretical results calculated by Equations (10) and (12) are
compared with the simulation results calculated from Figure 1. There are slight errors which
can be ignored between the theoretical and simulation results because of the randomness
of noise. It indicates, for bearing vibration signals with severe Gaussian white noise,
the expectation and variance of TKEO energy are seriously increased by dozens or even
hundreds of times. The influence of noise is more intuitive in the amplitude spectra of TKEO
energy. Let F be the notation of Fourier transform, and then the TKEO energy spectra,
i.e., |Fψ[xid]|, |Fψ[xs1]| and |Fψ[xs2]|, are shown in Figure 2 (where the direct-current
components are removed). The gray dashed lines represent the harmonic frequencies of fbf.
The harmonics of fbf are clearly displayed in |Fψ[xid]|, which illustrates the demodulation
function of TKEO. When the Gaussian noise with variance of σ1 = σx is added into xid, its
interferences pollute or mask the harmonics higher than the fourth order of fbf in |Fψ[xs1]|.
When the variance of the Gaussian noise comes to σ2 = 1.5σx, only the fundamental
frequency of fbf is identified visually. In this way helpful information about the fault
detection is covered up, and in other words, the TKEO analysis is seriously influenced by
the Gaussian white noise in measured vibration signals.
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Table 2. The theoretical and simulation results of the expectation and variance of TKEO energy.

TKEO Energy
Simulation Results Theoretical Results

Expectation Variance Expectation Variance

ψ[xid] 0.1047 0.0836 / /
ψ[xs1] 0.6199 2.456 0.6142 2.420
ψ[xs2] 1.244 7.468 1.251 7.531
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3. Improved TKEO
3.1. Denoising Method Proposed for Vibration Signals

From the analysis in Section 2.3, to improve the accuracy of diagnosis by TKEO
envelope and to detect bearing faults earlier possible, first the white noise should be
removed (or suppressed) from vibration acceleration signals. According to Equation (1), to
extract effective narrow-band fault information from original vibration signals, consider
the following denoising problem about narrow-band signals:

x(t) = u(t) + η(t) (15)

where x(t) is original vibration signals measured by accelerometers. η(t) is additive zero-
mean Gaussian noise. u(t) is the denoised target signal.

Equation (15) has the same form with a variational problem proposed in Reference [34].
Using L2 regularization to solve u, let the variational problem be

min
xm

{
‖x− u‖2

2 + α‖∂u
∂t
‖

2

2

}
(16)

where ‖ · ‖2 is the notation of the L2 norm. α is penalty factor. Equation (16) is solved in
Fourier domain, then:

F [u(t)] = F [x(t)]
1 + αω2 (17)

where Eu and Ex are approximately equal. F is the notation of Fourier transform.
Equation (17) is regarded as a signal filter to x, and u as the filtering result. Then the

filter transfer function H in the Fourier domain is

H(ω, ωc) =
1

1 + α(ω−ωc)
2 (18)

where ωc presents the center frequency. α affects filter bandwidth. The bandwidth of H

is
[

ωc −
√√

2−1
α , ωc +

√√
2−1
α

]
. The filter H is to extract the narrow-band signal with the

center frequency ωc from a signal with Gaussian white noise.

3.1.1. Extract Fault Characteristic Components

The filter H provided in Equation (18) separates narrow-band effective information
from a signal with noise. When a discrete bearing acceleration signal is filtered by H, a
narrow-band component signal including parts of effective information is extracted, with a
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residual signal left. If the residual signal continues to be filtered by H with different central
frequencies iteratively, a series of component signals with different central frequencies are
extracted. As the iteration number increases and components are extracted one by one,
energy of the residual signal finally approaches 0. At this time, it is considered that all
effective information in the original signal was extracted. Let x0(n) = x(n), and then the
process above can be expressed as

Hk(ω) = 1
1+α(ω−ωk)

2

F [uk(n)] = F [xk−1(n)]Hk(ω)
xk = xk−1(n)− uk(n)

lim
k→+∞

‖xk(n)‖2
2

‖x(n)‖2
2
= 0

(19)

where k presents a positive integer such as 1, 2, . . . and xk is the residual signal after k-th
filtering. uk is the narrow-band component extracted from xk−1 by the filter Hk. ωk is the
center frequency of Hk. α affects bandwidth of Hk.

