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Abstract: Objective quality assessment of natural images plays a key role in many fields related to
imaging and sensor technology. Thus, this paper intends to introduce an innovative quality-aware
feature extraction method for no-reference image quality assessment (NR-IQA). To be more specific,
a various sequence of HVS inspired filters were applied to the color channels of an input image to
enhance those statistical regularities in the image to which the human visual system is sensitive. From
the obtained feature maps, the statistics of a wide range of local feature descriptors were extracted
to compile quality-aware features since they treat images from the human visual system’s point
of view. To prove the efficiency of the proposed method, it was compared to 16 state-of-the-art
NR-IQA techniques on five large benchmark databases, i.e., CLIVE, KonIQ-10k, SPAQ, TID2013, and
KADID-10k. It was demonstrated that the proposed method is superior to the state-of-the-art in
terms of three different performance indices.

Keywords: no-reference image quality assessment; quality-aware features; keypoint detector

1. Introduction

With the continuous development of imaging systems, the demand for innovative,
objective image quality assessment (IQA) methods is growing. Since digital images are
subjects of a variety of distortions and noise types during image acquisition [1], compres-
sion [2], reconstruction [3], and enhancement [4], image quality assessment has also many
practical applications [5] in medical imaging [6], remote sensing imaging [7], monitoring
the quality of streaming applications [8], or benchmarking image processing algorithms [9]
under different distortions. Thus, objective IQA has been a subject of intensive research in
the image processing community to replace subjective quality evaluation of digital images
which is a time-consuming, expensive, and laborious process [10].

In the literature, objective IQA measures are traditionally divided into three branches [11],
such as full-reference (FR), reduced-reference (RR), and no-reference (NR) IQA, with respect
to the availability of the distortion-free—very often referred as reference—images. As the
terminology implies, FR techniques evaluate the perceptual quality of a distorted image with
full access to its reference image, while NR algorithms cannot rely on reference images. For
RR methods, partial information about the reference images is available.

1.1. Contributions

The contributions of this work are as follows. Although the deep learning paradigm
dominates the field of objective IQA [12,13], the interest in methods which simulates the
sensitivity of HVS to statistical regularities and structures is also a hot research topic in
the literature [14,15]. In our previous work [16], it was empirically corroborated that the
statistics of local feature descriptors are quality-aware features. Here, we use systematically
the statistics of local feature descriptors to compile a powerful feature vector for NR-IQA.
Specifically, multiple HVS inspired filters are applied to the color channels of an input image
to generate feature maps where the HVS sensitive statistical regularities are emphasized.
Next, the statistics of local feature descriptors, such as KAZE [17] or BRISK [18], are

Sensors 2022, 22, 6775. https://doi.org/10.3390/s22186775 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22186775
https://doi.org/10.3390/s22186775
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-3265-5047
https://doi.org/10.3390/s22186775
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22186775?type=check_update&version=2


Sensors 2022, 22, 6775 2 of 21

extracted from the feature maps as quality-aware features. Since there is a close connection
between human visual perception and low-level visual features [19,20], various statistics of
local feature descriptors is able to provide a powerful feature representation for NR-IQA.
The effectiveness of the proposed method is empirically corroborated in tests recommended
by the IQA community using publicly available large IQA benchmark databases, i.e.,
CLIVE [21], KonIQ-10k [22], SPAQ [23], TID2013 [24], and KADID-10k [25].

1.2. Structure of the Paper

The rest of this study is organized as follows. In Section 2, previous and related work
are summarized. Section 3.1 provides an overview about the applied benchmark databases,
gives the definition of the evaluation metrics, and defines the evaluation protocol. In
Section 3.2, we introduce our proposed method. Section 4 presents the experimental results
and a comparison to the state-of-the-art from various aspects. Finally, a conclusion is drawn
in Section 5.

2. Related Work

NR-IQA algorithms can be classified into learning-free and learning-based categories.
As the name indicates, learning-based methods rely on various machine and/or deep
learning techniques to construct a model for perceptual quality estimation. Learning-free
methods can be further divided into two groups, i.e., spatial [26] and spectral domain [27]
based approaches. A common method [28] for score prediction involves fitting a portion of
the training data to the joint distribution of the feature vector and the related opinion scores.
Given the test data feature vector, the score prediction in this instance entails maximizing
the likelihood of the test data opinion score. Other methods [29] that are both opinion- and
distortion-unaware measure the separation in sparse feature space between the reference
and distorted images. In contrast, Leonardi et al. [30] elaborated an opinion-unaware
method that exploits the activation maps of pretrained convolutional neural networks [31]
by considering the correlations between feature maps.

