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Abstract: In this new era, it is no longer impossible to create a smart home environment around the
household. Moreover, users are not limited to humans but also include pets such as dogs. Dogs need
long-term close companionship with their owners; however, owners may occasionally need to be
away from home for extended periods of time and can only monitor their dogs’ behaviors through
home security cameras. Some dogs are sensitive and may develop separation anxiety, which can lead
to disruptive behavior. Therefore, a novel smart home solution with an affective recommendation
module is proposed by developing: (1) an application to predict the behavior of dogs and, (2) a
communication platform using smartphones to connect with dog friends from different households.
To predict the dogs’ behaviors, the dog emotion recognition and dog barking recognition methods are
performed. The ResNet model and the sequential model are implemented to recognize dog emotions
and dog barks. The weighted average is proposed to combine the prediction value of dog emotion
and dog bark to improve the prediction output. Subsequently, the prediction output is forwarded
to a recommendation module to respond to the dogs’ conditions. On the other hand, the Real-Time
Messaging Protocol (RTMP) server is implemented as a platform to contact a dog’s friends on a list to
interact with each other. Various tests were carried out and the proposed weighted average led to an
improvement in the prediction accuracy. Additionally, the proposed communication platform using
basic smartphones has successfully established the connection between dog friends.

Keywords: affective recommendation; pet social network; emotion recognition model; dog barking
recognition; deep learning

1. Introduction

With the emergence of the Internet of Things (IoT), the landing of smart homes in the
new era is no longer impossible. Current smart home designs are smarter when integrated
with recommender systems (RS) [1–8]. RS and the Internet of Things (RSIoT) are highly
dependent on real-time resources, especially sensor data, not just interactions between
users and items. The initial stages of acquiring data, especially from sensors, are critical as
these data are preprocessed (removing noise or redundant features) and generated events
by defining suitable rules. After that, the system is able to learn the pattern of the rules
and provide recommendations that match users’ preferences. Some smart systems [9–13]
have been developed to promote efficient resource mapping through user habits. Habits
are often formed when intentions are translated into actions and behaviors repeatedly [14].
Resource mapping efficiency can be achieved by gradually changing user habits through
micro-moments and recommendations [15]. Most current systems are smarter than ones in
the past because they leverage users’ social networks and integrate this information with
the system to provide preferred recommendations [11]. Furthermore, by considering the
characteristics of users, a preferred system with an appropriate level of automation can
be designed [16].
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Users of smart homes are not limited to humans but animals. Most pet owners can
only monitor their pets’ behaviors through home security cameras, especially when they
are not at home. However, some pets such as dogs require long-term close companionship
with their owners. Dogs are highly social animals that easily form close attachments
to their own species or other species [17]. There comes a time when a puppy or dog is
separated from its owners and most of them learn to adjust to social isolation at home.
However, some dogs later become sensitive to social isolation (left at home alone) and
tend to develop separation anxiety, which can lead to excessive vocalization and disruptive
behavior. Huasang et al. [18] proposed a multi-level hierarchical behavior monitoring
system to detect separation anxiety symptoms in dogs. The purpose of the system is to
automatically monitor the dogs and analyze their behaviors through a taxonomy consisting
of three progressive levels. In the system, the Stacked Long Short-Term Memory (LSTM) is
adopted to recognize postures through sensors. These postures are then interpreted by a
Fuzzy Complex Event Processing (CEP) engine that detects the anxiety symptoms.