When ‖xk(n)‖2
2

‖x(n)‖2
2

comes to 0, the original signal is completely decomposed into a series of

components. If α is large enough, that is, the passband of the filter Hk is narrow enough, the
spectrum of each component hardly overlaps with each other, and thereby each component
is considered to be approximately orthogonal. Due to the fact that the effective information
in the original vibration signal occupies specific narrow frequency bands, it is extracted into
some batches of component signals (i.e., uk) and separated from white noise located in other
frequency bands. However, the white noise is included in other batches of components.
To denoise the original signal, it is necessary to screen out the components with more
information about the bearing fault.

3.1.2. Reconstruct the Target Signal

Through the method described in Equation (19), the original vibration signal x(t) is
decomposed into a series of narrow-band components with different center frequencies.
Further, a unified evaluation is expected to screen out the more valuable components with
richer effective fault information and lower white noise content.

The energy of white noise is evenly distributed in the whole frequency domain while
that of effective information is concentrated in several narrow bands. According to Equation
(19), each component has the same bandwidth. If a component contains some effective
information, then its energy, equal to the sum of effective information and white noise, is
greater than the energy of components with only white noise. Therefore, it is considered
that for each component signal, its energy is negatively correlated with its proportion of
white noise. With relatively large energy, the component is likely to contain more effective
information and less white noise.

For real bearing vibration signals, some extracted components are certainly hard to
trace or explain, or are even not related to the fault, while they are with large energy concen-
trated on a narrow band, similarly to the fault information. Obviously, these components
are very likely caused by the vibration with specific physical significance such as converter
noise, cogging effects and so on because white noise does not tend to forming peaks in the
spectrum. A feasible attempt is to regard these components as a kind of “fault information”
as well even if the reason for these components is unknown, because components with
specific frequencies influences little on TKEO analysis, which is mentioned in the end of
Section 2.3.

The Pearson correlation coefficient is an index to measure the linear correlation degree
between two signals, which can be used to screen effective components. The correlation
coefficient ρk is defined between the component uk and the original vibration signal x as

ρk = ρ(uk, x) =
〈uk − Euk, x− Ex〉√
‖uk − Euk‖2

2‖x− Ex‖2
2

(20)
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where 〈, 〉 represents the inner product of two signals. Euk and Ex are the expectations of
uk and x, respectively. ρk ∈ [−1, 1], ρk > 0 indicates a linear positive correlation of two
signals, and ρk < 0 indicates a linear negative correlation. ρk = 0 indicates that the two
signals are orthogonal.

Since the vibration acceleration signal x is satisfied to Ex = 0, there is Euk ≈ 0. Then
Equation (20) is approximately seen as

ρk ≈
〈uk, x〉√
‖uk‖2

2‖x‖
2
2

=
〈uk, x〉
‖uk‖2‖x‖2

(21)

Moreover, when α is large enough, {uk(n)}k=1,2,··· are approximate orthogonal with
each other, i.e., 〈

ui, uj
〉
≈ 0, i 6= j (22)

The final residual can be omitted because of lim
k→+∞

‖xk(n)‖2
2

‖x(n)‖2
2
= 0. Then we have

ρk ≈

〈
uk, ∑

m
um

〉
‖uk‖2‖x‖2

=
∑
m
〈uk, um〉

‖uk‖2‖x‖2
≈ 〈uk, uk〉
‖uk‖2‖x‖2

=
‖uk‖2

2
‖uk‖2‖x‖2

=
‖uk‖2
‖x‖2

(23)

It is considered that ρk has a positive correlation with the energy of uk and hence
a negative correlation with the content of white noise, so ρk works for screening the
component signals with low white noise.

If each ρk is assigned as a weight to relative uk, the denoised target signal is recon-
structed by

x̂(n) = ∑
k

ρkuk(n) (24)

of which the components with specific frequencies or physical meaning are retained and
white noise that affects the demodulation of TKEO is greatly weakened. Then the total
energy of the target signal and the original signal is normalized by

x̂e(n) = x̂(n)

√√√√‖x(n)‖2
2

‖x̂(n)‖2
2

(25)

In the TKEO energy of x̂e, white noise is suppressed and the weak fault characteristics
hidden in the original vibration signal are highlighted, which is conducive to early bearing
fault diagnosis.

