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Abstract: In low earth orbit (LEO) satellite-based applications (e.g., remote sensing and surveillance),
it is important to efficiently transmit collected data to ground stations (GS). However, LEO satellites’
high mobility and resultant insufficient time for downloading make this challenging. In this paper,
we propose a deep-reinforcement-learning (DRL)-based cooperative downloading scheme, which
utilizes inter-satellite communication links (ISLs) to fully utilize satellites’ downloading capabilities.
To this end, we formulate a Markov decision problem (MDP) with the objective to maximize the
amount of downloaded data. To learn the optimal approach to the formulated problem, we adopt
a soft-actor-critic (SAC)-based DRL algorithm in discretized action spaces. Moreover, we design a
novel neural network consisting of a graph attention network (GAT) layer to extract latent features
from the satellite network and parallel fully connected (FC) layers to control individual satellites of
the network. Evaluation results demonstrate that the proposed DRL-based cooperative downloading
scheme can enhance the average utilization of contact time by up to 17.8% compared with independent
downloading and randomly offloading schemes.

Keywords: deep reinforcement learning (DRL); soft actor-critic (SAC); low earth orbit (LEO) satellite;
graph attention network (GAT)

1. Introduction

With the global coverage of satellite networks and the development of communi-
cation technologies, a wide range of applications, including data collection and remote
sensing [1–3], surveillance [4], and global broadband Internet access [5], are emerging.
In particular, unlike geostationary earth orbit (GEO) satellites and medium earth orbit
(MEO) satellites, which are located at altitudes of about 36,000 km and 2000∼36,000 km,
respectively, low earth orbit (LEO) satellites are located at altitudes of 500∼2000 km and
can guarantee better signal quality and lower propagation delay [6]. Therefore, they are per-
ceived as an attractive platform for edge computing [7–9] and a key enabler for ubiquitous
5G and 6G services [10].

In remote sensing and surveillance applications as major applications of LEO satellite
networks, when LEO satellites meet ground stations (GSs), they need to transmit collected
data to GSs (i.e., download) for further data processing or delivery. Unlike GEO satellites’
relatively stationary mobility from the point of view of a GS, LEO satellites orbit the
earth with high mobility. This mobility of LEO satellite imposes the following unique
characteristics. First of all, the amount of transmittable data of a LEO satellite highly
depends on its contact time with GS, which is determined by its orbit. In addition, the
type and the amount of the retaining data of the LEO satellite are highly affected by its
trajectory. For example, a satellite that has passed through deserts or suburbs will likely
have a smaller amount and less important types of data compared with those that have
passed urban areas. In addition, a satellite can collect more important data when it rotates
its orbit during the daytime than the night time.
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To deliver data efficiently for a given time, there have been studies on data compression
for satellite networks [11,12]. However, in these studies, loss of original data is inevitable
owing to the compression process, and they require additional resources and time for
the compression and decompression processes. Meanwhile, ref. [13–15] investigated sum
rate maximization problems. Dong et al. [13] considered an integrated terrestrial–satellite
network aided by an intelligent reflecting surface (IRS), which is a promising technology
for satellite communications in terms of security [16], energy saving [17], and performance
improvement [18] by making incoming signals constructive or destructive by shifting
phases. They proposed an iterative algorithm with the objective to maximize the weighted
sum rate of all users. Khan et al. [14,15] tackled the spectrum scarcity issue in LEO satellites,
and they proposed a cognitive-radio (CR)-enabled satellite network using the rate splitting
multiple access (RSMA) technology, where GEO and LEO satellites work as primary and
secondary nodes, respectively. They also formulated a joint problem of user association
and beam resource management for LEO satellites and proposed a greedy algorithm
with relaxation techniques. However, they only considered a single LEO satellite; no
communications links between LEO satellites were considered.