In this study, we developed a smart environment for domestic dogs that not only
monitors dogs’ behaviors but also integrates their social networks to relieve separation
anxiety, especially for those that are left alone. People adopted dogs for stress reliever,
companion, and protection purposes [19]. This phenomenon is more pronounced during
the COVID-19 pandemic period. However, pandemic puppies turn into a big issue for
many inexperienced owners. These puppies are deprived of socialization, which not only
happens during the pandemic but gets worse once their inexperienced owners return to
normal job routines as before the pandemic. After the lockdowns are lifted, dogs need a
transition period to get used to being away from their owners. According to suggestions
by dog behavior specialists and veterinarians [20–22], there are several ways to ease post-
pandemic separation anxiety in dogs. Experts recommend dog owners to provide an
environment in which the dogs can relax when nobody is home. Dog owners can also
adopt some technology gadgets to monitor their dogs and make those gadgets as interactive
toys to keep their brains and bodies moving when they are alone. All these approaches
are useful in providing dogs with enrichment that can be enjoyed independently. Our
proposed system aims to create a safe and comfortable place for dogs and implement
the suggested approaches by the experts in solving dogs’ separation anxiety issues. The
proposed solution allows dogs from different households to communicate remotely by
using a distributed system architecture with cloud computing adoption. The Real-Time
Messaging Protocol (RTMP) servers are used by the social network platform to connect and
communicate with their dog friends. In the system, on the other hand, the dogs’ behaviors
are predicted through emotion recognition and sound (barking) recognition, and this
makes it possible to implement an efficient recommender system for dogs. A large number
of images consisting of various dog expressions were collected and a dog expression
classification model was trained using the Residual Neural Network (ResNet) [23]. Dogs’
emotions are definable based on predicted expressions. Similarly, different audio files of
dog barks were collected, and the sequential model was used to train a sound recognition
classification model. Subsequently, the expression classifier was combined with the sound
classifier using weighted average techniques to improve the behavior prediction results.

The main contributions of this paper are summarized as follows: (1) present a unique
cloud-based smart environment dogs’ social network architecture; (2) propose an affective
recommender framework with dogs’ emotion recognition and sound (barking) recognition;
(3) proof of concept and verify the viability of the proposed dogs’ social network architec-
ture. The rest of the paper is organized as follows. In Section 2, related works on the RSIoT
are presented. Section 3 illustrates the overall cloud-based dogs’ social network architec-
ture. The affective recommender framework and the dogs’ emotion recognition model are
discussed in Section 4. Section 5 presents the experiment results, and the conclusion is
stated in the last section.
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2. Related Work

With the advancement of technology and the pursuit of a better quality of life, smart
home systems are rapidly gaining attention. The main purpose of most systems is to
identify any proactive behavior of users in the current situation and recommend them a
service that suits their habits [1]. The recommendations are constructed based on long-term
studies of the repetitive patterns in users’ daily lives [3]. In 2010, Parisa et al. [24] developed
an unsupervised model to track and recognize activities in a smart environment. The
Discontinuous Varied-Order Sequential Miner (DVSM) was proposed to determine activity
patterns that might be discontinuous or in various order. The patterns were grouped
together and represented using cluster centroids. Later, the boosted version of the hidden
Markov model was used to represent the activities and recognize them in the environment.

Katharina [1] proposed a smart home system integrated with an unsupervised recom-
mender system that predicted the relationships between users’ actions through collected
data. The system tries to predict the next action of the users and recommends some actions.
Firstly, a formal model of the context which represents the multidimensional space was
constructed. These contexts were the users’ actions that related to each other which inte-
grated with time elapsed and represented with tuples. These tuples were trained based
on the basis of observed sensor events. An algorithm Dempster–Shafer theory which is
similar to the Naïve Bayes was proposed to predict the next contexts based on the current
action. A ranked list was provided as the output of the recommendation.

The Pervasive RS (PRS) was proposed by Naouar et al. [25] which represents the
contexts in tuples. The data were collected through physical sensors including RFID,
and later it was transformed into various contexts to build the user profile according to
preferences. Preferences are actions that occur repeatedly and are relevant to each other.
The Apriori algorithm was implemented to extract the relevant preferences that occurred
from the database. A three-layer neural network based on back propagation was proposed
to predict user preferences in a given context. Nirmalya and Chia proposed a model named
Complex Activity Recognition Algorithm (CARALGO) which is based on probability
theory [26]. The main idea is to decompose a complex activity into small atomic activities,
and the context attributes are constructed so that each of these activities is associated with
a specific weight depending on their relevance. The occurrence of the activities is decided
by the threshold function. The number of ways to perform complex activities is derived
through the binomial theorem.