3.2. Complete Flow of Improved TKEO Proposed

In Section 3.1, a denoising method suitable for bearing vibration analysis is proposed.
Improved TKEO is the method combining TKEO analysis with this denoising method. It
consists of the following three parts: extraction of fault characteristic components, recon-
struction of the target signal and TKEO envelope analysis. Its complete process is provided
as follows:
Part 1: Extraction of fault characteristic components.

Step 1 Input the signal x(n), and the parameter α > 0, δ > 0;
Step 2 Set x0(n) = x(n) and k = 0;
Step 3 Calculate the discrete Fourier transform Fxk(n);
Step 4 k = k + 1;
Step 5 Obtain the center frequency ωk;

Step 6 F [uk(n)] =
F [xk−1(n)]

1+α(ω−ωk)
2 . Calculate the inverse discrete Fourier transform and obtain uk(n);

Step 7 xk(n) = xk−1(n)− uk(n);
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Step 8 Judge whether ‖xk(n)‖2
2

‖x(n)‖2
2
< δ. If not, then go back to Step 3. If yes, stop the iterations

and proceed to Part 2.

Part 2: Reconstruction of the target signal.

Step 9 Calculate ρk for each uk by ρk =
〈uk−Euk ,x−Ex〉√
‖uk−Euk‖2

2‖x−Ex‖2
2

;

Step 10 x̂(n) = ∑
k

ρkuk(n);

Step 11 x̂e(n) = x̂(n)
√
‖x(n)‖2

2
‖x̂(n)‖2

2
;

Part 3: TKEO envelope analysis.

Step 12 Calculate the TKEO energy ψ[x̂e];
Step 13 Calculate the TKEO spectrum Fψ[x̂e] if necessary for the fault identification.

The flow chart is shown in Figure 3. Moreover, here is additional information for
improved TKEO.
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Figure 3. Flow chart of improved TKEO.

Part 1 is an iterative process, and its termination threshold is δ, the energy ratio of the
residual signal to the original vibration signal. δ is commonly set within 0.01–0.2, depending
on the noise level. In the filter Hk of the k-th iteration, its center frequency ωk is always
set as the frequency corresponding to the maximum of |Fxk−1|, the magnitude Fourier
spectrum of the current residual signal. It helps to extract all effective components with
fewer iterations and calculation cost. The filter parameter α depends on signal sampling
frequency and noise level. In practical application, if the calculation time of improved
TKEO is necessarily further shortened, an additional termination condition K, the maximum
number of extracted components, can be set to terminate the component extraction ahead.

In Part 2, there is no need to reconstruct the target signal after all the components are
extracted. A recommended way is to merge the reconstruction into Part 1. Whenever a
component signal uk is obtained in Step 6, its corresponding ρk is calculated immediately
and then ρkuk is added to reconstruct x̂(n). When the residual signal meets the terminal
condition in Step 8, the finally obtained x̂(n) is equivalent to the result of Step 11. It avoids
storing all the extracted components in the computer memory, and thereby the memory
occupation is greatly reduced.
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4. Experiment Data Analysis
4.1. Data Set

The data, acquired from the vibration signal dataset of run-to-failure rolling bearings
published by Wang and Lei’s team of Xi’an Jiaotong University [35], were used to evaluate
the feasibility and advantages of the proposed method for early bearing fault diagnosis.
According to the experimental set shown in Reference [35], a hydraulic loading system was
used to generate the radial force acting on the bearing seat of the test bearing. The greatly
excessive vibration amplitude was used as the index of a thorough bearing failure. In each
run-to-failure experiment, its motor operates ceaselessly until the maximum amplitude of
the bearing vibration signal exceeded 10 times that of the initial healthy stage. The type of
experimental bearings is LDK UER204. The vibration acceleration signal was sampled once
every 1 min at the sampling frequency of 25.6 kHz, and the duration of each sampling was 1.28 s.

The theoretical values of rolling bearing fault characteristic frequencies can be calcu-
lated by

fbfo =
1
2

nb f1

(
1− d

Dm
cos αb

)
(26)

fbfi =
1
2

nb f1

(
1 +

d
Dm

cos αb

)
(27)

where fbfo is fault characteristic frequency of the outer ring. fbfi is fault characteristic
frequency of the inner ring. f1 is the rotating frequency. nb is the number of rolling
elements. d is the diameter of each rolling element. Dm is the center diameter of the bearing
cage. αb is the contact angle. The sketch maps of the rolling bearings in typical stages are
shown in Figure 4. The theoretical values of faulty bearing under various experimental
conditions are presented in Table 3.
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Table 3. Theoretical values of fault characteristic frequencies for each bearing.

