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Abstract: This study was conducted to examine the capability of topographic features and remote
sensing data in combination with other auxiliary environmental variables (geology and geomor-
phology) to predict CEC by using different machine learning models ((random forest (RF), k-nearest
neighbors (kNNs), Cubist model (Cu), and support vector machines (SVMs)) in the west of Iran. Ac-
cordingly, the collection of ninety-seven soil samples was performed from the surface layer (0–20 cm),
and a number of soil properties and X-ray analyses, as well as CEC, were determined in the labo-
ratory. The X-ray analysis showed that the clay types as the main dominant factor on CEC varied
from illite to smectite. The results of modeling also displayed that in the training dataset based on
10-fold cross-validation, RF was identified as the best model for predicting CEC (R2 = 0.86; root
mean square error: RMSE = 2.76; ratio of performance to deviation: RPD = 2.67), whereas the Cu
model outperformed in the validation dataset (R2 = 0.49; RMSE = 4.51; RPD = 1.43)). RF, the best
and most accurate model, was thus used to prepare the CEC map. The results confirm higher CEC
in the early Quaternary deposits along with higher soil development and enrichment with smectite
and vermiculite. On the other hand, lower CEC was observed in mountainous and coarse-textured
soils (silt loam and sandy loam). The important variable analysis also showed that some topographic
attributes (valley depth, elevation, slope, terrain ruggedness index—TRI) and remotely sensed data
(ferric oxides, normalized difference moisture index—NDMI, and salinity index) could be considered
as the most imperative variables explaining the variability of CEC by the best model in the study area.

Keywords: clay type; mineralogy; remote sensing indices; valley depth; soil modeling; machine
learning

1. Introduction

The soil cation exchange capacity (CEC) is the summation of exchangeable cations (e.g.,
magnesium, calcium, sodium, and potassium) that could be adsorbed at a definite pH [1].
CEC serves a noteworthy function in adsorbing and releasing nutrients required by plants
and evaluating the potential risk of inorganic and some cationic organic pollutants [2].
Moreover, as a global challenge soil, CEC is important in predicting the occurrence of carbon
sequestration mechanisms [3]. In addition, CEC has been identified as an indicator of
structural stability and soil shrinkage–swelling behavior in vertisols [4]. Clay content, clay
types, and soil organic matter have important contributions to controlling soil CEC owing
to their considerable specific surface area as well as predominantly negative charges [5]. Soil
reaction in pH-dependent soils can also significantly affect the CEC value. Clay types have
an important contribution to mediating the CEC in soils. Kaolinite and montmorillonite
are the extreme types of clays that might lead to low and high CEC in soils [6].
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There are several laboratory methods for the measurement of CEC. The most common
method, as described in [7], is to wash the soil with sodium acetate, remove excess soluble
salts with ethyl alcohol, and measure the sodium obtained following ammonium rinsing
acetate. Nevertheless, the laboratory methods are time-consuming and expensive, so they
need several leaching processes. Moreover, the laboratory measurement of CEC in Aridisols
of Iran is faced with more challenges because of the presence of some nonclay minerals,
such as calcium carbonate and gypsum [8].

In recent years, to overcome these deficits, as mentioned earlier, several pedotransfer
functions (PTFs) have been established worldwide to estimate CEC using easily accessible
soil data. The most priority method was developing PTFs by using easily available soil
properties. In this regard, some scholars developed multiple linear regression models to
predict CEC [9]. Then, researchers employed intelligent systems, such as artificial neural
networks (ANNs) to determine the nonlinear relationships between soil data and CEC [10].
Asadzadeh et al. [11], in a study in calcareous soils of East Azerbaijan Province, northwest
Iran, for developing PTFs by multiple linear regression and artificial neural network,
reported no significant difference between the two methods based upon the performance
criteria. Furthermore, the simultaneous spatial prediction was developed initially using
classical geostatistical approaches [12,13]. Meanwhile, some researchers have claimed that
using geostatistical methods involves disadvantages for spatially predicting soil properties,
in addition to soil CEC; the major deficit is requiring too many sampling numbers and the
necessity to have high spatial dependency [14,15].

