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Abstract: Dehydration is a common, serious issue among older adults. It is important to drink fluid
to prevent dehydration and the complications that come with it. As many older adults forget to drink
regularly, there is a need for an automated approach, tracking intake throughout the day with limited
user interaction. The current literature has used vision-based approaches with deep learning models
to detect drink events; however, most use static frames (2D networks) in a lab-based setting, only
performing eating and drinking. This study proposes a 3D convolutional neural network using video
segments to detect drinking events. In this preliminary study, we collected data from 9 participants
in a home simulated environment performing daily activities as well as eating and drinking from
various containers to create a robust environment and dataset. Using state-of-the-art deep learning
models, we trained our CNN using both static images and video segments to compare the results.
The 3D model attained higher performance (compared to 2D CNN) with F1 scores of 93.7% and 84.2%
using 10-fold and leave-one-subject-out cross-validations, respectively.

Keywords: artificial neural networks; fluid intake monitoring; image recognition; video signal
processing; intake gesture detection

1. Introduction

The health and safety of older adults who choose to remain living in their homes is a
top priority for our society. One major challenge for this population is ensuring they are
properly hydrated throughout the day. Dehydration is more common and dangerous in
older adults, leading to adverse complications such as hospitalizations and death. Several
factors cause older adults to be at risk for dehydration. As one ages, the total water content
in the body is naturally reduced, leading to more severe consequences if dehydrated [1,2].
In addition, the ability to feel thirst diminishes as we age, and when this is compounded
with cognitive impairments, it may cause older adults to forget to drink [1,3]. Some worry
that drinking will lead to frequent urination or urinary incontinence episodes [4].

In seniors, the common dehydration detection methods and gold standards are all
highly contested [5,6]. Due to the controversy or invasiveness of the detection methods,
healthcare providers strongly suggest encouraging seniors to have regular fluid intake to
prevent dehydration [7]. Several methods exist to monitor liquid intake, including sensors
placed in containers, wearable devices, vision or environmental approaches, and sensors
embedded in surfaces [8].

Previous studies have shown the feasibility of detecting eating and drinking events
using vision-based approaches, such as egocentric images (i.e., body-worn cameras) [9–12]
or regular ambient cameras [13–15]. However, many studies have focused on classifying
individual frames as drinking events. This can lead to a less robust system, as it may
be difficult for this model to detect all types of containers in individual frames. With
current advances in computer processing and deep learning techniques, it is now possible
to classify a series of frames, i.e., a video segment (3D). For example, Bi and Kotz used a
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head-mounted camera (pointed at the subject’s mouth) to train a 3D convolutional neural
network (CNN) for detecting eating events with a 90.9% accuracy and 78.7% F1 score. They
compared 2D CNNs, 3D CNNs and SlowFast algorithms, where the latter two significantly
outperformed the 2D models [16].

Notably, Roaust and Adam compared 2D and 3D deep learning models to classify
intake gestures during a meal [13]. In 102 subjects, they compared models that account for
temporal context (3D CNN, 3D LSTM, two-stream, and slow-fast) to the baseline using
individual frames (2D models). They also compared using the raw frames to using motion,
in the form of frame-to-frame optical flow processing, as input features and found that
frames were superior. They achieved an F1 score of 85.8% using a 360-degree camera with
the video data. Using the same dataset, by fusing inertial and video data, Heydarian et al.
found a similar maximum overall F1 score of 87.3% [14]. However, both [13] and [14]
only analyzed subjects during mealtime and no other activities, and the subjects were
always in the same location relative to the 360-degree camera. Both studies performed
binary classification to classify intake and non-intake, where intake included both food and
drink intake.

Similarly, Iosifidis et al. used 3D fuzzy vector quantization and linear discriminant
analysis to classify eating and drinking [15]. They also used multiple frames to classify
video segments. This model achieved an overall classification accuracy of 93.3%; however,
they only examined images from the frontal view and only included data during meal
intake from four participants [15].

Conventionally, static frames have been used for image classification; however, with
the recent advances and accessibility in computing power, using 3D models to classify
activities using multiple frames rather than just a single snapshot in time is now possible.
This has resulted in more accurate human action recognition, including drinking events [17].
This paper presents a drinking detection system using an off-the-shelf RGB ambient camera.
It compares this task’s accuracy obtained from 2D and 3D CNN algorithms. Although
studies have analyzed 3D CNNs for eating gestures, none have specifically focused on
drinking intake. Additionally, to our knowledge, no papers have used a robust dataset
from a home environment that includes different activities of daily living (ADL) and
mealtime gestures.