Number of
Faulty Bearing

Radial Force
(kN)

Motor Speed
(r/min) Fault Location

Fault
Characteristic

Frequency (Hz)

1 12 2100 Outer ring 107.9
2 11 2250 Outer ring 115.6
3 12 2100 Outer ring 107.9
4 10 2400 Inner ring 196.7



Sensors 2022, 22, 6673 12 of 22

4.2. Outer Ring Defect
4.2.1. Validation of Improved TKEO

The dataset mentioned in Section 4.1 provides the bearing vibration signals sampled
every minute. Since the bearing fault is from scratch to serious, a task to find out when
the initial fault exactly occurs is regarded as an appropriate validation with the support of
these data. In this way, the feasibility of improved TKEO to detect bearing faults, especially
early and weak faults, can be verified in detail.

The vibration data of bearing 1 in Table 3, from health to outer ring fault, are shown in
Figure 5. The unit of vibration signal is the gravity acceleration, g (the same below). The
maximum vibration amplitude in each sampling of bearing 1 is a fault characteristic to
roughly estimate the bearing performance degradation. The curve of maximum vibration
amplitude versus time is shown in Figure 5a. With the fault developing, an increasing
trend of the maximum vibration amplitude emerges. It can be inferred that the bearing
fault probably occurs near the 40th min and gradually deteriorate.
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Figure 5. Vibration data of bearing 1 with a developing outer ring fault. (a) The curve of maximum
vibration amplitude versus time; (b) vibration signals measured at 1st/31st/32nd/70th min.

When a bearing generates vibration with an increased amplitude, it has operated
with a latent fault for a while. It is reasonable to deduce that the initial fault occurs before
the start point of the increasing vibration amplitude trend. Figure 5b shows the vibration
signals of bearing 1 sampled at the beginning of the 1st, 31st, 32nd, and 70th min. In the
following analysis, it can be seen that these signals correspond to the representative stage
of health, pre fault, initial fault, and serious fault. More details about verifying when the
initial fault occurs are recorded in Appendix A for purpose of avoiding a demonstrated
cycle and increasing credibility.

Improved TKEO is applied to the signals in Figure 5b, with its parameters set as
α = 0.05 and δ = 0.1. Fourier spectra |Fψ[x̂e]| obtained with improved TKEO, i.e., TKEO
energy spectra of the obtained target signal for each signal, are shown in Figure 6. The
outer ring fault characteristic frequency fbfo = 107.9 Hz. The gray dashed lines represent
fbfo or its higher harmonics n fbfo, where n is a positive integer.
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Figure 6. Fourier spectra obtained with improved TKEO for vibration signals in Figure 5b.

It is found by the joint analysis of Figures 5b and 6 that bearing 1 is in health at 1st min.
At 31st min, the maximum vibration amplitude performs no significant increase, and the
spectrum seems similar to that at 1st min, on which harmonics of fbfo are not obviously
reflected. However, the spectrum obtained from the vibration signal sampled at 32nd min
changes a lot. There are distinct harmonics of fbfo which are significantly different from
the spectrum at 31st min. Combined with the following change in maximum vibration
amplitude in Figure 5b, it can be concluded that an initial fault occurs in bearing 1 at
32nd min. With the gradual development of the fault, the maximum vibration amplitude
further increases. By 70th min, bearing 1 is involved into a more serious fault. The harmonic
components of fbfo in ψ[x̂e] are much greater than that of other frequencies now. Thus, the
effectiveness and the feasibility of improved TKEO in the diagnosis of early outer ring fault
are verified. The analysis results of improved TKEO align with the variations in maximum
vibration amplitude, and additionally, can detect faults earlier than vibration amplitude
monitoring.

4.2.2. Parameter Setting of Improved TKEO

According to Section 3.2, the analysis result of improved TKEO mostly depends on the
extraction of fault characteristic components. Two parameters require to be appropriately set
in the component extraction part: α, which affects the bandwidth of bandpass filters; and δ,
which mainly affects calculation time and the total number of components finally extracted.

