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Abstract: The diagnosis of an inter-turn short circuit (ITSC) fault at its early stage is very important
in permanent magnet synchronous motors as these faults can lead to disastrous results. In this paper,
a multiscale kernel-based residual convolutional neural network (CNN) algorithm is proposed for
the diagnosis of ITSC faults. The contributions are majorly located on two sides. Firstly, a residual
learning connection is embedded into a dilated CNN to overcome the defects of the conventional
convolution and the degradation problem of a deep network. Secondly, a multiscale kernel algorithm
is added to a residual dilated CNN architecture to extract high-dimension features from the collected
current signals under complex operating conditions and electromagnetic interference. A motor fault
experiment with both constant operating conditions and dynamics was conducted by setting the
fault severity of the ITSC fault to 17 levels. Comparison with five other algorithms demonstrated the
effectiveness of the proposed algorithm.

Keywords: multiscale architecture; fault diagnosis; inter-turn short circuit (ITSC) fault; permanent
magnet synchronous motors (PMSM); dilated convolutional neural networks (CNN)

1. Introduction

Owing to the advantages of high efficiency, high power density, and excellent torque
control performance, permanent magnet synchronous motors (PMSMs) have been widely
applied in various applications, such as domestic appliances, wind power generators, and
electric vehicles [1]. With the diversity of applications, the reliability of the PMSM has
gradually attracted more attention. The motor faults would lead to unexpected shutdown or
even catastrophic consequences, especially in systems with high-security requirements [2].
Thus, to avoid disastrous results, the fault diagnosis of PMSM is crucial for system safety.

As one of the most common faults in PMSM, the stator winding inter-turn short circuit
(ITSC) fault is usually hard to identify [3]. Moreover, without timely and appropriate
management, the PMSM runs into a severe short circuit fault or even an open circuit
fault [4]. The ITSC fault is formed by winding insulation failure, which is usually caused by
overcurrent, thermal stress, mechanical stress, and aging [5]. When an ITSC fault happens,
the shorted point forms an extra circuit connection, which is parallel with the fault-winding
phase and coupled with other windings and rotor magnets, through flux linkages [6]. Then,
an overcurrent is generated in the fault winding, causing a large amount of additional heat
generated by ohmic losses, which can further intimidate the adjacent wires or even melt
them down. As a consequence of the above description, in some cases, even a slight ITSC
fault can quickly expand to neighboring wires, so that a slight fault easily develops into
a critical one [7]. Therefore, it is very important to detect and manage an ITSC fault at its
early stage.

Traditional machine learning fault diagnosis algorithms, such as artificial neural net-
works (ANN) and support vector machines (SVM), are usually used in conjunction with
characteristic acquisition methods, as they commonly have difficulties in extracting compli-
cated features [8,9]. Characteristic acquisition methods can convert the collected original
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signals into low dimensional characteristic vectors, which are comparatively constant with
regard to conversions and deformations, making them easy to match. Most conventionally
used characteristic acquisition methods, such as fast Fourier Transform (FFT), short-time
Fourier Transform (STFT), wavelet transform (WT), Hilbert-Huang transform (HHT), em-
pirical mode decomposition (EMD), and Wigner-Ville distributions, etc., are all widely
adopted in motor fault diagnosis [10–13]. The quality of the acquired characteristics from
the signals to be detected has a great influence on the performance of traditional machine
learning algorithms.

Motors are becoming increasingly complex and diverse, which makes the selection
of fault features for each type of motor particularly time-consuming. Besides, the config-
uration of the features acquisition algorithm requires relevant prior knowledge, which
is highly targeted to different tasks, so it also consumes a lot of time [5]. On the other
hand, with the development of sensor technology, the acquisition of data is becoming easier
and easier. Therefore, traditional fault diagnosis methods are being revisited from the
perspective of big data [14]. Currently, the usage of deep learning algorithms has led to a
range of breakthroughs in the research of motor fault diagnosis thanks to the fascinating
peculiarity that they can acquire high-level and hierarchical representations from huge
original data straight away [15]. Recurrent neural networks (RNN), deep belief networks
(DBN), convolutional neural networks (CNN), and sparse autoencoders (SAE) are favorite
deep learning algorithms adopted in different fault diagnosis studies [16]. In [17,18] a
new deep SAE algorithm was proposed to help to enhance the performance of the deep
network by studying the related structure and configurational connection information
among different fault states. Lee et al. combined RNN with an attention mechanism to
realize the fault degree estimation of an ITSC fault [19]. Liu et al. proposed an RNN-
based autoencoder algorithm to do the bearing fault detection of the motor [15]. Shao
et al. proposed an improved convolutional DBN algorithm embedded with a compressive
sensing mechanism to implement single and compound faults diagnosis using vibration
signals [20]. Ince et al. proposed a one-dimensional (1-D) CNN algorithm to realize online
bearing fault diagnosis only using simple CNN configurations [21]; although the method
can only diagnose whether there is a fault or not. Lee et al. adopted 1-D CNN to acquire
fault characteristics from current signals of a PMSM, accomplishing fault diagnosis of the
demagnetization and ITSC faults simultaneously. Some other fault diagnosis studies also
benefit a lot from deep learning algorithms [22].