Alexander et al. [27] discussed the new recommendation techniques that are relevant
to real-world IoT scenarios including the IoT gateway. Smart homes with RS should be able
to enhance the applicability of the equipment and optimize the usage of the resources. The
SEQREQ was developed to recommend items by finding sequential patterns; it analyzes
users with similar behaviors that share common sequences of actions. The idea is to find
the common node sequences (which are similar to the actions) that are available in the
workflow repository and list them in a look-up table. Then, similarity values are calculated
between the actions and the common node sequences where values greater than zero will
be recommended. It is important that the RS is able to recommend items based on the
sequence of the activities.

The subjects of recognition are not limited to humans; they can also be animals such as
horses [28]. The behaviors of both subjects were analyzed in order to recognize their actions
and provide some recommendations. In terms of Animal Activity Recognition (AAR), it
can be an owner that is monitoring their pet when they are not at home; it can also be the
observation of wildlife in a natural environment. Basically, the processing pipeline of the
AAR and the Human Activity Recognition (HAR) are quite similar to each other since they
both capture the activity data through sensors, and the features from the activity data are
extracted and further classified into a few groups [29]. The main difference between the
AAR and the HAR is the input data and the output data they produce.

Cassim et al. [30] carried out a study to recognize the activity of dogs. It determines a
set of activities that are connected to the behavioral patterns that identify dogs’ behavior.
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The dogs were required to wear a collar-worn accelerometer in order to collect their
movements, such as body movements and response behaviors. Feature extraction was
carried out using principal component analysis (PCA) and the k-nearest neighbor was
implemented to classify the features. Yumi et al. [31] proposed research to study the AAR
based on a first-person view from a dog. In this research, a GoPro camera was attached
to the back of the dogs and recorded the activities that were carried out by them from
their viewpoint. From the video recording, global and local features were extracted using
various algorithms such as dense optical flow, local binary patterns, cuboid detector, and
STIP detector. Global features were mainly captured from the dogs’ motions, whereas local
features were captured from motions other than the dogs. Visual words were integrated
in order to increase the efficiency of the representation of the motion. Lastly, the support
vector machine (SVM) is used to classify first-person animal activities through features.

Patricia, Javier, and Alejandro [32] developed a system that is able to track cats’
location, posture, and field of view using a depth-based method. The Microsoft Kinect
sensor, which is able to record both color and depth video, was set up to capture the motion
of a cat. The depth value of a cat’s pixel in each video frame was extracted and divided
into different clusters using the k-mean algorithm. Different postures produced different
depth values for every part (head, body, and tail) of the cat. A decision tree was constructed
by considering different parameters to determine body postures and classify the clusters.
Jacob et al. proposed a multitask learning (MTL) framework for embedded platforms to
perform AAR [33]. This framework is able to solve multiple tasks simultaneously and
explore connections among the tasks using the Relief algorithm. The dataset was collected
from multiple sensors and features were extracted. To perform action (or task) classification,
seven classification techniques including deep neural network (DNN) were implemented.
DNN was able to provide promising results in this approach. Enrico et al. [34] studied
horse gait activity recognition by capturing the data using the built-in accelerometer sensor
in a smartwatch through a developed application. The smartwatch was placed on the
saddle of a horse and the wrist of the rider. Each gait has distinctive characteristics, and
its features were extracted using different algorithms such as neural networks, decision
trees, k-neighbors, and support vector machines. The performances of the algorithms were
compared and showed similar results.

Studies in pet emotion recognition and RS are still under exploration, and most of
the existing works are mainly focused on dogs [35] and cats [36]. For instance, Quaranta
et al. [36] noticed that different cats’ vocalizations that they had recorded produced different
patterns of sound waves. Each pattern of sound waves should represent a relevant cat
condition. Similar research was presented by Varun et al. [37]. They presented a recom-
mender framework with dog vocalization pattern recognition in their study. The authors
gathered a number of vocalization patterns and taught the convolutional neural networks
to recognize dog emotions. Bhupesh et al. [38] noticed that animals express different types
of expressions on their faces in different scenarios. The authors managed to run several
experiments to assess their hypothesis on sheep and rats. They observed the animals’ noses,
ears, whiskers, and eyes react differently when receiving different levels of stimulation.
In addition, Cátia Caeiro et al. [39] also inspected dogs’ facial expressions under different
scenarios. They discovered dogs showed a higher level of facial expression in conditions
such as “fear” and “happy”, but not “frustrated”.