On the other hand, refs. [19–21] investigated data-transmission scheduling problems.
Castaing et al. [19] proposed a greedy data -scheduling algorithm for satellite networks
consisting of multiple satellites and GSs. Wang et al. [20] formulated an integer linear pro-
gramming (ILP) problem using a graph considering the resources of satellites and proposed
an iterative algorithm for maximizing the sum of successfully scheduled tasks’ priorities.
He et al. [21] formulated a joint optimization problem of observation and transmission for
agile earth-observing satellite networks and proposed a semi-definite relaxation method
and genetic algorithm. However, the above-mentioned studies were unable to resolve the
issue of the under-utilization of communication resources when the satellites with sufficient
contact time do not have a plenty of data.

Recently, inter-satellite communication-link (ISL)-utilizing cooperative downloading
approaches have been also investigated to maximize throughput and solve the resource-
under-utilization issue [22–24]. They leveraged data offloading through ISLs to distribute
an appropriate amount of data to each satellite. Jia et al. [22] constructed a graph reflecting
the states of satellite-to-ground communication links (SGLs) and ISLs, and then proposed
an iterative algorithm adjusting the download time and the offloading data volume of
each satellite. Zhang and Zhou [23] proposed an iterative algorithm considering the energy
efficiency of satellites as well as data throughput. He et al. [24] constructed a task flow
graph and formulated an ILP problem to maximize the amount of offloaded tasks, which
was solved by a genetic algorithm. Even though the use of ISLs is promising for data
download services, the previous works assumed relatively stationary environments in that
all states are known in advance and unchanged while applying iterative algorithms.

Meanwhile, in modern networks that are increasingly complex and expanding hor-
izontally/vertically, deep-reinforcement-learning (DRL)-based optimization, which can
guarantee high performance with low complexity, has received great attention [25]. In
particular, its utility has been proven in dynamic networks such as vehicular networks [26]
and aerial networks [27]. Along with these successful applications, DRL has also been con-
sidered as a promising approach for satellite networks [28–31]. Wang et al. [28] proposed a
DRL-based handover scheme for highly dynamic LEO satellite networks. Tang et al. [29]
proposed a resource management scheme based on DRL to guarantee QoS for large-scale
satellite-supported remote Internet-of-things (IoT) networks. Huang et al. [30] proposed a
DRL-based power allocation scheme for an RSMA-applied 6G LEO system. Yoo et al. [31]
investigated a federated learning (FL)-combined DRL system for UAV/LEO satellites to
efficiently provide communication resources for ground nodes. However, there has not
been a DRL-based cooperative downloading scheme for satellite networks.

In this paper, we try to maximize the amount of the downloaded data of satellite
networks where multiple LEO satellites and their ISLs are considered. To this end, we
formulate the cooperative downloading problem as a Markov decision problem (MDP) with
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the objective to maximize the amount of downloaded data to GS. To solve the formulated
problem, we adopt a soft-actor-critic (SAC)-based DRL algorithm for discretized action
space to learn the dynamics of satellite networks and train the optimal policy. For SAC-
based training, we design a novel neural network consisting of (1) a graph attention
network (GAT) at the input layer to aggregate graph-oriented network states and (2)
parallel fully connected (FC) layers at the output layer to control the individual behaviors
of satellites. Evaluation results show that the proposed scheme can enhance the average
contact time utilization by up to 17.8% compared with independent downloading and
randomly offloading schemes, even when initial data distributions are highly biased.

The contributions of this paper can be summarized as follows: (1) owing to the high
dynamics (e.g., mobility, transmission rate, and trajectory) of LEO satellites, it is quite
complex to find the optimal policy for cooperative downloading using conventional ap-
proaches. Thus, we introduce the use of DRL to solve the problem, which is a promising
approach since high-performance servers are planned to be put into orbits [32]. To the
best of our knowledge, this is the first DRL work for cooperative downloading in satellite
networks; (2) by means of the SAC algorithm for the discretized action space and the neural
network design including GAT and parallel FC layers, the proposed DRL-based cooperative
downloading framework can effectively learn the dynamics of LEO satellite networks and
the optimal policy; and (3) the presented evaluation results provide meaningful insight for
future mega-constellations.