Section 2 of this paper outlines the data collection protocol and neural network config-
uration. Section 3 presents the results and discussion to compare the 3D and 2D models for
this application as well as future works and limitations. Finally, Section 4 concludes and
summarizes the findings.

2. Materials and Methods
2.1. Data Collection

This paper used a GoPro Hero 9, which captured data at 60fps with a resolution of
2704 × 1520. The study took place in HomeLab, a simulated one-bedroom apartment at
KITE Research Institute, shown in Figure 1. The dashed yellow rectangle in this figure
represents the area used in this study (living room and dining room), and the red circles
represent the cameras’ locations. Ethical approval for the study was obtained from the
KITE-TRI-UHN Research Ethics Board (21-5132) on 21 August 2021, and participants gave
written informed consent prior to study participation. Five male and four healthy female
participants with a mean age of 24 years were recruited to perform two experiments: (1) a
controlled drinking scenario (repeated twice) and (2) other activities scenarios, including
eating and drinking. The subjects were asked to drink using their dominant hand. The
order of the experiments was randomized.

In the controlled drinking scenario, subjects were told which container to drink from
and the size of the sip (small, medium and large). The definition of small, medium, and
large was subjective and based on the subject’s perception and comfort. The order of the
containers, the position of the subject with respect to the camera, and the sip size were all in
random combination. In this phase, the subject drank 12 sips from each of the 12 containers
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listed in Table 1. This experiment was repeated, but the second time the subject was not
instructed on the sip size and was instead told to drink a single or double sip. A double
sip was defined as a sip where the subject swallowed twice without placing the container
down. In the scripted activity scenarios, the subjects were told to perform 12 drinking
events (one from each container), 9 eating events (3 of each type in Table 1), and 12 ADLs,
as listed in Table 1. They were not given instructions on how to perform the activities, nor
were they told the sip size.
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Table 1. List of all activities performed in our study.

Drinking Container ADLs Activities

A teacup with hot liquid
A coffee mug with hot liquid
Two metal commercial water bottle
A plastic, disposable water bottle
A can
A glass tumbler with ice water
A glass tumbler with colored liquid (pop or juice)
A plastic, short-colored cup with water
A wine glass with colored liquid (pop or juice)
Two glass tumblers with a straw

Scratching their head and face
Pointing the TV remote and watching TV
Doing their hair/touching their head
Using a laptop
Using a smartphone (calling and texting)
Pouring water from a kettle
Stretching
Washing the counters
Putting on and taking off a jacket
Walking around the apartment
Talking to the researcher
Writing
Folding laundry
Eating with a fork, spoon and hands 3x each

These were all in random order and a random combination with a location around
the HomeLab’s living and dining room. For the eating activities using a fork, the subject
was instructed to bring their lunch that could be consumed with a fork to give a varied
dataset. For the eating activity with a spoon, the subjects ate yogurt or cereal, and for the
hand-eating activity, the subject consumed crackers, apples or bananas. The subject was
instructed to hold a button for the entire duration of their sip to mark the ground truth.
The researcher also manually labelled all activities’ start and end times.

2.2. Data Processing

The videos from the GoPro camera were first down-sampled to a lower frame rate of 3
or 6 fps. As the GoPro has a wide field of view, the videos and images were cropped to focus
on the person in the frame. For this purpose, we first detected the motion by comparing
nearby frames, and then the image was cropped in a square of 1000 × 1000 pixels around
this motion. All frames were then resized to 224 × 224 pixels to require less computation
during training and to be similar to the dataset the models were pre-trained on. The same
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region of cropping is kept for the entire video sequence. The entire process is shown in
Figure 2.
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2.3. Neural Network Configurations

Our algorithm aims to perform a binary classification identifying drinking and non-
drinking events. A 2D CNN architecture was used to classify individual frames, whereas to
classify videos (windows of multiple frames), a 3D CNN was proposed. We used Transfer
Learning to build both 2D and 3D models. Transfer learning is a technique in which an
existing model trained on datasets of a similar application is retrained with our dataset.
This technique reduces the amount of data required and, in many cases, increases the
accuracy compared to models built from scratch, as the original models were trained on
large amounts of data. In this paper, we tested 8 state-of-the-art pre-trained models for
our 2D and one for our 3D CNN. To determine which parameters yielded the highest
performance, various models were trained and tested by altering parameter combinations
as follows:

1. Window size for 3D: We extracted inputs of specific window sizes for the video data.
We tested two different window sizes, 3 and 10 s.