In recent years, deep learning has been widely used for various recognition appli-
cations as it is able to provide promising outputs with sufficient training through large
amounts of data [40–42]. Through the training process, it is able to capture the relationship
between the data itself [43]. Mohammed et al. [44] proposed a novel approach that was
implemented through the deep belief network (DBN) to train the activities and recognition.
The actions were collected using accelerometers and gyroscope sensors. Based on the
sensor data, multiple features were extracted, and the kernel principal component analysis
(KPCA) was used to reduce the data dimension before training. Jacob et al. [45] studied the
AAR by focusing on unsupervised representation learning. It aimed to recognize activities
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from the raw motion data (unlabeled) that was collected online using an accelerometer.
Various features were extracted from the collected data using algorithms and further clas-
sified into different activities. Algorithms such as PCA, sparse autoencoders (SAE), and
convolutional deep belief network (CDBN) were implemented to extract features, while
the support vector machine (SVM) was used to perform the activity classification. The
performances of these algorithms were compared and evaluated using F1 measures. Rosalie
Voorend [29] implemented a variational autoencoder (VAE) to perform feature extraction
and a sequential classifier to classify the activity. The autoencoder was proposed to deal
with unsupervised representation learning and it has not been extensively explored in the
AAR. However, the output that the autoencoder produced is not satisfying enough when
compared to the statistical approach. This is probably because the loss function in the VAE
is not optimized. Coherence within the input data which causes the representations to
be unable to be extracted properly is needed as well. Enkeleda et al. [46] proposed deep
convolutional neural networks (ConvNets) to recognize the activity of livestock animals
without feature extraction. The proposed network has four layers and each layer consists
of different operations. Different hyperparameters were adjusted and their performances
were compared.

3. Dogs’ Social Network Architecture

Figure 1 illustrates the overall implementation of a pet social network on a cloud
computing platform. First, an Android app was developed with social networks and
sensing capabilities (e.g., cameras and microphones). The social networking app serves as
the interface layer to allow owners to register their dogs and connect other users’ profiles
to their pets’ networks. The mobile app can detect dogs’ movements and capture their
images and sounds via live streaming which is connected to its own Real-Time Messaging
Protocol (RTMP) server when the dog is near the device. The captured frames (images and
audio clips) will then be uploaded to the Ubuntu VM instance hosted in the Google Cloud
Platform. Those images and audio clips are uploaded through POST requests to the Node.js
RESTful API. After receiving the files, Node.js saves the image and audio files into the
“/images” and “/audios” directories, respectively. The affective recommender engine will
be triggered by a python script (dogEmotionClassifier.py) in order to grab those relevant
image and audio files. Dogs’ facial expressions and barking analysis are performed at this
stage, and the predicted results will be returned to Node.js. The RESTful API stores the
predicted result in the MySQL database and further obtains a recommended action from
the database records according to the respective input.

For instance, if the predicted result is “sick” for the dog’s condition, the MySQL
database should return the owner’s email; additionally, an alert message will be delivered
to the owner. On the other hand, if the predicted result shows “boring”, the interface of the
Android device will be switched on and connect to one of the dog’s friends in its network.
When an active account (dogs that are near their respective devices through sensing) is
chosen, dogs are able to meet each other, and the barking records from both sides will
be shared when they are captured. Furthermore, Google data studio is used to compile
and visualize dogs’ conditions. Dog owners can even access an interactive dashboard and
monitor their pets remotely through the system.
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4. Affective Recommender Framework

The proposed affective recommender engine aims to provide an alert or early no-
tification services to inexperienced dog owners through the dog’s facial expression and
barking analysis. There are several alternatives or auxiliary elements for assessing dogs’
expression and behavior, such as ear and tail positions, mouth conditions, and body pos-
tures [47]. However, the facial expression of animals is still the richest channel that is used
for expressing emotions [48]. Recognizing these visual signal expressions as emotional
communication is important because emotions describe the internal state that is influenced
by the central nervous system in response to an event [49]. Most experienced dog owners
can equally identify the explicit dog’s facial expression; thus, these human experts help in
verifying the recognition performances easily later [50]. In addition to facial expressions,
acoustic parameters such as dog barks showed promising performance in recognition tasks.
Dog barking analysis can achieve more than human-level performance when classifying
the context of a dog’s bark [51]. The motivation for the proposed affective recommender
engine is to combine both dog facial expressions and barking analysis for better dog emo-
tion recognition. The recommender engine consists of the following modules, as shown
in Figure 2.
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4.1. Data Collection and Pre-Processing