Although studies on fault diagnosis using deep learning algorithms have yielded
significant results, there has been little research on early fault diagnosis, let alone the early
fault diagnosis of the ITSC fault. Early fault diagnosis is rather important in ITSC faults as
the fault overcurrent and overheating can bring about more serious problems. Few studies
have focused on the severity estimation of the ITSC fault, which has great significance in
guiding the safe operational field of the motor. In addition, the adopted current signals are
normally long 1-D signals, which are greatly affected by electromagnetic interference and
change with operating conditions. Thus, the realization of ITSC fault diagnosis requires
extracting deeper and higher dimensional features from collected current signals, especially
for those working under dynamic operating conditions [23,24]. Meanwhile, if deep net-
works are adopted to diagnose the ITSC fault, deep 1-D network architectures are required
to extract features from the complex current signals. However, tests reveal that when deep
networks start to converge, a difficulty is exposed because, as increase of network depth
occurs, the performance of the network tends to saturate or even decline, which is different
from overfitting [25]. On the other hand, generally, the input data of deep networks are pro-
cessed on a specific scale, which is caused by the specific single-scale convolutional kernel,
or constant pooling size, whereas motors are usually working under dynamic conditions,
which makes collected signals time-varying [26]. What is more, applying a conventional
CNN in time-series signal missions is also a challenge because they can only look back on
history with linear size, which greatly limits the use of CNN for missions demanding longer
histories [27]. Hence, although conventional CNN is a valuable tool for data analysis, it is
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less efficient regarding time-series signals, especially time-varying signals. Furthermore,
the performance of deep networks depends enormously on the amount and distribution of
the data set [28]. To enhance the performance of deep networks the data set should cover
enough working area and fault conditions, particularly those under dynamic operating
conditions, which has been less emphasized in much research. Finally, as the data set
increases, the hyperparameter tuning of the deep network consumes lots of time, especially
for people who are not familiar with hyperparameter tuning. Therefore, how to speed up
the whole process of hyperparameter tuning is also an essential task to be resolved.

To address the aforementioned problems, a multiscale residual dilated CNN archi-
tecture is proposed in this article for the ITSC fault diagnosis of the PMSM. The key
contributions of this article are concluded as below:

(1) A well-designed deep learning network, termed multiscale residual dilated CNN,
is proposed for the early-stage severity estimate of ITSC in a PMSM. In multiscale
residual dilated CNN, multiscale dilated CNN is used to capture features from huge
raw current signals in various scales, which enhances the characterization ability of
captured features and the robustness of the network, even under dynamic operat-
ing conditions. In addition, the dilated CNN can extend the receptive field of the
deep network at an exponential level. Moreover, the residual connection architec-
ture is adopted to solve the performance degradation problem, making rather deep
networks possible.

(2) The Bayesian optimization algorithm is adopted to settle the hyperparameter tuning
problem, which means the tuning process can be automated. What is more, the use
of the Bayesian optimization algorithm suggests that comparisons between differ-
ent methods becomes objective, as the tuning of hyperparameters is implemented
automatically.

(3) The proposed algorithm has the advantage that it can extract features and diagnose
faults from the huge raw current signals without the operating of signal processing,
as it belongs to CNN. This also indicates that the relevant learning time of prior
knowledge of fault characteristics can be saved.

(4) The proposed algorithm is validated by a motor fault experiment with both constant
operating conditions and dynamic operating conditions. The result is compared with
five other diagnosis algorithms to exhibit the advantages of the proposed algorithm.

The rest of this paper is arranged as follows. Section 2 derives an index to instruct the
severity settings for ITSC faults. Section 3 explains the whole structure and components of
the proposed algorithm. The experimental setup, severity setting of the ITSC fault, and
data set description are described in Section 4. In Section 5, the proposed algorithm and five
other deep learning algorithms are adopted to diagnose the same experimental test data
set, which exhibits the effect and superiority of the proposed algorithm. Lastly, Section 6
concludes this paper and gives an outlook on the next steps.

2. ITSC Fault in PMSM

The detection of ITSC faults is very important as an overcurrent and overheating can
lead to more serious problems. In previous studies, no index has been especially well-suited
for guiding the early-stage fault severity setting of an ITSC fault. In this paper, an index is
proposed for guiding the severity setting of the ITSC fault experiment.

A cross-sectional view of a PMSM with an ITSC fault is shown in Figure 1a. The motor
is a concentrated winding structure with 8 poles and 36 slots. Wherever the shorting point
occurs in the coil, the wires in the corresponding slots are shorted accordingly, as shown by
the red wires in Figure 1a. The Pc-t represents the unique numbering of every wire in one
slot. Take A1-3, for example, it represents the third turn of wire in the first coil within phase
A. Assuming the ITSC fault occurs in the first coil of phase A, the equivalent circuit model
is shown in Figure 1b. When the fault occurs, an additional circuit that is in parallel with
the fault windings of the same phase is formed. According to Figure 1b, the equivalent
circuit model can be described as follows.
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Figure 1. (a) Cross section of 8-pole-36-slot PMSM with an inter-turn short fault in coil a1. (b) Equiv-
alent circuit model of inter-turn short fault in coil A1.

va, vb, and vc denote the phase voltage. vN denotes the voltage of the neutral point.
Ra, Rb, and Rc denote the phase resistance. Laa, Lbb, and Lcc denote the inductance of phase
A, phase B, and phase C respectively. Mab, Mbc, and Mca denote the mutual inductance
between phase A, phase B, and phase C. The value µ denotes the shorted turn ratio, which
indicates the ratio of shorted turns Nc to the total number of turns Np in one phase. Rf



Sensors 2022, 22, 6870 5 of 23

denotes the contact resistance between the shorted turns, ia, ib, and ic denote the phase
current, if denotes the fault current in the shorted path, and λ denotes the amplitude of the
permanent magnet flux linkage. It can be seen from the model that the severity of the ITSC
fault is influenced by the fault resistance Rf and the shorted turn ratio µ.