Classical machine learning based algorithms utilized for choice natural scene statistics
(NSS) [32] and support vector regressors (SVR) [33]. According to our understanding, the
evolution of the human visual system (HVS) has been driven by natural selection. Therefore,
HVS assimilated a comprehensive knowledge about the regularity of our natural environ-
ment. In addition, researchers have pointed out [34] that certain image structure regularities
deteriorate in the presence of noise and the deviation from them can be exploited for image
quality evaluation. Classical methods utilizing NSS include for example BLIINDS-II [35],
BRISQUE [36], CurveletQA [37], and DIIVINE [38]. Specifically, Saad et al. [35] constructed
an NSS model from discrete cosine transform (DCT) coefficients of an image and fitted
generalized Gaussian distributions on the coefficients to obtain their shape parameters
which were used as quality-aware attributes and mapped onto quality scores with a trained
SVR. In contrast, Jenadeleh and Moghaddam [39] proposed a Wakeby distribution sta-
tistical model to extract quality-aware features. Moorthy et al. [38] utilized steerable
pyramid decomposition [40]—an overcomplete wavelet transform—using across multiple
orientations and scales. In contrast, Mittal et al. [36] applied the spatial domain for NSS
model construction. To be more specific, quality-aware features were derived from locally
normalized luminance coefficients and mapped onto perceptual quality with a trained SVR.
Liu et al. [37] proposed a two-stage framework incorporating a distortion classification and
a quality prediction step. Further, quality-aware features were derived from the curvelet
representation of the input image. Specifically, the authors emprirically proved that the
coordinates of the maxima given in log-histograms of the curvelet coefficients, the energy
distributions, and the scale are good predictors of image perceptual quality. Based on the
observation that image distortions can significantly modify the shapes of objects present
in the image, Bagade et al. [41] introduced shape adaptive wavelet features for NR-IQA.
In contrast, Jenadeleh et al. [42] boosted already existing NR-IQA features with features
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proposed for image aesthetics assessment. Further, they demonstrated that aesthetic aware
features are able to increase the performance of perceptual quality estimation.

Recently, deep neural networks, particularly convolutional neural networks (CNN)
have gained a significant amount of attention in the literature due to their improved
performance in many fields [43–46] compared to other approaches and paradigms. In NR-
IQA, Kang et al. [47] applied first a CNN successfully. Namely, the authors implemented a
traditional CNN which accepts image patches of 32 × 32 and predicts the patches’ quality
independently from each other. The entire image’s perceptual quality was obtained by
taking the arithmetic mean of the patches’ quality scores. Similar to [47], Kim and Lee [48]
trained a CNN on image patches but the patches’ desired quality scores were determined
by a traditional FR-IQA metric which restricts this method to the evaluation of artificially
distorted images. Bare et al. [49] developed a network that operates on image patches
similar to [47] but the patches target score is calculated from a traditional FR-IQA metric
(feature similarity index [50]) similar to [48]. On the whole, the entire image’s perceptual
quality is estimated by the predicted feature similarity index [50] scores of the image
patches. In contrast, Conde et al. [51] took a CNN backbone network and trained it using
a loss function [52] which aims to minimize the mean squared error and maximize linear
correlation coefficient between the predicted and ground-truth quality scores. Further, the
authors applied several data augmentation techniques, such as horizontal flips, vertical
flips, rotations, and random cropping. To handle images with different aspect ratios,
Ke et al. [53] introduced a transformer [54] based NR-IQA model which applied a hash-
based 2D absolute-position-encoding for embedding image patches extracted from multiple
scales. In contrast, Zhu et al. [55] embedded the input images’ original aspect ratios
into the self-attention module of a swin transformer [56]. Sun et al. [57] introduced the
distortion graph representation framework which contains a distortion type discrimination
network aiming to discriminate between distortion types and a fuzzy prediction network
for perceptual quality estimation. Liu et al. [58] introduced lifelong learning for NR-IQA to
learn new distortion types without accessing to previous training data. First, the authors
utilized a split-and-merge distillation strategy for compiling a single-head regression
network. In the split phase, a distortion-specific generator was implemented for generating
pseudo-features for unseen distortions. In the merge phase, these pseudo-features were
coupled with pseudo-labels to distill knowledge about distortions.

A general, in-depth overview about the field of NR-IQA is out of the scope of this
paper. For more details, we refer to the PhD thesis of Jenadeleh [59] and the book of
Xu et al. [60] Besides natural images, there are other modalities, whose no-reference quality
assessment are also investigated in the literature, such as stereoscopic images [61], light
field images [62], or virtual reality [63].

3. Materials and Methods
3.1. Materials

In this part of the paper, the applied IQA benchmark databases and the evaluation
protocol are discussed in detail.

3.1.1. Applied IQA Benchmark Databases

In this paper, we applied five publicly available IQA benchmark, such as CLIVE [21],
KonIQ-10k [22], SPAQ [23], TID2013 [24], and KADID-10k [25], to evaluate and compare
our proposed methods to the state-of-the-art. Specifically, CLIVE [21], KonIQ-10k [22], and
SPAQ [23] contain unique quality labeled images with authentic distortions. The quality
ratings were collected in a crowdsourcing experiment [64–66] for CLIVE [21] and KonIQ-
10k [22], while the quality ratings were obtained in a traditional laboratory environment for
SPAQ [23]. Further, CLIVE [21] and KonIQ-10k [22] contain images with fixed resolution.
On the other hand, there is no fixed resolution in SPAQ [23] but the images have high
resolution which varies around 4000 × 4000. In contrast to CLIVE [21], KonIQ-10k [22],
and SPAQ [23], TID2013 [24] and KADID-10k [25] consist of 24 and 25 reference images
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whose perceptual quality are considered perfect, respectively. The quality labeled distorted
images were produced artificially by an image processing tool from the reference images
using different distortion types (i.e., JPEG compression noise, salt & pepper noise, Gaussian
blur, etc.) at multiple distortion levels. The main properties of the applied IQA benchmark
databases are summarized in Table 1. Further, the empirical distributions of quality scores
are depicted in Figure 1.