2. Frame rate for 3D: The frame rates were chosen as 6fps and 3fps to compromise
computational cost and accuracy.

3. Imbalanced data: In all cases, the data was imbalanced, as there were more non-
drinking events. We compared two common methods to handle the imbalance:
(1) class weights and (2) random under-sampling. Class weights involve applying
a larger weight to the minority class (drinking class) so that it places more impor-
tance if these are misclassified during the training process. Under-sampling involves
decreasing the majority class to be the same size as the minority class by randomly
choosing inputs and discarding the rest. Oversampling, which involves randomly
sampling and duplicating from the minority class until the classes are balanced, was
also attempted.

4. Layers trained: Either all the layers or only the top layer (known as feature extraction)
were trained. After this, fine tuning was performed, which involves freezing the
weights of all layers except the top layers (2/3rds) to refine the prediction.

5. Validation method: A 10-fold cross-validation and leave-one-subject-out (LOSO) were
both tested and compared.

6. Pre-trained models: For the 2D models, 8 state-of-the-art pre-trained models were
tested for the image data to determine the best one. These include DenseNet169,
DenseNet121, InceptionResNetV2, InceptionV3, Xception, MobileNetV2, NasNet-
Large, ResNet. Only one state-of-the-art model was considered for the video data,
proposed by Carreira et al., called Inflated 3D Conv Nets (I3D), shown in Figure 3 [18].



Sensors 2022, 22, 6747 5 of 12

This model is based on Inception-V1 but with inflated layers to add a temporal dimen-
sion. This was originally used with 71.1% accuracy to classify 400 human activities
and outperformed other temporal classifiers on common benchmark datasets. This is
a very deep, spatiotemporal classifier. This model was effective in other papers on
video data [19–21]. This paper used the RGB-I3D network, which is pre-trained on
the ImageNet dataset (https://www.image-net.org/ (accessed on 30 August 2022))
and the Kinetics dataset (https://paperswithcode.com/dataset/kinetics (accessed on
30 August 2022)). We added a dropout layer and an early stopping mechanism to
prevent overfitting.
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all followed by batch normalization and ReLu activation. The final prediction uses SoftMax activation.

3. Results

Due to the imbalanced nature of our dataset, the main classification metric considered
is the F1 score, which is the harmonic mean of the precision and recall, placing equal weight
on both metrics. Based on the combination of parameters listed in Section 2.3, we have
trained 48 3D models (2 window sizes, 2 frame rates, 3 sampling methods, 2 options of
numbers of layers trained, and 2 validation types) and 96 2D models (3 sampling methods,
2 options of the number of layers trained, 2 validation types, and 8 models). This paper
presents the results of the combination that yielded the highest F1 score (best/top models).

Overall, Xception, DenseNet169 and DenseNet121 had superior results for the 2D
models. For the 3D models, using 3fps and 6fps gave similar results, and thus, 3fps was
chosen as it requires less computational power and time. The 3 s windows yielded higher F1
scores for the 10-fold validation, but the 10 s window was superior for the LOSO validation.
No overall trend was observed comparing feature extraction versus training all the layers.
Figure 4 shows a distribution of the F1 score for all models trained. For LOSO, in most
cases (blue in Figure 4), 3D is superior. For the 10-fold validation (orange in Figure 4), the
best models are very similar, but the range of F1 scores is larger for the 2D models.

The confusion matrices for the best/top 3D and 2D models are shown in Figure 5,
i.e., the model with the highest F1 score for that validation method. Table 2 shows the
performance metrics and parameter descriptions of the best 3D and 2D models.

https://www.image-net.org/
https://paperswithcode.com/dataset/kinetics
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Figure 6 shows the top models’ receiver operating characteristic (ROC) curves. The
ROC graph’s area under the curve (AUC) measures the ability to predict the classes
properly. The “chance” line represents an AUC = 0.5, meaning the classification is equal
to the performance of random guessing. Figure 7 shows the precision-recall curve for the
best models, which plots precision against recall for different probability thresholds. These
are more appropriate for imbalanced datasets, such as the “class weights” option. The 3D
models have a higher AUC in all cases for both ROC and precision-recall curves, showing
a superior performance at classifying drink events across the folds and subjects.
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Table 2. Performance metrics for the best models. The values in the brackets represent the standard
deviations for each metric across the folds.