Before training, images of dogs with various expressions were collected and divided
into three categories: happy, angry, and sick. The collection of the images was performed
according to the description in [49] as shown in Table 1. A Python script with an automated
bot was written to download images of dogs from Google Images and save them in local
storage. Images that were not related to the categories were removed, and the images
were resized to a specific resolution of 224 × 224, as shown in Figure 3. To start building
the recognition model, images were split into training, validation, and test data. Since
the dataset was small, data augmentation was performed to replace the original batch of
images with a randomly transformed batch.

Table 1. Dog facial expressions (happy, angry, and sick) characteristics [49].

Facial Expression Eyes Ears Mouth/Teeth

Happy Wide open, merry looking,
raised eyebrows

Perked-up and forward,
or relaxed

Mouth relaxed and slightly open, teeth
covered, excited panting, possible
lip-licking

Angry Narrow or staring challengingly Forward or back, close
to head

Lips open, drawn back to expose teeth
bared in a snarl, possible jaw snapping

Sick
Eyelids semi-closed with tearing,
raised eyebrows, simulating large
eyes, sad gaze

Distance between ears
tends to widen

Contracted, giving the appearance of
wrinkles on the face
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4.2. Dogs’ Facial Expression Recognition

The idea of the deep learning algorithm Residual Neural Network (ResNet) [23] was
adopted to train the image recognition engine due to its robust performance in image
recognition. As described in the paper [23], the residual learning was integrated into every
few stacked layers, which is known as the building block shown in the equation below:

y = F (x, {Wi}) + x (1)

where x and y are the input and output vectors of the layers considered, and F (x, {Wi}) is
the multiple convolutional layers in the residual block of the ResNet. To demonstrate the
feasibility of the proposed framework, a ResNet-like model which consists of twelve layers
(as shown in Figure 4b) was implemented. The ResNet-like model consists of four residual
blocks, each of which consists of two convolutional layers and batch normalization, as
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shown in Figure 4a. In each convolutional layer, the filters are 32 and 64, respectively. There
are two convolutional layers included after the two residual blocks of the filter size 32. To
construct the model, the Adam optimizer [52] that performs fast optimization efficiently
was chosen. In addition, the sparse categorical cross entropy was selected as the loss
function where a single integer was labeled for each category rather than a whole vector.
The expression “happy” is labeled as 0, “angry” is labeled as 1, and “sick” is labeled as 2.
Global average pooling and a dense layer were implemented at the end of the model.
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the ResNet-like model with two convolutional and batch normalization layers, and (b) the whole
structure of the ResNet-like model.

As shown in Figure 5, the code in the first block shows the function that generates a
ResNet-like network. The second block indicates a function of the ImageDataGenerator that
performs the data augmentation over the original batch images. The output from the data
augmentation is selected during the training stage with the convolutional neural network
(CNN) model. To determine the hyperparameters of the ResNet-like model, successive
experiments were conducted. The details of the experiments will be discussed in Section 5.
From the trained model, the emotions of dogs in input images are able to be identified
based on the predicted values.
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4.3. Dog Barking Analysis