According to Kirchhoff’s current law, the relationship of the currents that flow through
the neutral point of the winding can be expressed as:

ia + ib + ic = 0 (2)

Combining (1) and (2), the fault current if can be derived as:

i f =
µ(va − vN) + (µ2Laa − µ2LaaNc)

di f
dt

µRa + R f − µ2Ra
(3)

Define d1 = µRa + Rf − µ2Ra, d2 = µ2Laa − µ2LaaNc, then (3) can be rewritten as:

di f

dt
=

1
d2

(d1)i f −
1
d2

µ(va − vN) (4)

As the amplitude of vN is much smaller than va in the early stage of an ITSC fault, then
va ≈ va − vN. Assuming va = Vasin(ωt), the solution of (4) can be described as:

i f (t) = e
d1 t
d2

i f (0)−
µ Va ω

d2

(
ω2 + d1

2

d2
2

)
+

µVa

(
ω cos(ωt ) + d1 sin( ωt )

d2

)
d2

(
ω2 + d1

2

d2
2

) (5)

where Nc > 1, Rf ≥ 0, 0 ≤ µ ≤ 1, d1 ≥ 0, d2 < 0. In the early stage of the fault, |d1| >> |d2|,
the ratio of d1 to d2 tends to infinity while the ratio of d2 to d1 tends to 0. Combined with the
above analysis, meanwhile, substituting the expression of d1 and d2 into (5), the amplitude
of if can be rewritten as:

I f ≈
µVa

µRa + R f − µ2Ra
(6)

Moreover, the amplitude of the three-phase voltage is proportional to the speed of the
motor [29]. Then the relationship among parameters If, Rf, µ, and the speed of the motor
ωr can be expressed as:

I f ∝
µωr

µRa + R f − µ2Ra
(7)

where Ra can be treated as a known parameter. It can be seen from (7) that the parameters
µ, Rf and ωr directly influence If. Among the related parameters, only ωr does not affect
the ITSC fault, If divided from (7), a new expression that can reveal the severity of the fault
to some extent can be derived:

FI =
I f

ωr
∝

µ

µRa + R f − µ2Ra
(8)

where FI represents the fault index of the ITSC fault. When the motor is healthy, the index
is 0. In the early stage of the fault, the index is almost invariant to the motor speed, and
increases as Rf decreases or µ increases. Each degree of ITSC fault can be seen as a unique
combination of Rf and µ. Since it is difficult to measure Rf and µ during the operation
of a motor, the index is not suitable to directly do the severity estimate of an ITSC fault.
However, it can be used as an indicator to guide the severity setting of an ITSC fault.
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3. Proposed Algorithm
3.1. Dilated Convolutional Neural Networks

The dilated CNN is a variant of conventional CNN, which contains dilated convolu-
tional layers, RELU layers, a Batch normalization layer, and a dropout layer.

As a variant of conventional CNN, the dilated CNN inherits the characteristics of local
connectedness and weight sharing and the result of the loss function can be optimized by
a backpropagation algorithm [30]. The purpose of a convolution operation is to extract
diverse levels of hierarchical features from the input signals. The top layers can only extract
shallow features. The deeper a convolutional layer is, the more complicated the features
that can be extracted from the input signals. The CNN achieves sparse connectivity by
connecting neurons of neighboring layers using a local connection mode and adopting
kernels of different sizes [26]. Thus, not only does it efficiently represent the complicated
relationship, but it can also reduce the potential of overfitting.

The use of dilated CNN can eliminate the need for pooling layers, which allows the
deep network to enlarge the receptive field, while minimizing the loss of coverage or
resolution, making possible a rather deep network architecture [14,27,31]. For a 1-D series
input data S ∈ Rn and the kernel f : {0, 1, . . . , k − 1} → R, the expression of the dilated
convolution F on input data segment x can be defined as:

F(x) = (S ∗d f )(x) =
k−1

∑
i=0

f (i) · Sx−d·i (9)

where d stands for the dilation factor, k denotes the filter size, and x-d·i indicates the element
of segment x traversing the i-th convolution operation. Thus, the dilated convolution
represents running convolution operations on elements of the series data by kernels whose
filters are separated by a step size of d. Conventional convolution is a special case where
the dilation factor d = 1. As the depth of the network grows, the dilated factor increases
accordingly, and the receptive field of the final output layer becomes wider.

The rest layer in CNN helps to enhance the performance of the deep networks. The
normalization layer is used to get rid of possible gradient disappearance and explosion
problems, and the method here adopted is Batch Normalization. The activation layer is
used to extend the nonlinearity of a neuron. We adopted rectified linear unit (ReLU) as our
activation function to speed up the training process. To address the overfitting problem of
the networks, some proportion of neurons and their connections can be randomly dropped,
namely the dropout layer.

3.2. Residual Learning Block

The object that is analyzed for the diagnosis of an ITSC fault is the three-phase current
of the PMSM. Current signals are usually long 1-D signals, which are highly susceptible
to changeable operating conditions and electromagnetic interference, making the motor
fault diagnosis more difficult. If the CNN is adopted to do the severity estimate of the
ITSC fault, deeper 1-D architecture CNN is required, because normally the deeper a CNN
architecture is, the more complex the features it can extract. Whereas former experiments
proved that the CNN had a degradation difficulty, namely with the increase of CNN depth,
the performance of the network tended to saturate and even degrade. That is to say, the
addition of network depth decreases its performance, and the phenomenon is different
from overfitting.

The degradation difficulty indicates that it is hard to train a CNN well. Theoretically
speaking, if an added CNN layer just repeats the features of former layers, rather than
learning new features, namely, the identity map, the performance of the network should
not decrease [32]. Inspired by this instinct, the residual learning block was employed in the
proposed algorithm. For a residual learning block, if the input is defined as x, the learned
feature is denoted as F(x), which should be added to the input of the residual learning
block. The output of the residual learning block is expressed as:
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y = σ(x + F(x)) (10)

where y stands for the output of the residual learning block, and σ denotes the activation
function of the residual learning block.

Assuming the result of a residual learning block is greater than 0, the performance
of the CNN can be further enhanced by increasing the depth of layers. On the contrary,
if the result of the residual learning block is 0, the newly added layer does not influence
the performance of the residual learning block, which is called an identity map. Hence, a
deeper CNN architecture can be formed by adopting residual learning blocks to prevent
the degradation difficulty.