Model Validation Model Description Sampling Accuracy (%) Precision
(%)

Recall
(%) F1 Score (%)

3D

10-FOLD
Window size: 3s,

Sampling rate: 3fps,
Batch size: 32, with
feature extraction

Class weights 97.1 (0.6) 98.3 (1.2) 90.7 (2.3) 94.3 (1.2)

Under-sample 94.6 (2.6) 85.8 (8.0) 94.8 (1.3) 89.8 (4.3)

LOSO
Window size: 10s,

Sampling rate: 3fps,
Batch size: 16

Class weights 88.6 (9.4) 88.6 (12.5) 85.8 (20.7) 84.2 (14.8)

Under-sample 86.3 (7.7) 86.5 (12.9) 80.3 (18.1) 80.8 (11.1)

2D

10-FOLD DenseNet121,
Batch size: 32

Class weights 98.7 (0.64) 91.4 (5.4) 96.2 (3.5) 93.7 (3.3)
Under-sample 93.2 (4.4) 81.4 (16.2) 74 (24.4) 75.4 (20.6)

LOSO
Xception,

Batch size: 16, with
feature extraction

Class weights 95.0 (1.9) 86.3 (14.8) 60.7 (19.7) 68.2 (17.0)

Under-sample 95.7 (1.03) 83.2 (6.4) 70.0 (20.7) 73.6 (14.3)

Sensors 2022, 22, x FOR PEER REVIEW 7 of 12 
 

 

Sampling rate: 3fps, 
Batch size: 16 

2D 

10-FOLD 
DenseNet121, Batch 

size: 32 
Class weights 98.7 (0.64) 91.4 (5.4) 96.2 (3.5) 93.7 (3.3) 
Under-sample 93.2 (4.4) 81.4 (16.2) 74 (24.4) 75.4 (20.6) 

LOSO 
Xception, Batch size: 

16, with feature 
extraction 

Class weights 95.0 (1.9) 86.3 (14.8) 60.7 (19.7) 68.2 (17.0) 

Under-sample 95.7 (1.03) 83.2 (6.4) 70.0 (20.7) 73.6 (14.3) 

Figure 6 shows the top models' receiver operating characteristic (ROC) curves. The 
ROC graph's area under the curve (AUC) measures the ability to predict the classes 
properly. The “chance” line represents an AUC = 0.5, meaning the classification is equal 
to the performance of random guessing. Figure 7 shows the precision-recall curve for the 
best models, which plots precision against recall for different probability thresholds. 
These are more appropriate for imbalanced datasets, such as the “class weights” option. 
The 3D models have a higher AUC in all cases for both ROC and precision-recall curves, 
showing a superior performance at classifying drink events across the folds and subjects. 

 
Figure 6. Receiver operating characteristic (ROC) curve for the top models. Fx refers to the fold 
number x and Sx refers to the subject number x who has held out in the LOSO validation. 
Figure 6. Receiver operating characteristic (ROC) curve for the top models. Fx refers to the fold
number x and Sx refers to the subject number x who has held out in the LOSO validation.

To ensure the models were looking into the right location of the images and videos,
we deployed a gradient class activation map (GradCAM), shown in two separate examples
in Figure 8. GradCAM uses the gradients flowing into the final convolutional layer and
creates a heat map of the important regions of the image [22]. The test data, either image
or video, are passed into the model with the final convolutional layer. The gradients with
respect to the model loss are calculated to determine the regions on the frames which
contribute most to the prediction.
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4. Discussion

As expected, the 10-fold cross-validation performs better than the LOSO validation.
This is even more pronounced with the 2D models. Notably, to compare the 2D and the 3D
algorithms, the exact frames present in the 3D data were extracted as single-frame inputs
for the 2D CNN models. This led to some images being very similar to each other in the
dataset. Therefore, comparing the LOSO results of the 2D and 3D models is more useful, as
there is no chance of data leakage.