Table 1. The main characteristics of the applied IQA benchmark databases.

Attribute CLIVE [21] KonIQ-10k [22] SPAQ [23] TID2013 [24] KADID-10k [25]

#Distorted images 1162 10,073 11,125 3000 10,125
#Reference images - - - 25 81
#Distortion types - - - 24 25
#Distortion levels - - - 5 5

Resolution 500 × 500 1024 × 768 ∼4000 × 4000 512 × 384 512 × 384
#Subjects 8100 1467 600 971 2209

#Annotations 1400 1,200,000 186,400 27,000 303,750
Scale of quality scores 0–100 1–5 0–100 0–9 1–5

Subjective methodology crowdsourcing crowdsourcing laboratory laboratory crowdsourcing
Year 2017 2018 2020 2013 2019

3.1.2. Evaluation Protocol and Metrics

The assessment of NR-IQA algorithms involves the measurement of the correlation
strength between the predicted scores and the ground-truth scores of an IQA benchmark
database. As common in the literature, about 80% of images was used for training and the
remaining 20% was used for testing in our experiments. Further, databases with artificial
distortions were divided into training and test sets with respect to the reference images to
prevent semantic content overlap between these two sets.

In this paper, the medians of Pearson linear correlation coefficients (PLCC), Spearman
rank order correlation coefficient (SROCC), and Kendall rank order correlation coefficient
(KROCC), which were measured over 100 random train-test splits, are given to characterize
the performance of the proposed method and other examined state-of-the-art methods.
However, there is a non-linear relationship between the predicted and the ground-truth
scores. This is why, a non-linear logistic regression was applied before the computation of
PLCC as advised by [67]:

Q f = β1

(
1
2
− 1

1 + exp(β2(Qp − β3))

)
+ β4Qp + β5, (1)

where Q f and Qp stand for the fitted and predicted score, respectively. Further, the
regression parameters are denoted by βi’s (i = 1, . . . , 5).

3.2. Proposed Method

The high-level overview of the proposed NR-IQA algorithm is depicted in Figure 2.
It can be observed that the proposed method is built upon two distinct steps. In the first,
training step, local features are extracted from a database of quality labeled, training images.
Next, a regression model is trained based on them to obtain a quality model. This model is
used to estimate the perceptual quality of a previously unseen image in the testing step.

Image distortions influence the human visual system’s (HVS) sensitivity to local
image structures, such as edges or texture elements [68]. For that reason, many NR-IQA
methods have been proposed [69–71] in the literature to compile a quality model from
them. However, edge information or local binary patterns are not always able to provide
powerful feature representation for NR-IQA. Therefore, in this study, an application of
local feature descriptors and HVS-inspired filters are investigated thoroughly to extract
quality-aware local features and compile a powerful feature representation for NR-IQA.
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Figure 3 depicts the general process of local quality-aware feature extraction. First, the
input RGB image is filtered by a set of HVS inspired filters to create feature maps. On these
maps, local keypoints are detected by local feature descriptors (such as SURF [72]). Finally,
feature extraction is carried out from the neighborhoods of the detected keypoints.

(a) (b)

(c) (d)

(e)
Figure 1. The empirical distributions of quality scores in the applied IQA databases. (a) CLIVE [21],
(b) KonIQ-10k [22], (c) SPAQ [23], (d) TID2013 [24], (e) KADID-10k [25].

In the proposed method, an input RGB image is converted into YCbCr color space,
since the chroma component is separated from the color information in YCbCr. The
conversion from RGB to YCbCr was carried out using the following equation [73]: Y

Cb
Cr

 =

 0.2568 0.5041 0.0979
−0.1482 −0.2910 0.4392
0.4392 −0.3678 −0.0714

R
G
B

, (2)
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where R, G, and B stand for the red, green, and blue color channels, respectively. Subse-
quently, a color channel Ci is filtered using different HVS-inspired filters to obtain multiple
feature maps. Since local feature descriptors treat images from the HVS’s point of view,
their statistics are able to provide quality-aware features [16]. Further, the applied HVS
inspired filters emphasize those statistical regularities of a natural scene which are highly
sensitive to image distortions from the perspective of HVS. Specifically, 5 statistical features
are derived from each filtered color channels using the statistics of different local feature
descriptors. In Sections 3.3–3.5, the compilation of HVS inspired feature maps are described.
Next, the proposed quality-aware feature extraction from the feature maps is described
in Section 3.6.

Figure 2. High-level overview of the proposed NR-IQA algorithm.

Figure 3. High-level overview of local feature extraction.