The residual learning block is shown in Figure 2. As Figure 2a shows, the residual
learning block is realized by stacking several layers of dilated convolution layer, Batch
Normalization layer, RELU layer, and dropout layer. In a standard Residual Neural
Network, the output of the block is added to the input without any transformation, (as
shown in Figure 2b). Whereas, for the condition of 1-D CNN, an extra 1 × 1 convolution
is used to avoid the situation of tensor disagreement between the input and output of
the block.
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3.3. Multiscale Kernel Dilated CNN

The essence of ITSC fault diagnosis is the use of time-series signals to achieve fault
identification or regression. However, there are still some problems that need to be solved:
firstly, the conventional convolution usually extracts features in the same scale size, namely
single-scale. Whereas the signals of the motor are always changing with system structure,
electromagnetic interference, and sampling rates, which indicates that a single-scale con-
volutional kernel size is not enough for extracting the signal features [33]. Secondly, the
operating conditions of motors are always dynamic, even the setting of constant operating
conditions is highly susceptible to changing loads, power supply stability, and environ-
mental factors. Thus, the potential to evaluate signals over dynamic operating conditions
should be taken into account if the fault diagnosis algorithm is intended to be adapted in
more situations.

To address these difficulties, a multiscale kernel-based dilated CNN architecture is
proposed in this paper. In contrast to the multiscale of conventional CNN, which can only
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change the size of the extracted features by the size of the convolutional kernel, dilated
CNN can also change the extracted features by changing the dilated factor d [34]. By
influencing the receptive field of the network, the kernel size f and dilated factor d achieve
extraction of different sized features. The formula for the receptive field is defined as:

r f = ((d− 1)( f − 1) + f + 2)2 (11)

where rf represents the size of the receptive field. As the dilated convolution does not
sample the dilated parts, this results in the extracted information not being continuous.
Hence, to extract the feature information of the dilated parts, a multiscale kernel-based
dilated convolution architecture is proposed in this paper. As shown in Figure 3, the
conventional convolution, with kernel sizes of 1 × 1, 1 × 3, and 1 × 5, is added before the
dilated convolution of each branch is separately added. The red boxes of the figure show
the features extracted by the dilated convolution, and the rest are the features extracted
by conventional convolution. After adding the conventional convolution, the information
of the dilated parts can be extracted by the conventional convolution, which can enhance
the continuity of the information and obtain different sizes of receptive fields, realizing
the extraction features at different scales. X is the input feature vector, and Y is the output
feature vector. The purpose of conventional convolution with a kernel size of 1 × 1 is to
decrease the number of channels, which can also reduce the amount of computation. The
dilated convolution size of each branch is set to 1 × 3, and the dilated factor of each branch
is set to d = 1, d = 3, and d = 5. The features of the three branches are spliced together after
extracting different scale sizes of features by using different sizes of dilated factors. The
expression of the features extracted by the three branches are:

X1 = X ∗ C1×1 ∗ D f=1
X2 = X ∗ C1×1 ∗ C3×3 ∗ D f=3
X3 = X ∗ C1×1 ∗ C5×5 ∗ D f=5

(12)

where X1, X2, and X3 are the features of each branch separately, the symbol * is the
convolution operation, and C1×1, C1×3, and C1×5 represent the conventional convolution
with kernel sizes of 1 × 1, 1 × 3, and 1 × 5 separately. Df=1, Df=3, and Df=5 represent the
dilated convolution with a kernel size of 1 × 3 and dilated factors of 1, 3, and 5.
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In this architecture, the way of feature fusion is layer-by-layer stacking. Thus, the
output of the architecture is expressed as:

Y = {X1, X1 + X2, X1 + X2 + X3} (13)

where the symbol {+} represents the element-wise addition operation, and {·} represents
the splicing operation of different channels. The operation of adding up the features from
dilated factor d = 1, to d = 3 and d = 5, layer-by-layer, makes the branch of d = 3 and d = 5
not only contain the feature with larger dilated factors but also contain the feature with
small dilated factor, which enhances the network’s ability in extracting different scales
of features.

3.4. Bayesian Optimization for Hyperparameter Tuning

The performance of the deep networks is highly dependent on an appropriate set of
hyperparameters. However, there are interactions between different hyperparameters, and
it is difficult to tune a set of appropriate hyperparameters without experience, and, even
if you could, it takes a lot of time. Moreover, when compared with other deep learning
algorithms, if the function of automatic hyperparameter tuning can be implemented,
the introduction of subjective intent can be avoided, which makes the comparison of
different algorithms more objective. Therefore, it is necessary to realize the automatic
hyperparameter tuning by using the optimization algorithm that not only has the capability
of global optimization but can also get good results in fewer iterations or taking less time.

The Bayesian optimization algorithm can realize highly efficient parameter optimiza-
tion with a fast optimization rate and few iterations [32]. By iterating and evolving a global
statistical model that has no clear target function, the Bayesian optimization algorithm
achieves the estimation and evaluation of a task [35]. It mainly consists of two parts: one is
the acquisition function and the other is the Bayesian statistical model [36]. The acquisition
function is utilized to determine the optimal sampling point, where the optimal solution
is most likely to exist, or the area that has not yet been sampled. As a prior over function,
the Bayesian statistical model can estimate the hypothesis posterior distribution of the
function to be optimized using the prior information and observed results. To maximize
the expected benefit of the new measurement points, compared with the historical optimal
value, the Excepted Improvement is adopted as the acquisition function. Owing to the
merits of flexibility and tractability, the Gaussian process is adopted as an a priori function
of the algorithm.