Overall, the 3D video classification performed better than the 2D, though this differ-
ence is small when analyzing 10-fold cross-validation. The 3D top model obtained an F1
score of 94.23%, while the 2D top model obtained an F1 score of 93.7% (Table 2). When
analyzing LOSO, the difference is larger, from 84.2% for the 3D model to 73.6% for the 2D
model (Table 2). It is expected that the 3D models would be superior, as they detect the
motion to drink rather than an individual image with no motion information. The dataset
included a wide variety of drinking vessels, including those with straws that were not
easily visible to the camera. The 3D data takes the entire motion as an input, so frames
approaching the mouth but not yet a drinking event are not misclassified, as they are all
within the same input event and classified together. Additionally, for the straw vessel, the
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motion of the cup to the mouth is still present, so the 3D algorithm can detect it while the
straw itself is not present and difficult for the 2D model to detect.

For the top LOSO models, the 2D models have higher true negative rates, meaning it
is good at predicting non-drink events, but the 3D models have a higher true positive rate.
However, the 3D models have lower false negative rates in nearly all cases but often have
higher false positive rates, meaning they may predict a drinking event that did not happen.

As seen in Figure 7 in LOSO validation, subject 2 had a lower performance than the
other subjects for the 2D models, which is particularly evident in the precision-recall curves.
It is worth noting that this subject was the only left-handed drinker, which could be a
factor for higher misclassification. Therefore, adding more left-handed drinkers to the
training dataset may improve the model’s performance. Additionally, compared to the
other subjects, this subject often sat in such a way that their face was slightly occluded from
the camera, and their long hair covered more of their face, as seen in Figure 9. Although
many subjects sat in this orientation, due to the randomization, this subject sat in this
position more often, and therefore their long hair, left-handedness and more diagonal
positioning are factors that likely reduced the model’s ability to predict the drinking event.
This finding is similar to Costa et al., who also found detecting drinking in the left-hand
challenging [23]. When excluding this subject, the F1 score increases by 5.4% for the best 2D
model. However, the 3D models were able to correctly classify this subject’s drink events
in the LOSO validation, highlighting the robustness of this method.
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Another observation was that, in 2D data, the events most often misclassified are the
movements leading up to a drink. This includes, for example, the few images before and
after a drinking event when the person is lifting the container, but the container is not yet
touching the mouth. These were labelled as “null” events, as only the frames with the
container touching the mouth were considered a drinking event. For the top 2D 10-fold
model, these errors accounted for 93% of the misclassified events (>5 folds misclassified the
image); however, this trend was not observed for the LOSO models. When these images
were removed from the dataset and the models were retrained, the LOSO F1 score increased
by 18% to 81%. However, in real scenarios, people may lift the drinking container to their
mouths without drinking, for example, to blow on a hot drink, which is not practical.
Again, the 3D model proves to be more robust for this scenario.

As observed in the class activation maps in Figure 8, the model looked at the person
and the vessel when the image or video was properly classified. In contrast, in the mis-
classified events, we observed several instances where the model focused on objects in the
background, such as the artwork on the wall. An example is shown in Figure 10, where
the participant is near the edge of the cropped frame. This shows that the environment
does play a key role in the model’s performance. In the future, we will add an object
detection/tracking algorithm to ensure only the objects of interest are in the input data.

As seen in Figure 5, there is a higher rate of false positives than false negatives,
especially in the LOSO validation. This means the system could overestimate the total
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amount drank during the day. This could be a concern, as the person would not be
reminded to drink when needed. Therefore, in this specific application, selecting a final
model with a lower number of false positives may be beneficial even with larger false
negatives, which may result in a lower F1 score.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 12 
 

 

As observed in the class activation maps in Figure 8, the model looked at the person 
and the vessel when the image or video was properly classified. In contrast, in the 
misclassified events, we observed several instances where the model focused on objects 
in the background, such as the artwork on the wall. An example is shown in Figure 10, 
where the participant is near the edge of the cropped frame. This shows that the 
environment does play a key role in the model's performance. In the future, we will add 
an object detection/tracking algorithm to ensure only the objects of interest are in the input 
data. 

 
Figure 10. Example of a misclassified frame where the model is detecting the background 
environment. 

As seen in Figure 5, there is a higher rate of false positives than false negatives, 
especially in the LOSO validation. This means the system could overestimate the total 
amount drank during the day. This could be a concern, as the person would not be 
reminded to drink when needed. Therefore, in this specific application, selecting a final 
model with a lower number of false positives may be beneficial even with larger false 
negatives, which may result in a lower F1 score. 