Recently, digital soil mapping (DSM) has been employed to incorporate easily available
data to predict expensive and labor-consuming soil properties. Various geospatial data,
such as remotely sensed data, proximal sensing data attributes, which are obtained from
the digital elevation model (DEM), and legacy soil data could be applied for predicting
target properties in DSM. A range of machine learning approaches has been employed,
from linear statistical to intelligent models (e.g., [9,16]).

Regarding the spatial prediction of CEC, Triantafilis et al. [4,17] used electromagnetic
data derived from EM38 ECa for mapping CEC at the field level [17]. Taghizadeh et al. [18]
also applied DEM and LANDSAT data for mapping CEC at multiple depths [18]. Huang
et al. [1] used an error budget method to compute the different errors of a CEC digital
map by utilizing gamma-ray spectroscopy and the data related to apparent electrical
conductivity (ECa), showing that individual covariate errors by the gamma-ray and ECa
error were large [1]. Nussbaum et al. [19] used a variety of auxiliary variables and predictive
models to predict effective CEC (eCEC), indicating that the tree-based method boosted
regression tree (BRT) and, in particular, random forest (RF) outperformed, on average [19].
Sorenson et al. [20] also predicted soil properties and CEC in Saskatchewan, Canada, using
bare soil composite imagery obtained from multitemporal satellite imagery. They found
the predictive models, which the RF model developed, had an R2 equal to 0.50, with the
RMSE being 5.7 meq/100 g [20].

Although several research studies have investigated soil property variability by using
DSM, little attempts have been made to address CEC variability in arid and semiarid
regions by combining various auxiliary variables, which is necessary for management
and precision agriculture. Therefore, this research study aimed to (i) predict CEC by
combining various environmental variables, remote sensing indices, and thematic maps;
(ii) compare the capability of some different machine learning methods; and (iii) determine
the important variables for the explanation of the CEC variability in the given study area in
a semiarid region in the west of Iran.

2. Materials and Methods
2.1. Study Area and Soil Sampling

The current research study was implemented in Kurdistan province, western Iran,
which is between the latitudes 35◦05′00′′ and 35◦20′00′′ N and the longitudes 47◦12′59′′ and
47◦39′17′′ E (Figure 1). This area is approximately 110,000 ha, with the mean altitude being
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2277 m above sea level. This area has a mean annual temperature of 10.20 ◦C as well as a
mean annual rainfall of 370 mm. The rain mostly falls in spring and winter. In addition, this
area has the soil moisture and temperature regimes of Xeric and Mesic, respectively [21].
The area’s lithological setting comprises reddish sandy marls and marl sandstone, river
deposits, alluvium-cultivated land, and granite [22]. Soil sampling was carried out by
applying the stratified random sampling approach. Ninety-seven samples were obtained
from the studied area’s surface layers (0–20 cm depth) (Figure 1). The coordinates of each
sample were recorded by using GPS.
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Figure 1. Location of the study area and spatial distribution of the studied points in Kurdistan
Province, west of Iran.

The soil cation exchange capacity (CEC) was measured by saturation with potassium
and then replaced with saturating ammonium cation, as described by Rhoades [7]. More-
over, soil properties, such as soil particle size distribution, were checked by the Pipette
method [23]. Soil organic carbon was measured by wet oxidation [24] in all 97 soil sam-
ples. Kittrick and Hope’s (1963) method separated the clay fraction from the bulk soil in
four soil samples with different clay activities. An analysis of the clay-oriented samples
of Mg-saturated, ethylene glycol (EG)-solvated, and K-saturated at 25, 330, and 550 ◦C
was performed by X-ray diffraction (XRD) by applying a D8 ADVANCE diffractometer
with CuKα radiation (40 kV, 40 mA). The peak area related to the 001 reflections for the
considered main clay minerals (smectite = 17 Å, illite = 10 Å, and kaolinite/chlorite = 7 Å)
on the EG-treated sample could be applied for the semiquantitative calculation of the clay
minerals [25].