After performing dogs’ facial expression recognition, a deep learning-based Sequential
model was proposed to analyze dog barks. This study focuses on three types of dog barks:
“bow-wow,” “growling,” and “howling.” Each bark corresponds to an expression in the
previous dog expression recognition, in which “bow wow” is happy, “growling” is angry,
and “howling” is sick. A Python script was also written to download all the required dog
barking video files from Google AudioSet and convert them to audio file format (WAV).
Later, a software called Audacity was used to study the audio spectrum containing the
desired barks, in which the patterns were identified and labeled, as shown in Figure 6. For
“bow-wow” class labels, there were two audio spectrums with a gap between the barks.
For “growling,” the audio spectrum bounced up and down due to the vibrating sound that
a dog makes. For the “howling” class label, the audio spectrum remained constant when
the dog howled.
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According to the identified patterns, the training dataset was prepared in the pre-
processing stage: (1) audio features were extracted from audio files in all directories, and
(2) class labels were inserted for each relevant dataset. Once the dataset was completed,
a sequential model with four layers was constructed to classify the dog barks. The best
epochs for the classification model will be discussed in Section 5. From the trained model,
the expressions of the dog from the audio can be identified based on the predicted values.

4.4. Recommendation Integration and Post-Processing

A hybrid solution that integrated dogs’ facial expressions and barking analysis was
presented earlier. Subsequently, a weighted average technique was adopted to combine
the outputs from two predictions. A weighted average function as shown in Figure 7
was chosen. In general, the proposed recommender system involves three sub-stages in
predicting dogs’ behavior: the first sub-stage performs dog image recognition; the second
sub-stage operates dog bark recognition; the third sub-stage integrates both recognition
outputs with a weighted average technique, as shown in Figure 8.
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The prediction outputs from the two trained models were combined to improve the
result. Each input produces its predicted value for each category (“bow-wow,” “growling,”
and “howling”) from both models. A weighted average was implemented to calculate the
weight of the predictions. The calculation is shown in the equation below:

Average weight =
(7 ∗ x) + (3 ∗ y)

10
(2)

where x is the predicted value for a specific category of dogs’ facial expression recognition,
y is the predicted value for a specific category of dog barking recognition, and x is corre-
sponding to y. The dogs’ facial expression recognition model is weighted higher than the
dog barking recognition model because it has higher accuracy. By comparing the average
weights of the categories, the one with the highest values will be the predicted dog emotion
or behavior.

As illustrated in Figure 2, the prediction outputs from the recommendation integration
will provide feedback to respective recognition models in post-processing. The feedback
includes user satisfaction and respective confidence values for further recommendation
engine improvement and fine-tuning. The performance of the proposed affective recom-
mender framework will be shown in Section 5.
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4.5. Building Dogs’ Social Network

As mentioned earlier, a social network for dogs is proposed to relieve separation
anxiety, especially for those dogs that are left alone. A distributed system architecture is
proposed to enable dogs to communicate with each other remotely, as shown in Figure 9.
As described in Section 3, the developed mobile app in this study not only predicts dogs’
behavior but also connects with other users’ remote RTMP servers for interaction. Rather
than installing complicated equipment, the proposed application allowed any household
with dogs to create a smart home environment for their pets by setting up a mobile phone.
Owners create a dog account in the application by providing the required information
such as username, password, email, RTMP IP, and port, as shown in Figure 10a. When the
account is completed, dogs can have their own friends, just like humans, and their owners
can add them to the friend list, as shown in Figure 10b.
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application to set up live streaming, (b) add friend into the database, and (c) start the RTMP server.

In order to make a call, there are two important actions: (1) the RTMP server for
streaming needs to be activated, as shown in Figure 10c and, (2) the system must check
whether the selected friend’s RTMP service is available as well. If it is available, the
connection starts to be established and the system prepares the video and audio for live
streaming on both sides. This is an automated process if the system detects the dog is
“boring” and needs a friend. Figure 11a shows the user interface of the developed mobile
app allowing a manual call. It enables the dog owner to manually make a call, just in case



Sensors 2022, 22, 6759 12 of 20

there is a need. If the connection to the friend’s RTMP server is successful, the real-time
video will be displayed and the audio function will be turned on, as shown in Figure 11b.
In the platform setting, the mobile app captures the video and audio from the other side
and uploads those data to the cloud for the dog’s behavior training. As shown in Figure 11c,
a dog with an unhealthy condition is detected; thus, an alert and notification email are sent
to the owner to warn him about the dog’s emotional condition.
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5. Testing and Discussion

Various experiments have been carried out to train the deep learning models, as
mentioned in Section 4, for the proposed affective recommendation engine.