The rest of the paper is organized as follows. The system model of LEO satellite
networks is described in Section 2. The MDP problem is formulated and the proposed
cooperative download scheme is presented in Section 3. The evaluation results and the
concluding remarks are given in Sections 4 and 5, respectively.

2. System Model

Figure 1 shows a system model considered in this paper. LEO satellites collect data
while traveling along their assigned orbits and contact GSs in a specific area. During
the contact time, satellites can download data to GSs through SGLs. Since all satellites
have different amounts of data and contact times according to their trajectories, there
could be (1) over-burdened satellites that retain excessive amounts of data and (2) under-
utilized satellites that have spare contact time to GS. In these situations, ISL can be utilized
eventually download more data. For example, an over-burdened satellite A can offload its
data to an under-utilized satellite B through ISL. After that, the under-utilized satellite B
can deliver the received data to the GS during its contact time.

We consider a set of GSs, K = {k1, k2, ..., kK}, and define the two-dimensional Cartesian
coordinates (i.e., xy-coordinate) of GS k ∈ K with altitude 0 as pk = (xk, yk). We also
consider a set of LEO satellites, L = {l1, l2, ..., lL}. We assume that all satellites have the
same and unvarying altitudes h during an episode T = {1, 2, ..., T}, and define the xy-
coordinate of satellite l ∈ L at time slot t ∈ T as pl(t) = (xl(t), yl(t)).

For simplicity, we assume that SGLs/ISLs can be established when GSs and satellites
are within a certain distance each other. Specifically, satellite l can deliver data to GS k
through SGL if their Euclidean distance dlk(t) = |pl(t)− pk|2 ≤ dSGL

th , where | · |2 denotes
L2 norm and dSGL

th is the maximal distance for SGL. Similarly, satellite l can offload data
to another satellite l′ through ISL when the Euclidean distance dll′(t) = |pl(t)− pl′(t)|2 ≤
dISL

th , where dISL
th is the maximal distance for ISL. We also assume that satellites can transmit

one data unit at each time slot, and SGL/ISL have the same data rates, as in [22].
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Figure 1. System model.

3. Deep-Reinforcement-Learning-Based Cooperative Downloading Scheme

In this section, we propose a DRL-based cooperative downloading scheme. We first
explain the overview of the scheme, and formulate the cooperative downloading problem
as MDP. After that, we describe a discretized SAC-based training algorithm to train the
optimal policy.

3.1. Overview

To maximize the amount of downloaded data, all of the satellites have to fully utilize
their contact times with GSs. However, satellites have different amounts of data and contact
times according to their trajectories. Although ISL can be utilized to overcome mismatches
between their contact time and retaining data, the high mobility of LEO satellites and its
impacts on the dynamic formation of ISL/SGL make it more challenging. In this regard,
we formulate MDP to obtain the optimal policy, which makes LEO satellite networks take
the optimal decision regarding whether to offload or download data depending on the
currently observed network state information, which ultimately leads to maximizing the
amounts of downloaded data.

Figure 2 shows the overall DRL-based cooperative downloading framework, which is
composed of LEO satellite network environments and an SAC agent with an actor network
to approximate the optimal cooperative downloading policy and critic networks to evaluate
the policy. At the beginning of every time slot, the SAC agent defines a state with currently
observed network state information from the network environments as a graph. The SAC
agent then utilizes the actor network to map the state into an action and controls the
environments with the action. Its corresponding results are observed as a reward and a
transition of the state (i.e., next state). The SAC agent stores all of this information (i.e., a
tuple (state, action, reward, next state)) as an experience to the experience buffer. At the end
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of each time slot, the agent samples a mini-batch of a few experiences from the experience
buffer and calculates losses to train the optimal policy. The detailed procedure is elaborated
in Section 3.3.

Figure 2. DRL-based cooperative downloading framework.