2.2. Environmental Covariates

This study used three sources of environmental variables to extract the auxiliary
variables to predict CEC; these included (i) topographic attributes derived from DEM,
(ii) remotely sensed data, (iii) and thematic maps, such as geology and geomorphology
maps (see Table 1 for detailed information).
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Table 1. A list of environmental covariates used to predict CEC in the study area (Resolution = 30 m).

Covariates Definition Reference

Band 1 (0.433–0.45 µm) Reflectance value of Landsat satellite band Landsat satellite
Band 2 (0.45–0515 µm) Reflectance value of Landsat satellite band (Blue) Landsat satellite
Band 3 (0525–0.605 µm) Reflectance value of Landsat satellite band (Green) Landsat satellite
Band 4 (0.63–0.69 µm) Reflectance value of Landsat satellite band (Red) Landsat satellite
Near-infrared (0.75–090 µm) Reflectance value of Landsat satellite band (NIR) Landsat satellite
Shortwave infrared (1.55–1.75 µm) Reflectance value of Landsat satellite band (SWIR) Landsat satellite
Normalized difference vegetation index (NDVI) (NIR − Green)/(NIR + Green) Foody et al., 2001
Soil-adjusted vegetation index (SAVI) ((NIR − Red)/(NIR + Red + L)) × (1 + L) Huete, 1988
Infrared percentage vegetation index (IPVI) NIR/(NIR + Red) Crippen, 1990
Transformed difference vegetation index (TDVI) (NIR − Red)/(NIR + Red) + 0.5 Huete, 1988
Normalized difference moisture index (NDMI) (NIR − SWIR)/(NIR + SWIR) Wilson et al., 2002
Normalized difference snow index (NDSI) (Red − NIR)/(Red + NIR) Major et al., 1990
Brightness index (BI) ((Red × Red) + (NIR ×NIR))ˆ0.5 Khan et al., 2005
Salinity index (Blue − Red)/(Blue + Red) Douaoui et al., 2008
Clay Mineral (SWIR1/SWIR2) Douaoui et al., 2008
Ferrous Mineral (SWIR1/NIR+Red) Douaoui et al., 2008
Ferrous Iron (SWIR2/NIR)+ (Green/Red) Douaoui et al., 2008
Ferrous Silicates (SWIR2/SWIR1) Douaoui et al., 2008
Ferric Iron (Red/Green) Douaoui et al., 2008
Ferric Oxides (SWIR1/NIR) Douaoui et al., 2008
Iron Oxide (Red/Blue) Douaoui et al., 2008
Laterite (SWIR1/SWIR2) Douaoui et al., 2008
Gossan (SWIR1/Red) Douaoui et al., 2008
DEM (m) Elevation Conrad et al., 2015
Aspect (degree) Aspect area Conrad et al., 2015
CA Catchment area Conrad et al., 2015
GC General curvature Conrad et al., 2015
MrRTF Multiresolution of ridge to flatness index Conrad et al., 2015
MrVBF Multiresolution valley bottom flatness index Conrad et al., 2015
PlCu Plan curvature Conrad et al., 2015
PrCu Profile curvature Conrad et al., 2015
Slope gradient (degree) Average gradient above flow path Conrad et al., 2015
TWI Topographic wetness index Conrad et al., 2015
Valley depth (m) Relative position of the valley Conrad et al., 2015
Effective air flow heights (m) Calculates effective air flow heights Conrad et al., 2015
MBI Mass balance index Conrad et al., 2015
Terrain ruggedness index (TRI) Measures terrain ruggedness Conrad et al., 2015

Vertical distance to channel network (m) Calculates the vertical distance to a channel network
base level Conrad et al., 2015

Wind effect Dimensionless index indicating areas exposed to wind Conrad et al., 2015
Wind exposition Dimensionless index highlighting wind-exposed pixels Conrad et al., 2015
Geology map Representing the various geological features -
Geomorphology map Representing the various geomorphic units -

DEM was obtained from the Shuttle Radar Topography Mission (SRTM) [26], with a
spatial resolution of 30 m; it was applied to obtain 14 topographic attributes by applying
SAGA GIS [26]. Such topographic attributes are often utilized in DSM studies for the
representation of variability in topography (Table 1). The imagery related to the Landsat
8 Data Continuity Mission (Landsat 8) sensor that had been previously corrected in an
atmospheric manner and was applied to prepare the covariates from remote sensing data.