The process of hyperparameter tuning using the Bayesian optimization algorithm
is graphically shown in Figure 4. The whole process can be divided into two parts: the
CNN process, and the Bayesian optimization process. The blue box in Figure 4 is the
Bayesian optimization process, which mainly completes the initialization selection of the
hyperparameter combination, and then updates it according to the previously gathered
results. The red box in Figure 4 is the CNN process, which mainly completes the training
and testing of deep network parameters. When reaching the termination conditions, the
CNN process passes the test accuracy of the network to the Bayesian optimization process.
The hyperparameters that are chosen for optimization include the Momentum (M), the
InitialLearnRate (Linit), the dropoutProb (P), and the L2Regularization (L2R). During the
execution of the optimization, the two processes interact with each other until reaching
the termination condition of the optimization, and then the best test accuracy, and its
corresponding hyperparameters, are output as the result of the whole optimization.
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3.5. Multiscale Kernel-Based Residual CNN Architecture

The structure of the multiscale kernel-based residual CNN architecture is shown in
Figure 5, which is inspired by the multiscale feature extraction in image processing and
speech recognition. As the figure shows, the structure of the algorithm can be divided into
three parts, namely, the input part, the feature extraction part, and the output part.

In this architecture, time-series three-phase current segments are adopted as the input
signal. Each current signal has a fixed size of 1 × 3000 × 3. The feature extraction part
consists of two structures: one is the basic network layer, and the other is the multiscale
layer. Since the dilated CNN has the advantage in feature extraction and enlarging receptive
field, it was chosen for the construction of feature extraction. The basic network layer,
which consists of three dilated CNN layers, is mainly responsible for the extraction of
basic features. The three dilated CNN layers are used to extract the shallow, medium, and
high levels of features with a layer depth of 5, 9, and 6, respectively, and a kernel size of
1 × 3. The multiscale layer, which consists of four branches, each of which represents a
different feature scale, is used to extract the extra multiscale features. In each branch, the
conventional convolutions are added before the dilated convolution as they can extract the
information of the dilated parts, which enhances the continuity of the information. Branch
1 is used to extract the shallow level of features with a kernel size of 1× 3 and dilated factor
d = 1. Branch 2 is used to extract the medium-level features by a conventional convolution
layer with a kernel size of 1 × 3, which can then be extracted by a dilated convolution layer
with a kernel size of 1 × 3 and dilated factor d = 3. Branch 3 is used to extract the high-level
features by a conventional convolution layer with a kernel size of 1 × 5, which can then be
extracted by a dilated convolution layer with a kernel size of 1 × 5 and dilated factor d = 5.
Branch 4 represents the residual learning result of the basic network layer features.
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branches with kernel size and dilated factor of 1 × 3, d = 1, 1 × 3, d = 3, 1 × 5, d = 5, and 1 × 3, d = 2.
The residual learning is applied in the basic network layer to prevent the degradation problem.

The features of the four branches are fused by the feature vector concatenate layer,
and then pass the features of different scales to the output of the whole architecture, which
consists of a fully connected layer, softmax layer, and output layer.

The flowchart of the multiscale kernel-based residual CNN algorithm is shown in
Figure 6. There are four procedures in the process:

(1) Data set preparing. The three-phase current signal is collected in experiments on the
motor with an ITSC fault using the data collection equipment. Then, the acquired
current signals are processed into segments of equal length and labeled with cor-
responding markers. After that, all the segments are split into two disjointed sets,
namely, the training set and the testing set.
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(2) Algorithm initialization. The value range of the hyperparameters that are optimized
are determined. Then, a set of hyperparameters is randomly selected as the starting
point for Bayesian optimization.

(3) Implementation of the proposed algorithm. The given starting point of hyperpa-
rameters training and testing of the proposed deep network is used, and then the
hyperparameters are updated according to the Bayesian optimization algorithm. The
procedure is repeated until the termination condition is met.

(4) Output results. When the maximum number of the optimization is reached, the best
test accuracy and its corresponding hyperparameters of the proposed deep network
are selected as the result and output.
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4. Experiment and Data Description

To demonstrate the effectiveness of the proposed algorithm, an experiment on a PMSM
with an ITSC fault was conducted. As shown in Figure 7, the experimental setup consisted
of a dynamometer, the tested motor, a torque sensor, a data recorder, etc. The yellow box
in Figure 7c was the severity setting unit of the tested motor, which contained both many
shorted points of the winding (as shown in Figure 7a) and the fault resistance with its heat
sink (as shown in Figure 7b). The experimental data (three-phase current of the stator)
was collected with a sampling rate of 1 MHz by the DL850EA oscilloscope recorder. The
tested motor was driven by a VFD037C23A inverter at a switching frequency of 15 kHz.
FOC was used for motor control, where the test motor ran under constant load and the
speed was determined by the dynamometer. The tested motor was wye-connected with a
concentrated winding of 108 turns per phase. The main specifications of the tested motor
are shown in Table 1.
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fault resistance and its heat sink, and (c) shows the components of the entire experiment setup.

Table 1. Specifications of the PMSM.

Parameters Values

Pole pairs 4
Power 2.3 kW

Rated torque 15 N·m
Rated current 9.5 A
Rated speed 1500 rpm

Line-line resistance 1.1 Ω
Line-line inductance 4.45 mH

Voltage constant 114 V/1000 r/min

The experiment of the tested motor was conducted under various operating conditions.
The operating conditions were combinations of two-load torques and five rotational speeds,
as shown in Table 2. The two-load torques were both constant, while among five speeds,
four were constant and one was dynamic. There were 10 operating conditions, while
every operating condition was a combination of one torque and a speed. As shown in
Figure 8, the dynamic rotational speed ranged from 850 to 1550 r/min, which was controlled
automatically. The motor was tested in health and fault states.

Table 2. Operating conditions of the PMSM to be tested.

Case 1 2 3 4 5

Speed (rpm) 150 450 900 1350 850–1550–850

Torque (N·m) 3.0
7.5
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Figure 8. The schematic of dynamic rotational speed.