3.3. Bilaplacian Feature Maps

First, Bilaplacian feature maps were obtained using Bilaplacian filters. In [74],
Gerhard et al. demonstrated that the HVS is highly adapted to statistical regularities of
images. Further, zero-crossings [75] in an image occur where the gradient starts increasing
or decreasing and help the HVS in interpreting the image. Using the idea of zero-crossings,
Ghosh et al. [76] pointed out that the behaviour of the extended classical receptive field of
retinal ganglion cells can be modeled as a combination of three zero-mean Gaussians at
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three different scales which are equivalent to are the Bilaplacian of the Gaussian filter [77].
The L(x, y) Laplacian of an I(x, y) image can be expressed as:

L(x, y) =
∂2 I(x, y)

∂x2 +
∂2 I(x, y)

∂y2 . (3)

Since a digital image is represented as a set of discrete pixels, discrete convolution kernels
are used to approximate the Laplacian. In this paper, the following kernels are considered:

L1 =

0 1 0
1 −4 1
0 1 0

, L2 =

 1 −2 1
−2 4 −2
1 −2 1

, L3 =

1 0 1
0 −4 0
1 0 1

, (4)

L4 =

−2 1 −2
1 4 1
−2 1 −2

, L5 =

−1 −1 −1
−1 8 −1
−1 −1 −1

. (5)

Bilaplacian kernels are obtained by convolving two Laplacian kernels:

L2
ij = Li ∗ Lj, (6)

where ∗ stands for the convolution operator. In our study, L2
11, L2

22, L2
33, L2

44, L2
55, L2

13, and
L2

24 Bilaplacian kernels were considered. Subsequently, a set of feature maps is derived
from the input image by filtering with the Bilaplacian kernels the Y, Cb, and Cr channels.
To be more specific, 3 × 7 = 21 feature maps are obtained by filtering 3 color channels (Y,
Cb, Cr) with 7 filters ( L2

11, L2
22, L2

33, L2
44, L2

55, L2
13, L2

24).

3.4. High-Boost Feature Maps

High-boost filtering is used to enhance high-frequency image regions which the HVS
is also sensitive for [78]. Similarly to the previous subsection, high-boost filtering is applied
on the color channels of Y, Cb, and Cr to strengthen high-frequncy information. In this
case, the convolution kernel is the following:

H =

−C −C −C
−C 8C + 1 −C
−C −C −C

, (7)

where C is a constant value which controls the enhancement difference between a pixel
location and its neighborhood. In our study, C = 1 was used. However, image distortions
can occur at different scales. Therefore, a color channel was filtered 4 times in succession
to obtain four feature maps from one channel. Since we have three channels, 3 × 4 = 12
feature maps were extracted in total applying high-boost filtering.

3.5. Derivative Feature Maps

In [74], Gerhard et al. draw the inference that the HVS is biased for processing natural
images. Further, it has a large knowledge of statistical regularities in images. In [79], Li
et al. demonstrated that derivatives and higher order derivatives are related to different
statistical regularities of a natural scene. Therefore, there are good features for NR-IQA.
For instance, higher order derivatives may be able to capture detailed discriminative
information, while first order derivative information is typically related to the slope and
elasticity of a surface. Second order derivatives intended to capture the geometric qualities
associated to curvature [80]. Motivated by these previous works, we used the following
convolution of two derivative kernels to filter Y, Cb, Cr color channels of an input image:
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D1 =

−1 1 −1
1 0 1
−1 1 −1

 ∗

 1 −1 1
−1 0 −1
1 −1 1

. (8)

Similarly, we can define D2, D3, D4, and D5 masks for 5 × 5, 7 × 7, 11 × 11, and 13 × 13
sizes. Finally, the derivative feature maps are obtained by filtering Y, Cb, Cr color channels
with D1, D2, D3, D4, and D5. As a result, 3× 5 = 15 derivative feature maps were obtained.

3.6. Feature Extraction

As one can see from the previous subsections, 21 Bilaplacian feature maps, 12 high-
boost feature maps, and 15 derivative feature maps were generated which means in total
21 + 12 + 15 = 48 feature maps. In the feature extraction step, 7 × N keypoints are de-
tected using 7 different local keypoint detectors, i.e., SURF (speed up robust features) [72],
FAST (features from accelerated segment test) [81], BRISK (binary robust invariant scalable
keypoints) [18], KAZE (Japanese word that means wind) [17], ORB (oriented FAST and
rotated binary robust independent elementary features) [82], Harris [83], and minimum
eigenvalue [84], in each feature map. For each keypoint, its M × M rectangular neighbor-
hood with the keypoint’s location as center point is taken. Further, each M × M rectangular
block in each Bilaplacian, high-boost, and derivative feature maps are characterized by the
mean, median, standard deviation, skewness, and kurtosis of the grayscale values found in
the involved block. The skewness of a set of n elements is determined as

s =
1
n ∑n

i=1(xi − x̄)3(√
1
n ∑n

i=1(xi − x̄)2
)2 , (9)

where x̄ is the arithmetic mean of all xi elements. Similarly, the kurtosis can be given as

k =
1
n ∑n

i=1(xi − x̄)4(
1
n ∑n

i=1(xi − x̄)2
)3 . (10)