The downside of using 3D models is the high computational cost of training the 
models. A larger amount of memory is needed for the same batch size when training, as 
more frames are input for each iteration. For real-time implementation, the 3D model 
would need to store frames for the initialized window length (in this case, 3 s) before 
starting the classification. The test computational time for the 3D models was 1.3 s 
compared to the test time for the 2D model, which was 0.4 s. In a real-world deployment, 
both of these test times are practical, even for the 3D model with a built-in lag while 
collecting the input frames. 

A limitation of this study was that some hyperparameter combinations could not be 
tested due to memory constraints, such as larger batch sizes with oversampling. However, 
multiple batch sizes were still evaluated to mitigate this issue, and oversampling was 
attempted where possible (i.e., with smaller batch sizes). As the oversampling provided a 
similar result to the class weights or under-sampling, we excluded it from the results. A 
smaller batch size requires less memory to train the model but increases the training time 
and usually improves the generalizability of the algorithm. 

Other well-known limitations of using vision-based approaches for drink 
classification are that the person must be in the environment, visible to the camera, and 
should not be occluded. There is also a privacy concern, as many do not wish to have 
cameras placed in the home. To meet this concern, in the future, we plan to investigate a 
depth camera as a more privacy-pervasive solution compared to regular RGB cameras. 
Another limitation is that the algorithm only detects when the container is brought to the 
mouth, but it does not know if the liquid was actually swallowed. More investigation 
needs to be done to address this challenge in a future study. 

As seen in Table 3, this work builds upon the previous literature by providing a 3D 
CNN model to detect drinking events in a simulated home environment with a dataset 

Figure 10. Example of a misclassified frame where the model is detecting the background environment.

The downside of using 3D models is the high computational cost of training the
models. A larger amount of memory is needed for the same batch size when training, as
more frames are input for each iteration. For real-time implementation, the 3D model would
need to store frames for the initialized window length (in this case, 3 s) before starting the
classification. The test computational time for the 3D models was 1.3 s compared to the test
time for the 2D model, which was 0.4 s. In a real-world deployment, both of these test times
are practical, even for the 3D model with a built-in lag while collecting the input frames.

A limitation of this study was that some hyperparameter combinations could not be
tested due to memory constraints, such as larger batch sizes with oversampling. However,
multiple batch sizes were still evaluated to mitigate this issue, and oversampling was
attempted where possible (i.e., with smaller batch sizes). As the oversampling provided a
similar result to the class weights or under-sampling, we excluded it from the results. A
smaller batch size requires less memory to train the model but increases the training time
and usually improves the generalizability of the algorithm.

Other well-known limitations of using vision-based approaches for drink classification
are that the person must be in the environment, visible to the camera, and should not be
occluded. There is also a privacy concern, as many do not wish to have cameras placed in
the home. To meet this concern, in the future, we plan to investigate a depth camera as a
more privacy-pervasive solution compared to regular RGB cameras. Another limitation is
that the algorithm only detects when the container is brought to the mouth, but it does not
know if the liquid was actually swallowed. More investigation needs to be done to address
this challenge in a future study.

As seen in Table 3, this work builds upon the previous literature by providing a 3D
CNN model to detect drinking events in a simulated home environment with a dataset in-
cluding multiple orientations, actions, and backgrounds. It obtains comparable or superior
results to the previous works. The proposed model showed the ability to reliably detect
drinking events in a simulated home environment, with unscripted activity scenarios that
included different activities in multiple orientations. This makes the model robust enough
to be applied in seniors’ homes to monitor their hydration levels.

Future work can collect data from more participants and include a free-living scenario
to expand the dataset further. Finally, future work could include a classification for eating,
particularly with a spoon, as it can contribute to the subject’s hydration. Additionally,
a system should be created that prompts the user to drink based on the number of sips
detected by the model.
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Table 3. Comparison with the literature.

Ref. Videos (3D) Accuracy (%) F1 Score (%) Cross
Validation #Subjects Camera

Direction/Actions

Iosifidis [15] Yes 93% - LOSO 4 Frontal/mealtime only

Rouast [13] Yes - 85.8% Holdout 102 360-degree
camera/mealtime only

Proposed Yes 97.1%
88.6%

93.7%
84.2%

10-Fold
LOSO 9

Multiple orientations in
simulated home/eating,

drinking, and ADLs

5. Conclusions

This paper uses an RGB camera to demonstrate and compare different deep learning
models to detect drinking events in a physically simulated home environment. The models
were trained with both individual frames (2D CNN) and a set of frames (3D CNN) for
the binary classification of a drinking event. It was found that using multiple frames
as the input (3D CNN) can improve the F1 score compared to using individual frames,
particularly in LOSO cross-validation. Our preliminary data collection obtained an overall
F1 score of about 84% with the 3D network. The 3D CNN models are more robust against
different drinking containers, orientations, and locations, as they detect the motion of the
hand movement during the whole event.