Meanwhile, the actor and critic networks follow identical neural network designs as
shown in Figure 3, which consists of (1) an input layer with GAT [33], (2) hidden layers
with FC layers, and (3) output layers with parallel FC layers. At the input layer, GAT, which
is one of the graph convolutional networks, is adopted to efficiently process graph-oriented
network states. It propagates the feature vector of each node to neighboring nodes and
aggregates received vectors with an attention mechanism. After that, latent features of the
graph-based states are extracted while maintaining the relationship between nodes. The
following FC layers of hidden layers merge the extracted latent features obtained from each
node and extract hidden features with respect to the entire graph. Lastly, in the output layer,
each of |L| parallel FC layers maps the hidden features into logit for each LEO satellite. In
the case of the critic network, the logit is utilized as soft-Q values. Meanwhile, for the actor
network, it is mapped into the action probabilities by applying a softmax function.

Figure 3. Neural network designs.
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3.2. MDP Formulation

To obtain the optimal cooperative downloading policy maximizing the amount of
downloaded data from satellites to GS, we formulate an MDP consisting of state, action,
and reward.

3.2.1. State

The current state of satellite networks should represent the amount of retaining data
and connection information of satellites. First of all, to effectively capture the topological
relationship, a satellite network is represented as an undirected graph G = (V , E), where
V = L∪K denotes a set of entire nodes in the satellite network and E =

{
(vi, vj)|vi, vj ∈ V

}
denotes a set of entire links. The time-varying feature of nodes and the shape of the
graph are determined by a feature matrix F(t) ∈ R|V|×(1+2|V|) and an adjacency matrix
A(t) ∈ R|V|×|V|, respectively. Specifically, each row of the feature matrix represents a
feature vector of each node. The feature vector Fv(t) of node v ∈ V is defined as

Fv(t) =
[
mv(t)||c0

v(t)||c1
v(t)

]
∈ R(1+2|V|), (1)

where ·||· denotes the concatenation symbol and mv(t) ∈ R represents the amount of
retaining data. c0

v(t) ∈ R|V| denotes the remaining time until the contact with all other
nodes begins, and c1

v(t) ∈ R|V| denotes the remaining time until the contact with all other
nodes is terminated. Note that, as satellites follow their assigned orbits, it is easy to obtain
such contact information of satellites [22]. The adjacency matrix A(t) is symmetric, and
its element Aij(t) ∈ {0, 1} represents whether there is a link between node vi and node vj,
which can be defined as

Aij(t) =


1, if vi, vj ∈ L and dij(t) ≤ dISL

th
1, if vi ∈ L, vj ∈ K, and dij(t) ≤ dSGL

th
0, otherwise.

(2)

Finally, the state st is defined with the above-mentioned feature matrix and adjacency
matrix as follows

st = {F(t), A(t)}. (3)

3.2.2. Action

at represents a set of actions that are performed by LEO satellites at time slot t, which
is given by

at = {al(t)|l ∈ L}, (4)

where al(t) ∈ V represents the destination of the data of satellite l. For example, if
al(t) = l′ ∈ L\{l}, satellite l attempts to transmit to another satellite l′ through ISL. On the
other hand, if al(t) = k ∈ K, satellite l attempts to download to GS k through SGL.

3.2.3. Reward

According to the current state and the set of selected actions, the agent controls
LEO satellites and receives an instantaneous reward. To obtain more rewards, we need
to maximize the total amount of downloaded data during an episode. Let nD

l (t) be the
amount of downloaded data of satellite l ∈ L at time slot t. We assume that each satellite
can transmit one data unit at each time slot. To transmit data to GS, satellite l has to have
sensory data and its selected action needs to indicate one of the adjacent GSs. Therefore,
nD

l (t) can be expressed as

nD
l (t) = δ[al(t) = k, Alk(t) = 1, and ml(t) ≥ 1], k ∈ K, (5)
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where δ[·] denotes the delta function that returns 1 if the conditions in brackets are true;
otherwise, it returns 0.

Meanwhile, we need to avoid meaningless data exchange between satellites, which
also affects the reward. Let nO

l (t) be the amount of offloaded data of satellite l ∈ L at time
slot t. Satellite l can offload data only when it has data and its selected action refers to one
of the adjacent satellites. Therefore, nO

l (t) can be expressed as

nO
l (t) = δ[al(t) = l′, All′(t) = 1, and ml(t) ≥ 1], l′ ∈ L\{l}. (6)

To summarize, the instantaneous reward rt:=r(st, at) at time slot t can be defined as

rt = ∑
l∈L
{nD

l (t) + λ · nO
l (t)}, (7)

where λ≤0 denotes the weight of the offloading data.