The severity of the ITSC fault in the tested motor could be set according to (8). In our
experiment, there was 1 health state and 16 fault states, as shown in Table 3. The ITSC
faults were set in phase A and the fault resistance was connected between two shorted
points. There were four fault resistances and four shorted turn ratios. Each label was a
combination of fault resistance and shorted turn ratio. The labels represented the state
of the tested motor. “HL” represented the healthy state of the motor. “R5”, “R1”, “R0.5”,
and “R0.1” represented the fault resistances of 5 Ω, 1 Ω, 0.5 Ω, and 0.1 Ω correspondingly.
“A2”, “A4”, “A5”, and “A6” represented the shorted turn ratios of 4.6%, 8.3%, 10.2%,
and 13.8% correspondingly. The 17 labels were sorted in ascending order according to
the result calculated by (7). To prevent low-frequency aliasing interference, the acquired
raw current signals were filtered by a zero-phase filter, and, then, the sampling frequency
was down-sampled to 15 kHz, which was consistent with the switching frequency of the
inverter. The current signals were normalized and cut into segments of the same length.
The comparison of the collected three-phase current signal before and after preprocessing
is shown in Figure 9. There were 20,400 segments of the acquired data, and each label was
1200. The segments in each label were randomly divided into two disjoint sets: one was the
training set with 840 segments, and the other was the testing set with 360 segments.

Table 3. Fault data description.

Label
Fault Setting Sample Size

Fault Resistance
(Ω)

Shorted Turn Ratio
(%) Training Testing Total

HL Inf 0 840 360 1200
A2R5 5 4.6 840 360 1200
A4R5 5 8.3 840 360 1200
A5R5 5 10.2 840 360 1200
A6R5 5 13.8 840 360 1200
A2R1 1 4.6 840 360 1200
A4R1 1 8.3 840 360 1200

A2R0.5 0.5 4.6 840 360 1200
A5R1 1 10.2 840 360 1200
A6R1 1 13.8 840 360 1200

A4R0.5 0.5 8.3 840 360 1200
A5R0.5 0.5 10.2 840 360 1200
A6R0.5 0.5 13.8 840 360 1200
A2R0.1 0.1 4.6 840 360 1200
A4R0.1 0.1 8.3 840 360 1200
A5R0.1 0.1 10.2 840 360 1200
A6R0.1 0.1 13.8 840 360 1200
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set to 80, and the training epoch number was set to 90 in every single optimization. The 

Figure 9. The comparison of the collected three-phase current signals before and after preprocessing.
The left side of the figure is the original signal and the right side of the figure is the preprocessed
signal. (a) The signal was collected in the healthy state of the motor at a constant speed of 150 rpm
and a load torque of 3.5 N·m. (b) The signal was collected in a faulty state of “A6R0.1” at the set
dynamic speed and a load torque of 3.5 N·m.

5. Results and Comparisons

The proposed multiscale kernel-based residual CNN algorithm was utilized to accom-
plish the procedures of training, testing, and optimization offline using the current signal
data sets. The optimized hyperparameters included InitialLearnRate (Linit), Momentum
(M), L2Regularization (L2R), and dropoutProb (P). The corresponding search intervals, data
types, and best results of each hyperparameter are shown in Table 4. The item “Transform”
indicated whether the hyperparameter was optimized on a logarithmic scale.

Table 4. Hyperparameters to be optimized.

Hyperparameters Search Intervals Data Types Transform Best Result

Linit [1 × 10−5 1] real log 3.6838 × 10−4

M [0.5 1] real log 0.9031
L2R [1 × 10−10 1 × 10−2] real log 8.4497 × 10−10

P [1 × 10−5 1] real log 0.1868

According to the experience during the tuning process, the optimization number
was set to 80, and the training epoch number was set to 90 in every single optimization.
The best result of each hyperparameter is shown in Table 4. To visualize the features
learned by the trained network, a data dimensionality reduction visualization algorithm,
called the t-distribution stochastic neighbor-embedding algorithm (T-SNE), was used to
demonstrate the learned features. The features of the input layer and the output layer were
compared in a two-dimensional (2-D) form, which not only simplified the comparison
but also visualized the features, as shown in Figure 10. It can be seen that there were
17 colors in both feature maps; each color corresponded to a label of the ITSC fault, which
represented the fault severity. Figure 10a is the feature map of the input layer, from which
we can see that the features of different severity states were heavily overlapped. It was
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very hard to distinguish the labels from each other in this situation. Then, as shown in
Figure 10b, the features of different severity states could be easily separated from each
other after the feature extraction training of the network, which exhibited the effect of the
proposed algorithm.
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Figure 10. Visualizations of high-dimensional characteristic maps at different layers in the proposed
algorithm. (a) Input characteristic map and (b) output of the full-connected layer characteristic
map. Each point stands for a sample segment and the different colors represent corresponding
severity samples.

To assess the performance of the proposed algorithm, four indicators, namely, the
recall ratio (r), the precision ratio (p), the overall accuracy (acc), and the F1 score, were
introduced to do the evaluation [37]. In massive data, the indicator of recall ratio and
precision ratio are mutually constrained. The indicator of the F1 score simultaneously
considers the effect of the recall ratio and precision ratio, which can better demonstrate the
performance of the proposed algorithm [38]. The definitions of the evaluation indicators
were expressed as (14) shown:

p = TP
TP + FP

r = TP
TP + FN

acc = TP + TN
TP + TN + FP + FN

F1 = 2p×r
p + r

(14)

where TP represented true positive, which stood for the positive samples that were rightly
classified as positive. FP represented false positive, which stood for the negative samples
that were wrongly classified as positive. FN represented false negative, which stood for the
positive samples that were wrongly classified as negative. TN represented true negative,
which stood for the negative samples that were rightly classified as negative. Moreover,
the positive samples stood for the samples of the current label being diagnosed, while the
negative samples stood for the samples that were not part of the current label.