In each iteration of extracting fault characteristic components, the center frequency ωk
of the filter Hk is always selected as the frequency corresponding to the maximum magnitude
of |Fxk−1|. It means that the components with physical meaning or fault information are
more likely to be extracted first and hard to be remained in the residual signal at last. So, a
larger δ tends to shorter calculation time and reduction in the total iterations, rather than
a significant effect on the diagnosis accuracy of improved TKEO. The influence of α is
different. If α decreases, the bandwidth of the filter Hk becomes larger and thereby each
extracted component signal carries additional noise within the passband. Worse, a too large
bandwidth of Hk probably results in a non-orthogonality of component signals. Thus, the
reconstructed target signal retains more noise. In contrast, too large α increases the total
component number because components with a smaller passband carry less energy, which
causes excessive work. Consequently, the value of α is worth further discussion.

The vibration data (as shown in Figure 7) of bearing 2 in Table 3 were selected to
describe the influence of α on improved TKEO in detail. An initial fault occurs in the outer
ring of bearing 2 and is deduced with a similar method to Section 4.2.1. Figure 8 shows
the spectra |Fψ[x̂e]| resulting from improved TKEO with different values of α. α is set
to 10−1, 10−2, 10−3, and 10−4 while δ = 0.1 invariably. The gray dashed lines represent
fbfo = 115.6Hz, or its higher harmonics, n fbfo. It can be seen that as α decreases, fbfo and
its harmonic frequencies are gradually difficult to distinguish from the white noise in the
spectrum |Fψ[x̂e]|. Therefore, appropriately increasing the value of α probably improves
the sensitivity of improved TKEO in early bearing fault diagnosis.
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Figure 7. Vibration data of bearing 2. (a) The curve of maximum vibration amplitude versus time; (b)
vibration signal measured at 9th min (initial fault).
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Figure 8. Fourier spectra obtained by improved TKEO with different α for the vibration signal in
Figure 7b.

4.2.3. Comparison with Existing Methods

In this section, three existing analysis methods for the bearing fault diagnosis are
compared with improved TKEO: the method of singly using TKEO, the method of inte-
grating empirical mode decomposition (EEMD) with spectral kurtosis (hereinafter referred
to as EEMD-SK) [36], and the method of integrating genetic mutation particle swarm
optimization (GMPSO) with VMD (hereinafter referred to as PSO-VMD) [37].

The vibration data (as shown in Figure 9) of bearing 3 with a developing outer ring
fault for comparison are used as an example. The rotating frequency f1 = 35 Hz and the
outer ring fault characteristic frequency fbfo = 107.9 Hz. The main parameters of each
method are set as Table 4. All calculations are completed by a desktop computer with
i7-10700 (3.6 GHz). The average calculation time required for each method to analyze the
signal in Figure 9b is shown in Figure 10. Some component signals extracted in the first
part of improved TKEO are shown in Figure 11. The intrinsic modal functions (IMFs) as
the decomposition results obtained by EEMD and PSO-VMD are shown in Figure 12. The
TKEO energy spectra or envelope spectra for all the above methods are shown in Figure 13,
where the gray dashed lines represent fbfo or its higher harmonics n fbfo.

In Figure 13, there are obvious peaks located at the dashed lines in the energy spectrum
obtained with improved TKEO, and the high-order harmonics of fbfo are richly retained.
The harmonics contribute to the identification of the early fault, and validate that the target
signal reconstructed in improved TKEO reserves enough effective information for the fault
diagnosis. For the same vibration signal, the spectrum obtained singly by TKEO only
performs the fundamental frequency related to fbfo, and the higher harmonics therein are
submerged, which provides less effective information for further diagnosis. From another
view, one of the feathers of the Gaussian white noise is to form noise interferences at the
bottom of the amplitude spectrum chart, and its average amplitude is related to its energy.
The average amplitude of the noise at the bottom is much smaller in the Fourier spectrum
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obtained with improved TKEO. These act similarly to that in Section 2.4 and illustrate the
denoising of improved TKEO.
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Figure 9. Vibration data of bearing 3. (a) The curve of maximum vibration amplitude versus time; (b)
vibration signal measured at 66th min (initial fault).

Table 4. Four mentioned methods and respective main parameter settings.