3.3. Discretized SAC-Based Learning Algorithm

To train the optimal cooperative downloading policy to maximize the amount of
downloaded data, we adopt the SAC-based algorithm [34]. The SAC algorithm includes
an entropy term in the training objective function that evaluates the policy and trains it to
maximize not only the accumulated reward but also the entropy.

We first define an actor network πφ(·) with parameter φ, main critic networks Qθi

with parameters θi, and target critic networks Qθ̂i
with parameters θ̂i for i ∈ {1, 2}. The

detailed procedure of the SAC-based algorithm is shown in Algorithm 1. First, the algorithm
initializes the experience experience buffer D, the weight α, and the parameters (i.e., φ,
θi, and θ̂i for i ∈ {1, 2}) (see lines 1–5 in Algorithm 1). For each episode, the algorithm
observes the initial state st (see line 7 in Algorithm 1). In addition, in each time slot t, the
algorithm generates an action at by using the actor network, i.e., at = πφ(st) (see line 9
in Algorithm 1), and observes the next state st+1 and the reward rt after executing the
action at (see lines 9–11 in Algorithm 1). As a result, the algorithm stores the experience
(st, at, rt, st+1) at the experience buffer D (see line 12 in Algorithm 1).

Algorithm 1 Discretized soft-actor-critic algorithm.

1: Initialize the experience buffer D
2: Initialize the weight α with 1
3: Initialize the actor network πφ with random parameter φ
4: Initialize main critic networks Qθi with random parameters θi for i ∈ {1, 2}
5: Initialize target critic networks Qθ̂i

with parameters θ̂i as main critic networks Qθi

6: for each training episode do
7: Observe initial state st
8: for each step t = 1, 2, ..., T do
9: Generate the action at = πφ(st)

10: Execute the action at
11: Observe the next state st+1 and the reward rt
12: Store the experience (st, at, rt, st+1) at the experience buffer D
13: Sample a mini-batch D̄ of a few experiences from the buffer D
14: Calculate the target state value Vθ̂(s

′) based on Equation (9)
15: Update the main critic network Qθi based on the gradient∇θi JQ(θi) in Equation (10)
16: Update the actor network πφ based on the gradient ∇φ Jπ(φ) in Equation (12)
17: Update the weight α based on the gradient ∇α J(α) in Equation (13)
18: For every B steps, use soft update for the target critic networks based on Equation (14)
19: end for
20: end for
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Now the algorithm enters into the parameter update phase. To this end, the algorithm
randomly samples a mini-batch D̄ of a few experiences from the buffer D (see line 13 in
Algorithm 1). Based on these sampled experiences, the algorithm calculates the target state
value Vθ̂(s

′) as

Vθ̂(s
′) = Eã′∼πφ(s′)

[
Qmin

θ̂
(s′, ã′)− α log (πφ(s′))

]
, (8)

where s′ denotes the next state of a tuple (s, a, r, s′) ∈ D̄, which is one of the mini-batch
samples and ã′ denotes an action obtained from s′ and the actor network πφ(·). In addition,
Qmin

θ̂
(s′, ã) represents the minimum value between Qθ̂1

(s′, ã) and Qθ̂2
(s′, ã). Note that the

generated actions by the cooperative downloading policy should be the indices for GSs
or adjacent LEOs receiving the data. That is, the policy should be defined over a discrete
action space, and, therefore, we adopt an SAC parameter update algorithm considering
discrete action spaces [35]. Specifically, the output layers of neural networks are organized
with |L| FC layers in parallel so that each layer corresponds to each satellite, and the output
size of each layer is set as |V| so that each output corresponds to the discretized action
space. These network designs allow the actor and critic networks to map their states into
the action probabilities and Q-values, respectively. Consequently, the expectation operation
in (8) can be replaced with the direct output of the actor network without deriving any
action probability density function. That is, the target state value in the discretized action
spaces can be computed as (see line 14 in Algorithm 1)