The overall test accuracy of the proposed algorithm, based on the best result of opti-
mization hyperparameters, was 98.0%. To give a more detailed illustration, the confusion
matrix of the beat overall test accuracy is shown in Figure 11. The labels of the confusion
matrix were ranked in ascending sequence, based on the severity results, which were
calculated by (8). The leftmost labels of the matrix were the true classes, which repre-
sented the true labels of the number in each row. The bottom labels of the matrix were
the predicted classes, which were classified by the proposed algorithm and represented
the predicted labels of the number in each column. The bottom of the confusion matrix
shows the precision ratio for each label, while the recall ratio for each label is located at the
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rightmost of the matrix. The numbers in the blue diagonal box indicate the true positive of
each label. The numbers in each column, except those on the diagonal, were false positive,
while the numbers in each row, except those on the diagonal, were false negative. The
precision ratio for each label was calculated as the ratio of the number on the diagonal to
the sum of the rest numbers in the column. Similarly, the recall ratio for each label was
calculated as the ratio of the number on the diagonal to the sum of the rest numbers in
the row.
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To demonstrate the superiority of the proposed multiscale architecture in handing the
severity estimate of the ITSC fault, the performance of the proposed algorithm was com-
pared with five other deep learning methods: conventional CNN, dilated CNN (d-CNN),
dilated residual CNN (d-ResCNN), Long-Short Term Memory (LSTM), and Bi-directional
Long-Short Term Memory (Bi-LSTM). In particular, only the methods concerned with RNN
and CNN were involved in the comparison, because deep networks have an unmatched
advantage over traditional machine learning methods in dealing with classification prob-
lems, while the chosen methods perform much better than other deep learning methods
in dealing with time-series problems [14]. All the compared methods were optimized by
Bayesian optimization, which could ensure the objectivity of the comparison, eliminating
the influence of perceived subjective factors. The iteration number of Bayesian optimization
was set to 80, and the result with the highest overall test accuracy was elected for compari-
son after the optimization was finished in each method. All the methods were trained and
tested in the same dataset, while the number was set to 90 for each optimization of the
training epochs. The structure and training parameters of each algorithm after Bayesian
optimization are shown in Table 5.
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Table 5. The structure and training parameters of the compared algorithms.

Items LSTM Bi-LSTM CNN ResCNN d-CNN Proposed

Layer1 Filter = 66
Hidden units = 72

Filter = 128
Hidden units = 85

Filter = 3
Depth = 1

Filter = 16
Depth = 2

Filter = 4
Depth = 6

Filter = 18
Depth = 5

Layer 2 Filter = 66
Hidden units = 65

Filter = 128
Hidden units = 100

Filter = 148
Depth = 7

Filter = 120
Depth = 6

Filter = 40
Depth = 11

Filter = 65
Depth = 9

Layer 3 Filter = 66
Hidden units = 87

Filter = 128
Hidden units = 82

Filter = 12
Depth = 2

Filter = 24
Depth = 6

Filter = 37
Depth = 4

Filter = 38
Depth = 6

Linit 0.0040 9.7603 × 10−4 7.016 × 10−6 6.531 × 10−4 3.2541 × 10−4 3.6838 × 10−4

P 0.0992 0.0056 0.0312 0.0010 1.0009 × 10−5 0.1868
L2R __ __ 0.0095 4.220 × 10−4 0.0083 8.4497 × 10−10

M __ __ 0.9166 0.0789 0.8199 0.9031

The highest overall test accuracy of each method, and the F1 score of each label in
each method, are shown in Table 6. The overall test accuracy of each method was 58.9%,
74.1%, 74.1%, 86.9%, 95.2%, and 98.0%, respectively, as shown in Table 6. The proposed
method had the best performance in both the overall test accuracy and the test accuracy in
each label. The performances of LSTM and Bi-LSTM were both very poor, maybe because
the training of RNN was more complicated than that of CNN, requiring a longer training
time or more training epoch numbers. To prove this, we increased the training epoch
number to 200. After the training, the two RNN algorithms had not yet fully converged,
and the Bi-LSTM performed better than the LSTM, while the overall test accuracy was
less than 90%. Of course, this result did not necessarily indicate that the RNN performed
worse than the CNN, but it did indicate that the RNN was much worse than CNN in
terms of convergence speed. It can also be seen from Table 6 that the implementation of
dilated convolution, residual learning architecture, and multiscale architecture could help
enhance the performance of the conventional CNN, as the overall test accuracies of these
algorithms performed better than that of the conventional CNN. In addition, the effect of
dilated convolution was more pronounced than that of residual learning architecture in
improving the overall test accuracy to some extent, while the residual learning architecture
and multiscale architecture could further enhance the performance when the performance
of the dilated CNN reached its limit. When simultaneously analyzing Figure 11 and Table 6,
it could be concluded that in every method existed the same severe “false alarm rate”
difficulty, which misclassified the healthy labels into faulty ones. A more serious problem
was the “concealed alarm rate”, which misclassified some faulty labels into healthy ones,
which might lead to catastrophic consequences. The “concealed alarm rate” was obvious in
labels with slight severities as the difference of the fault features between slight severities
and healthy was very little, which increased the difficulty of the classification. As the
severity of the fault increased, the distinction between different fault features in each label
became more apparent, making classification easier and reducing the “concealed alarm
rate” significantly. Hence, in most cases, the test accuracy for each label under every
algorithm increased along with the aggravation of the fault severity. In addition, it could
be concluded from the ranking of the labels that the fault resistance had more effect than
that of the shorted turn ratio in the early stage of the fault.
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Table 6. Comparison with other algorithms.