Remote sensing data were obtained from Landsat 8 (Operational Land Imager; OLI)
on 7 August 2020. Projection of Landsat image (30-m spatial resolution) was made by
applying the WGS 1984/UTM zone 38N map projection. Following corrections made on
the Landsat 8 images, 23 covariates were subjected to calculation. These covariates were
the original Landsat bands, vegetative indices (NDVI, SAVI, TDVI, NDMI, and NDSI), soil
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salinity indices, clay mineral index, and various iron oxide indices, as well as bare soil
index (BI) (see Table 1).

Thematic maps included geomorphology and geology maps. Based on the geology
map, the studied area’s lithological setting comprised reddish sandy marls and marl sand-
stone (Pliocene) with higher quantities of calcium carbonate, river deposits (Quaternary),
alluvium-cultivated land (Quaternary), granite, and granodiorite (Pre-Cretaceous, more
likely Upper Jurassic) [22]. The Cretaceous formations included diverse metamorphic
rocks, in addition to igneous rocks (Figure 2). An illustration of the distribution of geologic
and geomorphic units is presented in Figure 2. All raster-based covariates (aggregation or
disaggregation) were resampled to a 30 m conjoint spatial resolution.
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2.3. Preprocessing for Environmental Variables and Feature Selection

When there is a large set of predictors, enhancement of a model’s performance and
generalization capability needs exhaustive exploration of all subsets possible for selecting
the best predictors [27]. Use was made of the Boruta method for the identification of statisti-
cally “all-relevant” environmental covariates. Secondly, use was made of multicollinearity
analysis for the removal of highly correlated variables from the modeling process in order
to enhance the prediction’s performance [28]. The Boruta algorithm can detect linear and
nonlinear relationships among CEC, clay activity, and environmental covariates as it is
based on a random forest (RF) classification algorithm [29]. Therefore, the Boruta algorithm
can provide five random probes acquired by shuffling the environmental covariate values
to reduce their collinearity with dependent variables (i.e., CEC and clay activity). Then, RF
regression is implemented on the combination of the environmental variable and random
probes; each variable’s importance can determine the Z score. Subsequently, identification
of the maximum Z score is performed among the random probes (MZRPs); this can act as a
reference to find if an environmental variable is relevant to the activity of CEC and clay with
a two-sided test of equality. The environmental covariates with Z scores were considered
the relevant variable significantly more than MZRPs [30]. A complete account of the Boruta
algorithm can be seen in Xiong et al. (2014). The Boruta package [30] was applied to
implement the Boruta “all-relevant” searching method in the R statistical software [31].

2.4. Modeling Approaches

As mentioned above, in this study, three categories of variables were used as the
input variables for predicting CEC and clay activity. In particular, we examined four
techniques; these included k-nearest neighbors (kNNs), support vector machines (SVMs),
random forest (RF), and Cubist (Cu) models. The k-nearest neighbor (kNN) algorithm is
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regarded as a nonparametric learning cornerstone. Due to its simplicity and flexibility,
such procedures are selected in many scenarios, especially in settings where a complex
underlying model is the case (for more details, see [32]). Support vector machines (SVMs)
are regarded as state-of-the-art neural network technology, which is based on statistical
learning [33]. SVMs use a linear model to implement nonlinear class boundaries through
the input vector’s nonlinear mapping into a high-dimensional feature space. The linear
model, which is developed in the novel space, can display a nonlinear decision boundary
in the original space (see details in [33]). Random forest (RF) is considered a classifier or
regression model consisting of many decision or regression trees. Every tree is dependent
on the values of a random vector sampled independently and with one single distribution
for all trees in the data (see details in [34]). Cubist is considered as a Quinlan’s M5 model
tree extension [35], just like common regression trees, with the exception that the leaves
are some sort of linear regression of the covariates. In Cubist, the prediction is on the
basis of linear regression models rather than discrete values (see details in [36]). The
implementation of feature selection and modeling was performed done by applying the
“Boruta” and “caret” packages in R 3.5.2 [31], respectively.