Vθ̂(s
′) = πφ(s′)>

(
Qmin

θ̂
(s′, ·)− α log

(
πφ(s′)

))
. (9)

Note that the transformed critic networks Qmin
θ̂

(s′, ·) do not require the action a′ as an
input. This is because the critic networks generates soft Q-values over selectable actions
directly. Based on the target state value, the algorithm updates the main critic networks
(see line 15 in Algorithm 1) with a gradient

∇θi JQ(θi) = ∇θiE(s,a,r,s′)∼D̄

[
1
2
(
Qθi (s, a)−

(
r + ψEs′

[
Vθ̂(s

′)
]))2

]
. (10)

Furthermore, the algorithm updates the actor network with a gradient

∇φ Jπ(φ) ≈ ∇φEs∼D̄[Eã∼πφ(s)[α log(πφ(s))−Qmin
θ (s, ã)]]. (11)

By the same discretization, the inner expectation of (11) can also be calculated directly,
and, thus, (11) can be rearranged as

∇φ Jπ(φ) ≈ ∇φEs∼D̄[πφ(s)>(α log(πφ(s))−Qθ(s, ·))]. (12)

Then, the algorithm updates the actor network accordingly (see line 16 in Algorithm 1).
Additionally, the weight α is automatically adjusted as the training progresses (see

line 17 in Algorithm 1), with a gradient

∇α J(α) = ∇απφ(s)>
(
−α
(
log (πφ(s)) + Ĥ

))
, (13)

where Ĥ denotes the target entropy.
Finally, the algorithm updates the target critic networks with the main critic networks

by using an exponentially moving average (i.e., soft update) for every B steps (see line 18
in Algorithm 1) as

θ̂i = τ · θi + (1− τ) · θ̂i, i ∈ {0, 1}, (14)

where τ denotes a coefficient for the soft update.
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4. Performance Evaluation

For performance evaluation, we compare the proposed scheme, DRL-CD, with the
following schemes: (1) RANDOM, where each LEO satellite makes offloading decisions
randomly until it begins to contact GS, and (2) No-COOP, which does not support any
ISL offloading.

We assume that the altitude of satellite is 1150 km and consider a target area of
7800 × 4500 ×1150 (km3) in which one GS is deployed at the center of the area as shown
in Figure 4. At the beginning of each episode, we generate random orbits that intersect
around GS to prevent satellites from passing through the target area without any contact.
The elevation angle of GS is set to 35◦, resulting in the maximal SGL distance (denoted
by dSGL

th ) of 1230 km [36]. In addition, dISL
th is set to 1865 km, which can be computed based

on the maximum distance between two satellites that move along adjacent planes within
one constellation. When the inclination of the constellation is 53◦ and the difference in the
right ascension of the ascending nodes of the two satellites is 8◦, the maximum distance
is 1865 km [37]. The bandwidths of SGL and ISL are set to 33 MHz in the C-band of
5.1–5.2 GHz and 16.5 MHz in the L-band of 6.2–6.5 GHz, respectively [22].

We composed the input layer, the hidden layers, and the output layers of the DNN
with 1 GAT layer, 4 FC layers, and |L| paralleled FC layers, respectively. Other simulation
parameters are summarized in Table 1.

The optimal cooperative downloading policy allows data to be distributed to satellites
to fully utilize satellites’ contact time and maximize the amount of downloaded data.
To quantify the distribution of data that satellites initially retain, the G-fairness index is
defined as

I(m) = ∏
l∈L

sin
(

π ·ml
2 ·max (m)

)
, (15)

where m = {ml |l ∈ L} denotes a set of initial amounts of data that satellites retain [38].
If each LEO satellite has comparable amounts of data (i.e., the total amount of data is
distributed in a balanced manner over the satellites), I(m) is close to 1; otherwise, it is
close to 0. At the beginning of every episode, the total amount of initial data is set as the
sum of the maximally downloadable data of each trajectory and distributed to satellites
according to I(m).