5.1. Dog’s Emotion Recognition

The ResNet-like was implemented to recognize dogs’ facial expressions (as described
in Section 4.2), and various tests were performed to determine its hyperparameters. Initially,
hyperparameters of 200 epochs, batch size of 16, and 0.0005 learning rate were set for
training with various dog images as described in Section 4.2. As shown in Figure 12, two
sets of images were involved: (1) the dataset of images with a size of 636 for training, 80 for
validation and 80 for testing. (2) The dataset of images with a size of 384 for training, 48 for
validation and 48 for testing. Based on training prediction results (as shown in Table 2),
the accuracies of using fewer images for validation and testing were 70.83% and 66.67%,
whereas the accuracies of using more data for validation and testing were 73.75% and
72.50%. The testing was performed using the testing dataset and the accuracy rate of
the dataset with fewer images reached 33.33%, which is much lower than the training
prediction result, which indicates that overfitting has occurred. The result improved to
53.75% when the dataset with more images was tested. This shows that building the model
using the dataset with more images has improved the recognition performance.
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Table 2. The comparison of performance between smaller and larger sample sizes of data using
ResNet-like batch 16. Larger sample size of data has better performance (as highlighted) compared to
less data sample size.

Evaluation Metric Less Data
Sample Size

More Data
Sample Size

Training Accuracy 70.83% 73.75%
Loss 0.8192 0.8289

Validation Accuracy 66.67% 72.50%
Loss 0.8482 0.6038

Test Accuracy 33.33% 53.75%
Loss 0.8482 0.6038

Next, the test is continued by tuning the hyperparameters using the dataset with more
images, as shown in Table 3. From the table, different learning rates with different numbers
of epochs in two common batch sizes (16 and 32) were examined. First, learning rates
ranging from 0.0001 to 0.1 with 50 epochs were tested with the batch sizes to determine
the appropriate rate. During the training prediction, training loss, validation loss, training
accuracy, and validation accuracy were obtained for both batch sizes. Graphs are also
plotted, as shown in Figures 13 and 14. In the figures, the loss and accuracy for learning
rates of 0.01 and 0.1 are not ideal when compared to the learning rates of 0.001 and 0.0001,
where the loss is higher, and the accuracy is lower. When comparing the performance of
all learning rates, the learning rate of 0.0001 shows continuous and steady improvement
for both batch sizes. For example, in the validation loss, learning rates of 0.001, 0.01, and
0.1 fluctuate more than the learning rate of 0.0001, as shown in Figures 13 and 14. In other
words, the learning rate of around 0.0001 is appropriate for the training of this model,
where learning rates of between 0.0001 and 0.0005 are set for both batch sizes with the
observation by increasing the number of epochs gradually for the next tuning step.
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Table 3. Testing of the ResNet-like model with different hyperparameters using dataset with more
images. The numbers in bold number are the hyperparameters discovered to build the ResNet-like
model in this system.

Learning Rate Batch Size of 16 Batch Size of 32

0.1

50 epochs 200 epochs 50 epochs 200 epochs
0.01

0.001

0.0001
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Figures 15 and 16 are the training prediction results with batch sizes of 16 and 32.
From the figures, the loss and accuracy fluctuate and become consistent starting around
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75 epochs. The training and validation losses are consistent when the number of epochs
with the batch size of 16 increases (as shown in Figure 15), whereas the training and
validation loss function values deviate from each other with the batch size of 32 as shown
in Figure 16. Later, the testing was conducted using the test dataset, and the accuracy
and loss of batch size 16 reached 53.75% and 0.6038 while the accuracy and loss of batch
size 32 reached 43.75% and 0.6629. As shown in Table 4, the result reveals that the model
trained with batch size 16 is better than the batch size of 32 as it achieves better accuracy
and lower loss. In summary, a learning rate of between 0.0001 and 0.0005, 200 epochs, and
a batch size of 16 are the hyperparameters discovered to build the ResNet-like model in
this system. The model is compared to VGG16 [53] as well when using the same settings
of hyperparameters to evaluate the performance. The tests were also carried out in batch
16 and batch 32 for VGG16 and compared with ResNet-like in Table 4. As noticed in the
table, the overall performance of ResNet-like is better than VGG16 since all the accuracies
for VGG16 are less than 50% and the loss values are larger than 1.
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Table 4. The comparison of performances between hyperparameter batches 16 and 32. ResNet-
like trained with batch size 16 is better than the batch size of 32 and it is also better than VGG16
as highlighted.