Author Contributions: Conceptualization, R.C.; methodology, R.C. and A.R.F.; writing—original
draft preparation, R.C.; writing—review and editing, A.R.F. and G.F.; visualization, R.C. and A.R.F.; su-
pervision, A.R.F. and G.F. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by a Canadian Institutes of Health Research (CIHR) Foundation
Grant (FDN-148450). Fernie receives this funding as the Creaghan Family Chair in Prevention and
Healthcare Technologies.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the KITE-TRI-UHN Research Ethics Board (application number 21-5132)
on 21 August 2021.

Informed Consent Statement: Participants gave written informed consent prior to study participa-
tion. Written informed consent has been obtained from the patient to publish this paper.

Data Availability Statement: The data are not publicly available due to restrictions in the ethical
agreement on data sharing.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bennett, J.A. Dehydration: Hazards and Benefits. Geriatr. Nur. 2000, 21, 84–88. [CrossRef] [PubMed]
2. El-Sharkawy, A.M.; Sahota, O.; Maughan, R.J.; Lobo, D.N. The Pathophysiology of Fluid and Electrolyte Balance in the Older

Adult Surgical Patient. Clin. Nutr. Edinb. Scotl. 2014, 33, 6–13. [CrossRef] [PubMed]
3. Phillips, P.A.; Rolls, B.J.; Ledingham, J.G.; Forsling, M.L.; Morton, J.J.; Crowe, M.J.; Wollner, L. Reduced Thirst after Water

Deprivation in Healthy Elderly Men. N. Engl. J. Med. 1984, 311, 753–759. [CrossRef] [PubMed]
4. Birgersson, A.-M.B.; Hammar, V.; Widerfors, G.; Hallberg, I.R.; Athlin, E. Elderly Women’s Feelings about Being Urinary

Incontinent, Using Napkins and Being Helped by Nurses to Change Napkins. J. Clin. Nurs. 1993, 2, 165–171. [CrossRef]
5. Hooper, L.; Bunn, D.K.; Abdelhamid, A.; Gillings, R.; Jennings, A.; Maas, K.; Millar, S.; Twomlow, E.; Hunter, P.R.; Shepstone, L.; et al.

Water-Loss (Intracellular) Dehydration Assessed Using Urinary Tests: How Well Do They Work? Diagnostic Accuracy in Older
People. Am. J. Clin. Nutr. 2016, 104, 121–131. [CrossRef] [PubMed]

6. Armstrong, L.E. Assessing Hydration Status: The Elusive Gold Standard. J. Am. Coll. Nutr. 2007, 26, 575S–584S. [CrossRef]
[PubMed]

7. Ferry, M. Strategies for Ensuring Good Hydration in the Elderly. Nutr. Rev. 2005, 63, S22–S29. [CrossRef] [PubMed]
8. Cohen, R.; Fernie, G.; Roshan Fekr, A. Fluid Intake Monitoring Systems for the Elderly: A Review of the Literature. Nutrients

2021, 13, 2092. [CrossRef] [PubMed]
9. Gemming, L.; Doherty, A.; Utter, J.; Shields, E.; Ni Mhurchu, C. The Use of a Wearable Camera to Capture and Categorise the

Environmental and Social Context of Self-Identified Eating Episodes. Appetite 2015, 92, 118–125. [CrossRef]

http://doi.org/10.1067/mgn.2000.107135
http://www.ncbi.nlm.nih.gov/pubmed/10769332
http://doi.org/10.1016/j.clnu.2013.11.010
http://www.ncbi.nlm.nih.gov/pubmed/24308897
http://doi.org/10.1056/NEJM198409203111202
http://www.ncbi.nlm.nih.gov/pubmed/6472364
http://doi.org/10.1111/j.1365-2702.1993.tb00156.x
http://doi.org/10.3945/ajcn.115.119925
http://www.ncbi.nlm.nih.gov/pubmed/27225436
http://doi.org/10.1080/07315724.2007.10719661
http://www.ncbi.nlm.nih.gov/pubmed/17921468
http://doi.org/10.1111/j.1753-4887.2005.tb00151.x
http://www.ncbi.nlm.nih.gov/pubmed/16028569
http://doi.org/10.3390/nu13062092
http://www.ncbi.nlm.nih.gov/pubmed/34205234
http://doi.org/10.1016/j.appet.2015.05.019