Using the statistics of the rectangular blocks, a given feature map is characterized by the
arithmetic mean of all blocks’ statistics. As a result, a 3 × 7 × 7 × 5 = 735 dimensional fea-
ture vector is obtained using Bilaplacian filters and the statistics of local feature descriptors,
since 3 color channels were filtered with 7 Bilaplacian kernels and 7 different feature de-
scriptors with 5 different statistics were applied. Further, a 3× 4× 7× 5 = 420 dimensional
feature vector is obtained using the high-boost filters, since 3 color channels were filtered
with 4 high-boost kernels and 7 different feature descriptors with 5 different statistics were
applied as in the previous case. Similarly, 3 × 5 × 7 × 5 = 525 dimensional feature vector is
obtained from the derivative feature maps. By concatenating the fore-mentioned vectors, a
735 + 420 + 525 = 1680 dimensional feature vector can be derived which can be mapped
onto perceptual quality scores with a machine learning technique.

As an illustration, Figure 4 depicts a Y channel and its Bilaplacian feature maps with
the detected FAST keypoints. From this illustration it can be seen that keypoints are
accumulated around those regions which highly influence humans’ quality perception. In
Figure 5, it is illustrated that the location of keypoints on the feature maps is changing
with respect to the strength of image distortion. As a consequence, it seems justified that
the statistics of local feature descriptors on carefully chosen feature maps are quality-
aware features.

3.7. Perceptual Quality Estimation

The quality model formally can be written as: q = G(F), where q is a vector of quality
scores, F is a set of extracted feature vectors, and G denotes the quality model. Specifically,
G can be determined by a properly chosen machine learning (regression) technique. In
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this study, we made experiments with two different regression methods, i.e., support
vector regressor (SVR) and Gaussian process regressor (GPR). In the followings, we denote
the proposed methods by LFD-IQA-SVR and LFD-IQA-GPR with respect to the applied
regression method. In the chosen codename, LFD refers to the abbreviation of local feature
descriptors whose statistics were utilized as quality-aware features.

(a) (b)

(c) (d)

(e) (f)
Figure 4. Cont.
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(g) (h)
Figure 4. Illustration of Bilaplacian feature maps and detected FAST keypoints. (a) Y channel,
(b) Y ∗ L2

11, (c) Y ∗ L2
22, (d) Y ∗ L2

33, (e) Y ∗ L2
44, (f) Y ∗ L2

55, (g) Y ∗ L2
13, (h) Y ∗ L2

24.

(a) (b)

(c) (d)

Figure 5. Illustration of Bilaplacian feature map and the detected FAST keypoints on two different
distortion levels. (a) Luminance channel of pristine image (Ypristine), (b) Luminance channel of
distorted image (Ydistorted), (c) Ypristine ∗ L2

11, (d) Ydistorted ∗ L2
11.

4. Experimental Results

In this section, our numerical experimental results are presented. First, an ablation
study is carried out in Section 4.1 first to justify certain design choices of the proposed
methods. In the following subsection, a comparison to several other state-of-the-art meth-
ods is presented using accepted publicly available benchmark databases and evaluation
protocol described in Section 3.1. This comparison involves direct and cross-database tests
as well as significance tests.
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4.1. Ablation Study

In the proposed feature extraction methodology, there are two tunable parameters, i.e.,
the N number of detected keypoints for each feature feature descriptor and the M× M block
size. In this ablation study, CLIVE [21] was utilized using the evaluation protocol given in
Section 3.1 to determine an optimal value for these two parameters. To be more specific, we
varied the number of detected keypoints from 1 to 55 and we experimented with 3 different
block sizes, i.e., 3 × 3, 5 × 5, and 7 × 7. The results for LFD-IQA-SVR and LFD-IQA-GPR
are summarized in Figures 6 and 7, respectively. From these results, it can be seen that
5 × 5-sized neighborhood is the optimal choice for both LFD-IQA-SVR and LFD-IQA-GPR.
On the other hand, LFD-IQA-SVR achieves its best performance at 45 detected keypoints
while LFD-IQA-GPR has its peak performance at 40 detected keypoints. Therefore, we
applied 5 × 5 neighborhoods and 45 or 40 keypoints, respectively.

(a) (b)

(c)
Figure 6. Ablation study for LFD-IQA-SVR: number of detected keypoints vs. correlation strength.
(a) 3 × 3 block size, (b) 5 × 5 block size, (c) 7 × 7 block size.

The proposed methods were implemented and tested in MATLAB R2022a. To be
more specific, the Computer Vision Toolbox’s functions were utilized for the detection of
keypoints and feature extraction, while the Statistics and Machine Learning Toolbox was
used in the regression part of the proposed method.