2.5. Assessment of Models

A ten-fold cross-validation approach involving ten replications was applied to evaluate
the four models’ prediction performance [37]. All of the models were assessed based on the
common performance metrics: mean absolute error (MAE), root mean square error (RMSE),
coefficient of determination (R2), squared correlation coefficient (r2), Lin’s concordance
coefficient (rhoC), ratio of performance to deviation (RPD), and ratio of performance to
interquartile distance (RPIQ).

MAE =
1
N ∑N

i=1[ |Z(Xi)− Z∗(Xi)|] (1)

RMSE =

[
∑N

i=1[Z(Xi)− Z∗(Xi)]
2

N

]1/2

(2)

RPD =

√
∑n

i=1

(
Z(Xi)− Z(X)

)2

√
∑n

i=1(Z∗(Xi)− Z(Xi))
2

(3)

RPIQ =
(Q3(obs)−Q1(obs))√

1
n ∑n

i=1 ∑n
i=1 (obsi − pred)

2
(4)

In the above, Z∗(Xi) and Z(Xi) refer to the predicted and observed values, respectively;
N stands for the number of the measurement; Z(X) denotes the observed value average;
µobs and µpred indicate the means of observed and predicted values; ∂2

obs and ∂2
pred represent

the corresponding variance; r signifies Pearson’s correlation coefficient between observed
and predicted values, Q1(obs) and Q3(obs) are regarded as the first (25%) and third (75%)
quantiles of the observations, and Q3(obs)−Q1(obs) displays the interquartile distance.
According to validation metrics, lower ME and RMSE and higher R2, CCC, RPD, and
RPIQ values can indicate a more desirable model performance and correct calculation with
less error. RMSE and MAE can make the diagnosis of the error variations in predictions.
Moreover, RPD displays the relative improvement in the modeling process; an RPD value
beyond one shows the model’s improvement [38].

3. Results and Discussion
3.1. Variability of CEC, Soil Properties, and XRD Analyses

Descriptive statistics of CEC show that this variable ranged from 11.15 to 50.83 cmolec
kg−1, with a range of 39.68 cmolec kg−1. The skewness value of 0.60 confirmed the normal
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distribution of CEC in the study area (Table 2). Soil organic carbon (SOC) varied from 0.33
to 6.63%, with a high CV value (CV = 68.75%) because of the high variation in land uses
and management practices. pH values varied from 6.72 to 7.78 with a mean of 7.32 and
low variation (CV = 3%). The studied soils are not saline, and the mean of EC is about
0.23 dS m−1 due to relatively high precipitation related to arid regions.

Table 2. Descriptive statistics of some soil properties in the given study area (N = 97).

Variable Unit Min Max Mean SD CV (%) Skewness Kurtosis

SOC % 0.33 6.63 0.96 0.66 68.75 6.59 54.59
CEC cmolec kg−1 11.15 50.83 25.75 7.02 27.26 0.60 0.76
pH −log[H+] 6.72 7.78 7.32 0.22 3.00 −0.17 0.25
EC dS m−1 0.09 0.69 0.23 0.10 43.47 2.84 9.20

SOC: Soil organic carbon; CEC: Cation exchange capacity; EC: Electrical conductivity; SD: Standard deviation; CV:
Coefficient of variation.