Analysis Methods Parameter Settings

Improved TKEO
Filter parameter α 0.05

/Termination condition δ 0.1

TKEO / /

EEMD-SK

EEMD Envelope Filter
σe
σ0

1 0.25
order 10

Number of ensemble members 100

PSO-VMD

GMPSO VMD

Numbers of swarms 20
Termination condition 0.01Maximum generation 30

Parameters to optimize kv, αv
2

1 σe
σ0

presents the ratio of standard deviation of additional noise to that of the original signal in EEMD. 2 kv presents
the number of modes decomposed in VMD. αv presents the penalty factor in VMD.
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Figure 11. Some component signals extracted by improved TKEO (for the signal in Figure 9b).
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Figure 12. Decomposition results of EEMD and PSO-VMD (for the signal in Figure 9b). (a) Results of
EEMD ( σe

σ0
= 0.25, 100 ensemble members); (b) results of VMD (kv = 14, αv = 63.1).
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Figure 13. TKEO energy spectra or envelope spectra obtained with the four mentioned methods.

In Figure 13, EEMD-SK and PSO-VMD extract some high-order frequency harmonics
of fbfo, but their calculation time required is much longer than that of the improved TKEO,
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which affects the diagnosis efficiency. In EEMD, EMD is implemented many times on the
original signal with different additional noise and the average is taken. Similarly, PSO-
VMD is the process of applying VMD with different parameters to the original signal many
times and finally using the best. Both methods carry out a lot of repeated calculations and
thereby greatly increase the calculation time. However, in improved TKEO, during the part
of extracting fault characteristic components, only one complete progress of iterations is
expected, so the total calculation time is reduced.

4.3. Inner Ring Defect

The vibration data (as shown in Figure 14) of bearing 4 with a developing inner ring
fault in Table 3 were selected to verify the feasibility of improved TKEO in inner ring fault
diagnosis. The curve of maximum vibration amplitude versus time is shown in Figure 14a,b
shows the vibration signals of bearing 1 sampled at the beginning of the 500th, 1417th, 1418th,
and 1460th min. In the following analysis, it can be seen that these signals correspond to the
representative stage of health, pre fault, initial fault, and serious fault, respectively.
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Figure 14. Vibration data of bearing 4 with a developing inner ring fault. (a) The curve of maximum
vibration amplitude versus time; (b) vibration signals measured at 500th/1417th/1418th/1460th min.

Improved TKEO was applied to the signals in Figure 14b, with its parameters set as
α = 0.05 and δ = 0.1. Fourier spectra |Fψ[x̂e]| obtained with improved TKEO are shown
in Figure 15. The rotating frequency f1 = 40Hz and the inner ring fault characteristic
frequency fbfi = 196.7Hz. The gray dashed lines represent fbfi or its higher harmonics
fbfi. The gray dotted lines present n fbfi ± f1 and n fbfi ± 2 f1, which are the frequencies
modulated by n fbfi and f1. Similar to the development of the outer ring fault, there is no
frequency component related to fbfi in the analysis result of the vibration signal sampled at
500th or 1417th min, indicating that the bearing is in health at this time. Then at 1418th min,
the frequency components related to fbfi, not able to be identified before, appear in the
spectrum of ψ[x̂e]. It is significantly different from the spectrum at 1417th min. With the
joint analysis of Figure 14a, it can be concluded that the initial inner ring fault of bearing
4 occurs at the 1418th min. The fault develops over time and by 1460th min, frequency
components relevant to fbfi are more evident in the spectrum. Thus, it is verified that
improved TKEO is also feasible to detect an inner ring fault in its early stage.
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Figure 15. Fourier spectra obtained with improved TKEO for vibration signals in Figure 14b.

5. Conclusions

In this paper, the influence of Gaussian white noise on TKEO analysis was studied,
and improved TKEO combined TKEO with a novel denoising method was proposed for the
bearing fault vibration analysis. For the sampled bearing vibration signal, expectation and
variance of the TKEO energy are extremely enlarged by the Gaussian noise therein. Conse-
quently, a denoising processing is necessary for the bearing fault diagnosis based on TKEO
analysis. Motivated by this opinion and the properties of bearing vibration signals, a novel
denoising method was proposed, consisting of extracting fault characteristic components
and reconstructing the target signal. Then, the improved TKEO method was put forward
combined TKEO with the proposed denoising method. Improved TKEO was applied to
explore when the initial fault occurred in a run-to-failure bearing vibration dataset and
satisfactory results were obtained. The white noise was greatly reduced in the target sig-
nal. Moreover, for experiment bearings in fault, the harmonics of their fault characteristic
frequencies were clearly identified in the Fourier spectrum obtained by improved TKEO.
Further, discussions about the parameter settings indicate that appropriately increasing α
enhances sensitivity to the early fault diagnosis in improved TKEO. The existing advanced
methods of EEMD-SK and PSO-VMD were used for comparison experiments to confirm the
considerable excellence of improved TKEO in calculation speed and accuracy. Therefore,
the proposed improved TKEO method was verified to be feasible and convenient for the
early bearing fault diagnosis.