Sensors 2022, 22, 6747 12 of 12

10. Davies, A.; Chan, V.; Bauman, A.; Signal, L.; Hosking, C.; Gemming, L.; Allman-Farinelli, M. Using Wearable Cameras to Monitor
Eating and Drinking Behaviours during Transport Journeys. Eur. J. Nutr. 2020, 60, 1875–1885. [CrossRef] [PubMed]

11. Doulah, A.B.M.S.U. A Wearable Sensor System for Automatic Food Intake Detection and Energy Intake Estimation in Humans.
Ph.D. Thesis, University of Alabama Libraries, Tuscaloosa, AL, USA, 2018.

12. Raju, V.; Sazonov, E. Processing of Egocentric Camera Images from a Wearable Food Intake Sensor. In Proceedings of the 2019
SoutheastCon, Huntsville, AL, USA, 11–14 April 2019; pp. 1–6.

13. Rouast, P.V.; Adam, M.T.P. Learning Deep Representations for Video-Based Intake Gesture Detection. IEEE J. Biomed. Health
Inform. 2020, 24, 1727–1737. [CrossRef] [PubMed]

14. Heydarian, H.; Adam, M.T.P.; Burrows, T.; Rollo, M.E. Exploring Score-Level and Decision-Level Fusion of Inertial and Video
Data for Intake Gesture Detection. IEEE Access 2021. [CrossRef]

15. Iosifidis, A.; Marami, E.; Tefas, A.; Pitas, I. Eating and Drinking Activity Recognition Based on Discriminant Analysis of Fuzzy
Distances and Activity Volumes. In Proceedings of the 2012 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Kyoto, Japan, 27 March 2012; pp. 2201–2204.

16. Bi, S.; Kotz, D. Eating Detection with a Head-Mounted Video Camera. Comput. Sci. Tech. Rep. 2021. Available online:
https://digitalcommons.dartmouth.edu/cs_tr/384/ (accessed on 28 August 2022).

17. Chang, M.-J.; Hsieh, J.-T.; Fang, C.-Y.; Chen, S.-W. A Vision-Based Human Action Recognition System for Moving Cameras
Through Deep Learning. In Proceedings of the 2019 2nd International Conference on Signal Processing and Machine Learning;
Association for Computing Machinery, New York, NY, USA, 27 November 2019; pp. 85–91.

18. Carreira, J.; Zisserman, A. Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset. In Proceedings of the 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 4724–4733.

19. Kuehne, H.; Jhuang, H.; Garrote, E.; Poggio, T.; Serre, T. HMDB: A Large Video Database for Human Motion Recognition. In
Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; IEEE: Piscataway,
NJ, USA, 2011; pp. 2556–2563.

20. Soomro, K.; Zamir, A.R.; Shah, M. UCF101: A Dataset of 101 Human Actions Classes from Videos in the Wild. arXiv 2012,
arXiv:12120402.

21. Wu, K.; He, S.; Fernie, G.; Roshan Fekr, A. Deep Neural Network for Slip Detection on Ice Surface. Sensors 2020, 20, 6883.
[CrossRef] [PubMed]

22. Costa, L.; Trigueiros, P.; Cunha, A. Automatic Meal Intake Monitoring Using Hidden Markov Models. Procedia Comput. Sci. 2016,
100, 110–117. [CrossRef]

23. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks
via Gradient-Based Localization. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice,
Italy, 22–29 October 2017; pp. 618–626.

http://doi.org/10.1007/s00394-020-02380-4
http://www.ncbi.nlm.nih.gov/pubmed/32886147
http://doi.org/10.1109/JBHI.2019.2942845
http://www.ncbi.nlm.nih.gov/pubmed/31567103
http://doi.org/10.1109/ACCESS.2021.3119253
https://digitalcommons.dartmouth.edu/cs_tr/384/
http://doi.org/10.3390/s20236883
http://www.ncbi.nlm.nih.gov/pubmed/33276475
http://doi.org/10.1016/j.procs.2016.09.130

	Introduction 
	Materials and Methods 
	Data Collection 
	Data Processing 
	Neural Network Configurations 

	Results 
	Discussion 
	Conclusions 
	References