Table 1. Parameters.

Parameter Value

Neurons of each hidden layer 512

Neurons of each output layer number of satellites + number of GSs

Batch size 128

Replay buffer size 1,000,000

Learning rate 3 × 10−4

Discount rate 0.99

Optimizer Adam

Target entropy 0.98 ∗ log (number of satellites)

Weight for offloading (λ) −0.3

Soft update cycle (B) 2

Coefficient for soft update (τ) 5 × 10−3
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Figure 4. Illustration of a simulation environment.

4.1. Effect of Initial Data Distribution

Figure 5 shows the effect of the G-fairness index on the average utilization of the
contact time with GS. We consider three LEO satellites and evaluate their performance with
the average results when the orbits of 100 episodes are randomly generated. From Figure 5,
it can be found that the contact time utilization decreases as the G-fairness index decreases
(i.e., the initial data distribution is biased). This is because biased data distributions require
more time to offload data from over-burdened satellites to under-utilized ones. Moreover,
it is difficult to guarantee sufficient offloading time in dynamic satellite networks.

Figure 5. G-fairness index vs. average contact-time utilization.
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It can be also seen that DRL-CD always exhibits higher contact-time utilization than
other schemes. Specifically, in the case of balanced data distributions (i.e., I(m) = 0.9),
DRL-CD utilizes the contact time 16.4% and 8.2% more efficiently than RANDOM and
No-COOP, respectively. Meanwhile, for biased data distributions (i.e., I(m) = 0.1), DRL-
CD shows improved contact-time utilization by 15.2% and 17.8% compared to RANDOM
and No-COOP, respectively. This is because DRL-CD can successfully train the cooperative
downloading policy that makes all satellites offload appropriate amounts of data and
efficiently utilize the given contact time regardless of the initial data distribution.

4.2. Effect of Number of Satellites

Figure 6 shows the effect of the number of LEO satellites on the average contact-time
utilization when 100 episodes are randomly generated and the G-fairness index is set to 0.2
or 0.8. From Figure 6, it can be found that the average contact-time utilization generally
increases as the number of satellites increases. For example, in case of highly biased data
distributions (i.e., I(m) = 0.2), the contact-time utilizations of DRL-CD, RANDOM, and
No-COOP increase by 21.4%, 11.5%, and 18.4%, respectively, when the number of LEO
satellites is changed from 2 to 5. This is because the amount of downloaded data in the
cooperative downloading highly depends on the contact time not only with GS but also
with other satellites. The higher the number of satellites, the higher the probability of
providing opportunities for ISL offloading, which allows more data to be offloaded from
over-burdened satellites to under-utilized ones. Consequently, DRL-CD becomes more
effective by deploying more LEO satellites, which is promising since more and more LEO
satellites will be launched in the future.

Figure 6. Number of satellites vs. average contact-time utilization.

5. Conclusions

In this paper, we proposed DRL-based cooperative downloading for LEO satellite
networks. We first modeled the satellite networks as a graph to capture the generalized
network states and formulated the MDP problem for cooperative downloading. To solve
the formulated problem, we adopted the SAC-based training algorithm for discrete action
space and design neural networks. Evaluation results show that the proposed DRL-based
cooperative downloading scheme can guarantee higher utilization of satellites’ contact time
by up to 17.8% compared with other schemes. We adopted a centralized reinforcement
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learning assuming all the network state information (i.e., channel state information of
all the links and satellites states) can be observed at the centralized agent. However, it is
challenging to collect network-wide observations, as LEO satellites have high mobility
and follow their own orbits. To address this issue, in our future work, we will extend
our scheme to include multi-agent reinforcement learning in which each satellite operates
as an agent, trains the optimal policy with few or minimal data exchanges, and makes
decisions only with locally observable network state information. In addition, IRS is a
promising technology to improve routing, link performances, and energy efficiency in
multi-layer satellite networks. Thus, we will consider IRS-assisted download services in
our future work.
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