Hyper-Parameter Evaluation Metric ResNet-like VGG16

Training Accuracy 73.75% 47.50%
Loss 0.8289 1.0408

Batch 16 Validation Accuracy 72.50% 47.50%
Loss 0.6038 1.0408

Test Accuracy 53.75% 35.27%
Loss 0.6038 1.0408

Training Accuracy 68.75% 47.50%
Loss 1.0672 1.0408

Batch 32 Validation Accuracy 72.50% 47.50%
Loss 0.6629 1.0408

Test Accuracy 43.75% 38.16%
Loss 0.6629 1.0408
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With the constructed model, the test proceeded on the sample of dog images to predict
dog emotions, as shown in Figure 17. The images of a dog named Luna were collected and
tested on the model. Luna’s emotions were predicted correctly in all images.
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5.2. Dog Barking Emotion Recognition and Weighted Average for Dogs’ Behavior Prediction

A sequential model was implemented to recognize dog barks (as described in Section 4.3)
and simple tests were performed to determine its hyperparameters. Initially, 100 epochs
and a batch size of 32 were set for training, and the validation of the training became
consistent after starting a second epoch based on observation. Then, the model was tested
with the test dataset, and the classification accuracy showed 75%. As shown in Figure 18,
the model is able to predict the types of dog barks based on the provided audio test files.
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As explained in Section 4, the predicted outputs of the two trained models were
combined through a weighted average using Equation (2) to enhance the prediction of dogs’
behavior. The predicted output showed the dogs’ behaviors which have been categorized
as happy, angry, and sick. A total of 70 sample data files for each class label were prepared
for testing, which are 210 dog images and 210 dog barking audio files in total. Figure 19
shows the accuracy of the predicted output for dog emotions, dog barking, and weighted
average. The weighted average had the highest accuracy with 201 samples (95.70%)
correctly predicting the dogs’ behavior, while 187 images (89%) and 192 barks (91.40%)
correctly predicted the dogs’ behavior. Figure 20 shows three samples of the test data
that correctly predict the dogs’ behavior through the weighted average. In summary, the
combination of dog emotions and dog barking improves the prediction accuracy of dogs’
behavior in the three categories of happy, angry, and sick.
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6. Conclusions

Dogs are good companions for humans; they have a close relationship with their
owners. However, dogs may face separation anxiety when they are apart from their
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owners for a long period of time and even develop disruptive behavior. Therefore, a novel
cloud-based smart environment dog social network is proposed to solve this problem
for dogs that live around the household. A mobile app for smartphones was developed
to predict the dogs’ behavior, and smartphones are used as communication devices to
connect with different dog friends from different households. The ResNet-like model is
used for dog emotion recognition in predicting dogs’ behavior. A series of experiments
were carried out to determine the hyperparameters of the ResNet-like model which found
a learning rate of between 0.0001 and 0.0005, 200 epochs, and a batch size of 16. The
proposed model was able to achieve 53.75% accuracy a 60.38% loss. The sequential model
is used for dog barking recognition to predict the dog’s behavior as well. The model
was tested with the test dataset and the classification accuracy was shown to be 75%.
Later, the weighted average technique (a combination of the prediction values of dog
emotion recognition and dog barking recognition) was chosen to improve the prediction
output, and it achieved an accuracy of 95.70%. On the other hand, the RTMP server is
implemented as a platform to connect dog friends in a list using smartphones. Once
RTMP is established, dogs can interact with each other, and it will trigger notification
messages to owners once a sick dog is detected. In future work, dog pose recognition
could be included to further improve the classification accuracy of the proposed affective
recommender system. Due to the limitations of current data acquisition, multimodal
training datasets should be applied for subsequent experiments to improve the recognition
output. Furthermore, we may concentrate on the validity of the proposed system for
various types of dogs and environments. The feasibility of the proposed solution could be
one of the research directions.
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