4.2. Comparison to the State-of-the-Art

The proposed methods were compared to the following 16 state-of-the-art methods:
BIQI [85], BLIINDS-II [35], BMPRI [86], BRISQUE [36], CurveletQA [37], DIIVINE [38],
ENIQA [87], GRAD-LOG-CP [69], GWH-GLBP [70], IL-NIQE [27], NBIQA [88], NIQE [26],
OG-IQA [71], PIQE [89], Robust BRISQUE [90], and SSEQ [91]. Excluding the training-free
IL-NIQE [27], NIQE [26] and, PIQE [89], these methods were evaluated as the same way
as the proposed methods. To provide a fair comparison, the same subsets of images were
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selected in the random 100 train-test splits. Since IL-NIQE [27], NIQE [26] and, PIQE [89]
are opinion unaware methods, they were tested on the applied benchmark databases in one
iteration measuring PLCC, SROCC, and KROCC on the entire database without any train-
test splits. In Tables 2 and 3, the median values measured over 100 random train-test splits
for the considered and proposed NR-IQA methods on authentic distortions (CLIVE [21],
KonIQ-10k [22], SPAQ [23]) are reported. Similarly, Table 4 summarizes the results on
artificial distortions. From these results, it can be seen that the proposed LFD-IQA-SVR
achieves the second best results in almost all cases, while the proposed LFD-IQA-GPR
provides the best results for all databases in all performance metrics. In Table 5, the results
measured on the individual databases are aggregated into direct and weighted averages
of PLCC, SROCC, and KROCC. From these results, it can be concluded that the proposed
methods are able to outperform all the other methods by a large margin. Further, the
difference between the proposed and the other algorithms is larger in case of weighted
averages. This indicates that the proposed methods tend to give a better performance on
larger IQA databases. Figures 8 and 9 depict ground-truth versus predicted quality score
scatter plots of the proposed methods determined on CLIVE [21], KonIQ-10k [22], and
KADID-10k [25] test sets, respectively.

(a) (b)

(c)
Figure 7. Ablation study for LFD-IQA-GPR: number of detected keypoints vs. correlation strength.
(a) 3 × 3 block size, (b) 5 × 5 block size, (c) 7 × 7 block size.

To prove that achieved results summarized in Tables 2–4 are significant, the Wilcoxon
rank sum test was applied [69,92]. To be specific, the null hypothesis was that two sets
of 100 SROCC values produced by two different NR-IQA methods were sampled from
continuous distributions with equal median values. In our tests, 5% significance level was
applied. The results are summarized in Table 6 for LFD-IQA-SVR, while the results are
shown in Table 7 for LFD-IQA-GPR. Here, symbol ’1’ is used to denote that the proposed
method is significantly better than the method in the row on the database in the column.
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From the presented results, it can be clearly seen that the achieved result is significant
compared to the state-of-the-art. As a consequence, the proposed HVS-inspired feature
extraction method have proved to be more effective than the those of the examined state-of-
the-art methods.

Table 2. Comparison to the state-of-the-art on CLIVE [21] and KonIQ-10k [22] databases. Median
PLCC, SROCC, and KROCC values were measured over 100 random train-test splits. The best results
are typed in bold, the second best results are underlined, and the third best results are typed in italic.

CLIVE [21] KonIQ-10k [22]

Method PLCC SROCC KROCC PLCC SROCC KROCC

BIQI [85] 0.519 0.488 0.329 0.688 0.662 0.471
BLIINDS-II [35] 0.473 0.442 0.291 0.574 0.575 0.414

BMPRI [86] 0.541 0.487 0.333 0.637 0.619 0.421
BRISQUE [36] 0.524 0.497 0.345 0.707 0.677 0.494

CurveletQA [37] 0.636 0.621 0.421 0.730 0.718 0.495
DIIVINE [38] 0.617 0.580 0.405 0.709 0.693 0.471
ENIQA [87] 0.596 0.564 0.376 0.761 0.745 0.544

GRAD-LOG-CP [69] 0.607 0.604 0.383 0.705 0.696 0.501
GWH-GLBP [70] 0.584 0.559 0.395 0.723 0.698 0.507

IL-NIQE [27] 0.487 0.415 0.280 0.463 0.447 0.306
NBIQA [88] 0.629 0.604 0.427 0.771 0.749 0.515
NIQE [26] 0.328 0.299 0.200 0.319 0.400 0.272

OG-IQA [71] 0.545 0.505 0.364 0.652 0.635 0.447
PIQE [89] 0.172 0.108 0.081 0.208 0.246 0.172

Robust BRISQUE [90] 0.522 0.484 0.330 0.718 0.668 0.477
SSEQ [91] 0.487 0.436 0.309 0.589 0.572 0.423

LFD-IQA-SVR 0.669 0.647 0.464 0.786 0.769 0.569
LFD-IQA-GPR 0.696 0.667 0.480 0.801 0.775 0.577

Table 3. Comparison to the state-of-the-art on SPAQ [23] database. Median PLCC, SROCC, and
KROCC values were measured over 100 random train-test splits. The best results are typed in bold,
the second best results are underlined, and the third best results are typed in italic.