Label LSTM
(%)

Bi-LSTM
(%)

CNN
(%)

ResCNN
(%)

d-CNN
(%)

Proposed
(%)

acc 58.9 74.1 78.5 86.9 95.2 98.0
HL 36.51 47.21 28.99 65.35 78.9 88.49

A2R5 50.53 61.51 61.50 84.90 92.76 97.28
A4R5 56.89 61.91 68.91 82.39 94.22 98.33
A5R5 53.88 88.03 83.38 93.43 96.40 98.64
A6R5 50.61 79.60 77.34 90.92 93.10 97.10
A2R1 55.43 67.99 64.61 82.66 95.11 98.34
A4R1 56.68 55.05 56.06 75.64 91.43 95.79

A2R0.5 58.64 68.41 68.91 86.35 95.60 99.30
A5R1 48.08 80.30 78.62 90.72 93.60 98.50
A6R1 45.22 84.41 80.72 89.92 97.65 99.15

A4R0.5 62.54 66.64 63.25 82.05 90.80 96.84
A5R0.5 51.27 79.43 77.19 89.95 95.59 98.50
A6R0.5 54.57 83.72 77.44 87.96 97.13 99.45
A2R0.1 70.75 75.31 66.02 89.20 96.05 99.45
A4R0.1 77.28 78.43 64.73 95.43 97.80 98.24
A5R0.1 81.37 87.80 85.69 93.94 98.45 98.59
A6R0.1 87.80 86.77 88.97 96.15 98.65 99.45

While the “false alarm rate” and the “concealed alarm rate” problems expose the fault
diagnosis of an ITSC fault to some risk of misclassification, in practice these problems can be
solved by continuous sampling, as the adopted dataset consists of many segments, which
are portions of the data taken during a sampling period. When doing the fault diagnosis
in practice, the proposed algorithm can be implemented for sequential analysis of the
acquired signals, which means the result of the fault diagnosis is decided by more than one
data segment. With an overall test accuracy of over 98%, the probability of two consecutive
classification errors is less than 0.1%, so the fault diagnosis accuracy can be enhanced by
comprehensively analyzing the diagnosis result of consecutive multiple data segments.

To make a comprehensive analysis of the compared six algorithms, the trends of
the overall test accuracy and the loss function with the growth of iterations are shown
in Figure 12. The compared results in Figure 12 are the best result of each algorithm
with hyperparameters tuned by the Bayesian optimization. During the complete training
process, the data of each algorithm was recorded for every epoch. The trends of the overall
test accuracy are shown in Figure 12a, while the trends of the loss function are shown in
Figure 12b, and the corresponding trends of each algorithm in both figures were consistent.
It can be seen from the figure that the overall test accuracies of LSTM and Bi-LSTM were
both slowly increasing, and, up to the set maximum number of iterations, neither of the two
algorithms tended to converge. The performance of Bi-LSTM was better than that of LSTM,
both in the overall test accuracy and the growth rate during the whole process, and the
two algorithms had potential in enhancing the performance if the iteration times could be
increased. The growth rate of the conventional CNN was better than that of the two RNN
algorithms, but the final overall test accuracy was no more than 80%, which was limited by
its receptive field and degradation problems. The performances of ResCNN and dilated
CNN were better than that of conventional CNN in terms of growth rate and the final
overall test accuracy, while the dilated CNN did better than ResCNN, which proved that
dilated convolution was more useful than that of residual learning connection in improving
the performance of the CNN. The proposed algorithm had the best performance, with a
final overall test accuracy close to 98%, which outperformed the dilated CNN algorithm
by more than 2.7%. The result of the comparison demonstrated that the residual learning
connection and the architecture of multiscale kernels could both help to improve the limits
of a CNN architecture in feature extraction, while the architecture of multiscale kernels
outperformed the residual learning connection.
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In order to avoid overfitting, resulting in excessive accuracy of the algorithm, this
paper also investigated the noise immunity of the algorithm to different noise levels [23].
Gaussian white noise with signal noise ratios of 15 dB, 20 dB, and 25 dB were added
to the original testing dataset, respectively, to simulate the data collected from different
environments [26]. The definition of the SNR is expressed as:

SNR(dB) = 10 log10(
Psignal

Pnoise
) (15)

where Psignal represents the power of the current signal, and Pnoise represents the power of
the noise signal.

To visualize the effect of noise on the three-phase current signal, the comparison before
and after the addition of Gaussian white noise with SNR = 20 dB is shown in Figure 13.
From the figure, we can see the original signal was heavily influenced by noise and it was
difficult to consider the two signals as the same one.
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To test the overall test accuracy at different noise levels, the proposed algorithm was
tested under the dataset with Gaussian white noise of 15 dB, 20 dB, and 25 dB, and without
noise. The results are shown in Figure 14. As can be seen from the figure, the performance
of the proposed algorithm decreased as the noise level increased, but the reduction was
small. The results proved that the high overall test accuracy of the proposed algorithm was
not due to overfitting, and the proposed algorithm had high anti-noise capability with an
SNR greater than 15 dB.
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6. Conclusions

In this paper, a novel multiscale kernel-based residual CNN algorithm was proposed
for the ITSC fault diagnosis of a PMSM. The proposed algorithm can be implemented both
in constant operating conditions and in dynamic conditions. Firstly, the dilated convolution
was used to extend the receptive field of the deep network. Secondly, the residual learning
connection was applied to solve the performance degradation problem with the growth of
network depth. Thirdly, a multiscale kernel architecture was proposed to extract more scale
features from the acquired data. Then, the Bayesian optimization algorithm was introduced
to overcome the hyperparameter tuning difficulties. Furthermore, a motor fault experiment
with both constant operating conditions and dynamic operating conditions was conducted
by setting the fault severity of the motor to 17 levels. The proposed multiscale kernel-based
residual CNN algorithm was employed to analyze the current signals that were acquired
in the experiment. LSTM, Bi-LSTM, conventional CNN, ResCNN, and d-CNN were also
applied to the same data set for comparison. The results illustrated the capability and
impressive performance of the proposed algorithm. The results also demonstrated that the
proposed algorithm is not only a fault diagnosis method, that can directly extract features
from raw current signals, but can also do the severity estimate missions of the classification
data under dynamic operating conditions. The multiscale kernel architecture can analyze
the signals on different scales. Meanwhile, the residual connection enables the proposed
algorithm to construct a deeper network, despite the degradation difficulty. Unfortunately,
the proposed algorithm is only concerned with the identification accuracy of fault severity
estimation under a given inverter control method, so the generalization capability of the
proposed algorithm under different control methods needs to be improved. The next
research will focus on extracting some features independent of the control method through
preprocessing to enhance the generalization ability of the proposed algorithm to different
control methods.
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