At last, here are some discussions about what can be optimized in our research. First, the
weights used for reconstructing the target signal were simply set to the Pearson correlation
coefficients between the extracted components and the original signal. It is more a qualitative
estimation of white noise content than an accurate deduction, which deserves further improve-
ment. Second, this research is limited to exploring single point bearing faults. A compound
bearing fault generates more unpredictable vibration signals and it becomes harder to detect
the mutual modulation of fault characteristic frequencies. Further studies about compound
failures are expected. Third, in our experimental validation of Section 4, whether the fault
exists is identified visually by the amplitude spectrum. The visual identification method
perhaps leads to the diagnosis results not accurate enough in some overly complicated cases.
We will attempt to research on these problems in the future work.
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Nomenclature

AM amplitude modulated
AM-FM amplitude-modulated and frequency-modulated
D the variance operator
E the expectation operator
EEMD ensemble empirical mode decomposition
EMD empirical mode decomposition
F the notation of Fourier transform
GMPSO genetic mutation particle swarm optimization
IMF intrinsic modal function
SK spectral kurtosis
TKEO Teager–Kaiser energy operator
VMD variational mode decomposition

Appendix A

Section 4.2.1 is required to be verified more strictly when the initial fault occurs. Here
is the detailed description about how to find the initial fault and the further validation by
other analysis methods mentioned in Section 4.2.3.

First, credible examples for the fault and health stage of bearing 1 are necessary.
According to Reference [35] which reported the dataset, bearing 1 is certainly in health
at 1st min, and was damaged at the late stage of the sampling experiment. The credible
examples are signals sampled at 1st and 70th min. Then the spectra obtained with improved
TKEO are shown in Figure 6. At 1st min, most frequencies perform no relation with the
fault characteristic frequency fbfo = 107.9 Hz, while at 70th min, there are mainly the
harmonics of fbfo in the low frequency region as the evidence of the serious fault.

Second, it is noticed that an increasing trend of the maximum vibration amplitude
begins near 40th min as mentioned in Section 4.2.1. Naturally, what to perform next is
an analysis of the signal sampled at 40th min. The signal and the spectrum obtained by
improved TKEO are shown in Figure A1, where the dashed lines represent the harmonic
frequencies of fbfo. Similar to the spectrum at 70th min (shown in Figure 6), Figure A1b
performs obvious harmonics of fbfo. It indicates a slighter fault because their amplitudes
seem much smaller. So, the preliminary inference is that the initial fault occurs before
40th min.

Third, all the signals sampled before 40th min are checked one by one until there is no
fundamental frequency of fbfo in the spectrum. Then the spectra of the signal sampled at
31st and 32nd are noticed.

Fourth, the signals sampled at 31st and 32nd min are analyzed with other methods.
The methods mentioned in Section 4.2.3 are chosen here, i.e., TKEO, EEMD-SK, and PSO-
VMD. The results are shown in Figures A2 and A3, where the dashed lines represent the
harmonic frequencies of fbfo. In Figure A2, fbfo firstly appears in the spectrum similarly to
improved TKEO although it is hard to identify without an enlarged view. In Figure A3,
although there are some frequency peaks seem to attach the dashed lines at 31st min, e.g.,
the peak near 3 fbfo, these frequencies do not perform their integer multiple harmonics,
so the possibility that they are the fault characteristics is eliminated. That is why the
harmonics and modulation sidebands are also important information or characteristics in
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the fault diagnosis. Then at 32nd min, the spectra obtained by both two methods reflect
harmonics of fbfo, which is the main change in frequency components. The analysis results
are consistent with improved TKEO. Thus, when the initial fault occurs, is verified.
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