Method PLCC SROCC KROCC

BIQI [85] 0.783 0.776 0.566
BLIINDS-II [35] 0.676 0.675 0.486

BMPRI [86] 0.739 0.734 0.506
BRISQUE [36] 0.726 0.720 0.518

CurveletQA [37] 0.793 0.774 0.503
DIIVINE [38] 0.774 0.756 0.514
ENIQA [87] 0.813 0.804 0.603

GRAD-LOG-CP [69] 0.786 0.782 0.572
GWH-GLBP [70] 0.801 0.796 0.542

IL-NIQE [27] 0.374 0.348 0.297
NBIQA [88] 0.802 0.793 0.539
NIQE [26] 0.264 0.310 0.206

OG-IQA [71] 0.726 0.724 0.594
PIQE [89] 0.211 0.156 0.091

Robust BRISQUE [90] 0.735 0.731 0.524
SSEQ [91] 0.745 0.742 0.549

LFD-IQA-SVR 0.852 0.847 0.627
LFD-IQA-GPR 0.869 0.864 0.664
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Table 4. Comparison to the state-of-the-art on TID2013 [24] and KADID-10k [25] databases. Median
PLCC, SROCC, and KROCC values were measured over 100 random train-test splits carried out
with respect to the reference images. The best results are typed in bold, the second best results are
underlined, and the third best results are typed in italic.

TID2013 [24] KADID-10k [25]

Method PLCC SROCC KROCC PLCC SROCC KROCC

BIQI [85] 0.468 0.296 0.207 0.302 0.294 0.206
BLIINDS-II [35] 0.521 0.490 0.342 0.553 0.534 0.379

BMPRI [86] 0.692 0.583 0.422 0.555 0.534 0.382
BRISQUE [36] 0.565 0.411 0.289 0.426 0.398 0.276

CurveletQA [37] 0.560 0.471 0.337 0.471 0.442 0.316
DIIVINE [38] 0.521 0.487 0.340 0.429 0.436 0.307
ENIQA [87] 0.596 0.545 0.385 0.637 0.641 0.466

GRAD-LOG-CP [69] 0.662 0.627 0.454 0.590 0.570 0.415
GWH-GLBP [70] 0.315 0.357 0.245 0.302 0.285 0.196

IL-NIQE [27] 0.516 0.456 0.317 0.588 0.630 0.453
NBIQA [88] 0.695 0.628 0.459 0.646 0.615 0.446
NIQE [26] 0.263 0.277 0.184 0.302 0.338 0.228

OG-IQA [71] 0.564 0.452 0.321 0.527 0.447 0.314
PIQE [89] 0.491 0.364 0.255 0.289 0.237 0.201

Robust BRISQUE [90] 0.487 0.315 0.218 0.375 0.301 0.209
SSEQ [91] 0.615 0.520 0.373 0.454 0.434 0.304

LFD-IQA-SVR 0.637 0.645 0.470 0.845 0.838 0.640
LFD-IQA-GPR 0.705 0.669 0.492 0.857 0.848 0.654

Table 5. Direct and weighted average of PLCC, SROCC, and KROCC performance metrics. The best
results are typed in bold, the second best results are underlined, and the third best results are typed
in italic.

Direct Average Weighted Average

Method PLCC SROCC KROCC PLCC SROCC KROCC

BIQI [85] 0.552 0.503 0.356 0.584 0.556 0.398
BLIINDS-II [35] 0.559 0.543 0.382 0.592 0.583 0.416

BMPRI [86] 0.633 0.591 0.413 0.647 0.623 0.434
BRISQUE [36] 0.590 0.541 0.384 0.615 0.582 0.417

CurveletQA [37] 0.638 0.605 0.414 0.658 0.633 0.431
DIIVINE [38] 0.610 0.590 0.407 0.631 0.618 0.424
ENIQA [87] 0.681 0.660 0.475 0.723 0.711 0.521

GRAD-LOG-CP [69] 0.670 0.656 0.465 0.691 0.678 0.491
GWH-GLBP [70] 0.545 0.539 0.377 0.588 0.578 0.403

IL-NIQE [27] 0.486 0.459 0.331 0.476 0.468 0.345
NBIQA [88] 0.709 0.678 0.477 0.734 0.710 0.495
NIQE [26] 0.295 0.325 0.218 0.292 0.340 0.229

OG-IQA [71] 0.603 0.553 0.408 0.629 0.590 0.442
PIQE [89] 0.274 0.222 0.160 0.255 0.221 0.159

Robust BRISQUE [90] 0.567 0.500 0.352 0.600 0.547 0.389
SSEQ [91] 0.578 0.541 0.392 0.598 0.577 0.421

LFD-IQA-SVR 0.758 0.749 0.554 0.807 0.799 0.596
LFD-IQA-GPR 0.786 0.765 0.573 0.827 0.811 0.616
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(a) (b)

(c)
Figure 8. Ground-truth scores versus predicted scores using the proposed LFD-IQA-SVR method on
(a) CLIVE [21], (b) KonIQ-10k [22], and (c) KADID-10k [25] test sets.

Table 6. Results of the two-sided Wilcoxon rank sum test. Symbol ‘1’ is used to denote that the
proposed method—LFD-IQA-SVR—is significantly better than the method in the row on the database
in the column.

Method CLIVE [21] KonIQ-10k [22] SPAQ [23] TID2013 [24] KADID-10k [25]

BIQI [85] 1 1 1 1 1
BLIINDS-II [35] 1 1 1 1 1

BMPRI [86] 1 1 1 1 1
BRISQUE [36] 1 1 1 1 1

CurveletQA [37] 1 1 1 1 1
DIIVINE [38] 1 1 1 1 1
ENIQA [87] 1 1 1 1 1

GRAD-LOG-CP [69] 1 1 1 1 1
GWH-GLBP [70] 1 1 1 1 1

NBIQA [88] 1 1 1 1 1
OG-IQA [71] 1 1 1 1 1

Robust BRISQUE [90] 1 1 1 1 1
SSEQ [91] 1 1 1 1 1
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(a) (b)

(c)
Figure 9. Ground-truth scores versus predicted scores using the proposed LFD-IQA-GPR method on
(a) CLIVE [21], (b) KonIQ-10k [22], and (c) KADID-10k [25] test sets.

Table 7. Results of the two-sided Wilcoxon rank sum test. Symbol ‘1’ is used to denote that the
proposed method—LFD-IQA-GPR—is significantly better than the method in the row on the database
in the column.

Method CLIVE [21] KonIQ-10k [22] SPAQ [23] TID2013 [24] KADID-10k [25]

BIQI [85] 1 1 1 1 1
BLIINDS-II [35] 1 1 1 1 1

BMPRI [86] 1 1 1 1 1
BRISQUE [36] 1 1 1 1 1

CurveletQA [37] 1 1 1 1 1
DIIVINE [38] 1 1 1 1 1
ENIQA [87] 1 1 1 1 1

GRAD-LOG-CP [69] 1 1 1 1 1
GWH-GLBP [70] 1 1 1 1 1

NBIQA [88] 1 1 1 1 1
OG-IQA [71] 1 1 1 1 1

Robust BRISQUE [90] 1 1 1 1 1
SSEQ [91] 1 1 1 1 1

In an other test, the generalization ability of the methods were examined. Namely, the
algorithms were trained on the entire KonIQ-10k [22] database used as a training set and
tested on the entire CLIVE [21] used as a test set. This process is called cross database test
in the literature [93]. The results of the cross database are shown in Table 8. In this test, the
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proposed methods are also the best performing ones. Namely, they are able to outperform
the state-of-the-art by a large margin.

Table 8. Results of the cross database test. The examined and the proposed methods were trained on
KonIQ-10k [22] and tested on CLIVE [21]. The best results are typed in bold, the second best results
are underlined, and the third best results are typed in italic.

Method PLCC SROCC KROCC

BIQI [85] 0.477 0.424 0.289
BLIINDS-II [35] 0.107 0.090 0.063

BMPRI [86] 0.453 0.389 0.298
BRISQUE [36] 0.509 0.460 0.310

CurveletQA [37] 0.496 0.505 0.347
DIIVINE [38] 0.479 0.434 0.299
ENIQA [87] 0.428 0.386 0.272

GRAD-LOG-CP [69] 0.427 0.384 0.261
GWH-GLBP [70] 0.480 0.479 0.328

NBIQA [88] 0.503 0.509 0.284
OG-IQA [71] 0.442 0.427 0.289

Robust BRISQUE [90] 0.516 0.481 0.327
SSEQ [91] 0.270 0.256 0.170

LFD-IQA-SVR 0.567 0.561 0.390
LFD-IQA-GPR 0.603 0.585 0.409

5. Conclusions

In this paper, a novel machine learning based NR-IQA method was introduced which
applies an innovative quality-aware feature extraction procedure relying on the statistics
of local feature descriptors. To be more specific, a sequence of HVS inspired filters were
applied to Y, Cb, and Cr color channels of an input image to enhance those statistical
regularities of the image to which the HVS is sensitive. Next, certain statistics of various
local feature descriptors were extracted from each feature map to construct a powerful
feature vector which is able to characterize possible image distortions from various points
of view. Finally, the obtained feature vector is mapped onto perceptual quality scores with
a trained regressor. The proposed method was compared to 16 state-of-the-art NR-IQA
methods on five large benchmark IQA databases containing either authentic (CLIVE [21],
KonIQ-10k [22], SPAQ [23]) or artificial (TID2013 [24], KADID-10k [25]) distortions. Specifi-
cally, the comparison involved the demonstration of three performance metrics on direct
database tests, significance tests, and a cross database test. As shown, the proposed method
is able to outperform significantly the state-of-the-art and provides competitive results.
Future work involves a real-time GPU (graphical processing unit) implementation of the
proposed method. Another direction of future research is to generalize the achieved results
to other types of image modalities, such as stereoscopic or computer-generated images.
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BRIEF binary robust independent elementary features
BRISK binary robust invariant scalable keypoints
CNN convolutional neural network
DCT discrete cosine transform
FAST features from accelerated segment test
FR full-reference
GPR Gaussian process regressor
GPU graphical processing unit
HVS human visual system
IQA image quality assessment
KADID Konstanz artificially distorted image quality database
KROCC Kendall rank order correlation coefficient
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NR no-reference
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