The high variation of soil CEC (CV = 27.26%) in the given area (Table 2) could be
mainly attributed to various contributions of clays with different activities in different
locations. According to the results of the XRD analysis, the most active soil in the studied
area with CEC = 38.7 cmolec kg−1 and clay activity (CA = 2.85) comprised high relative
contents of vermiculite (d-space = 14 ◦A with MgCl2 and 15.5 ◦A, following ethylene glycol
treatment and a complete collapse after KCl treatment to 10 ◦A) (see Figure 3a). Vermiculite
clay normally has a CEC between 130 and 210 cmolec kg−1, with a significant contribution
to leading to high CEC. Other important clays with a lower contribution in this soil were
illite and kaolinite. In the second group of soils in the area with CEC around 26 cmolec
kg−1 and CA = 1.5, the predominant clays were vermiculite and montmorillonite (Peak
17 ◦A following EG treatment), chlorite, illite, and kaolinite (Figure 3b). It is well known
that montmorillonite has lower CEC than vermiculite, around 70–1520 cmolec kg−1 [39]. In
the third group with the lowest CEC and CA, 18.3 cmolec kg−1 and 1.02, respectively, lower
vermiculite was observed with no evidence of montmorillonite and the higher contribution
of chlorite, illite, and kaolinite (Figure 3c). Obviously, kaolinite (1–15 cmolec kg−1), illite
(10–40 cmolec kg−1), and chlorite (10–40 cmolec kg−1) have a low cation exchange capacity
when compared to montmorillonite and vermiculite [39].
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pH -log[H+] 6.72 7.78 7.32 0.22 3.00 -0.17 0.25 
EC dS m−1 0.09 0.69 0.23 0.10 43.47 2.84 9.20 
SOC: Soil organic carbon; CEC: Cation exchange capacity; EC: Electrical conductivity; SD: Standard 
deviation; CV: Coefficient of variation. 
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locations. According to the results of the XRD analysis, the most active soil in the studied 
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treatment and a complete collapse after KCl treatment to 10 °A) (see Figure 3a). Vermicu-
lite clay normally has a CEC between 130 and 210 cmolec kg−1, with a significant contribu-
tion to leading to high CEC. Other important clays with a lower contribution in this soil 
were illite and kaolinite. In the second group of soils in the area with CEC around 26 
cmolec kg−1 and CA = 1.5, the predominant clays were vermiculite and montmorillonite 
(Peak 17 °A following EG treatment), chlorite, illite, and kaolinite (Figure 3b). It is well 
known that montmorillonite has lower CEC than vermiculite, around 70–1520 cmolec kg−1 
[39]. In the third group with the lowest CEC and CA, 18.3 cmolec kg−1 and 1.02, respec-
tively, lower vermiculite was observed with no evidence of montmorillonite and the 
higher contribution of chlorite, illite, and kaolinite (Figure 3c). Obviously, kaolinite (1–15 
cmolec kg−1), illite (10–40 cmolec kg−1), and chlorite (10–40 cmolec kg−1) have a low cation 
exchange capacity when compared to montmorillonite and vermiculite [39]. 
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Figure 3. X-ray diffractograms of the clay fraction in three selected soils with various CEC content,
(a) soil sample with CEC = 38.7 cmolec kg−1, CA:2.85; (b) soil sample with CEC = 26.7 cmolec kg−1

CA:1.51; (c) soil sample with CEC = 18.3 cmolec kg−1, CA:1.02.

3.2. Modeling and Spatial Prediction of CEC

The present study used three input auxiliary variables and cation exchangeable ca-
pacity (CEC) as three machine learning methods and modeled the target variable, which
included kNN, SVM, RF, and Cu models. In the first stage, to find the most important
variables that could control the variability of CEC, feature selection was performed by the
Brouta approach. Given input variables, some methods had to be developed to minimize
and optimize the input attributes or feature selection process [40]. As presented in Figure 4,
the feature selection results show that among the topographic attributes, valley depth,
elevation, slope, terrain ruggedness index (TRI), MRVBF (Multiresolution valley bottom
flatness index), and effective airflow heights were the most important ones. In regard to the
remote sensing indices, the ferrous minerals index, Band 1, Band 3, gossan, ferric oxide in-
dex, normalized difference moisture index (NDMI), salinity index, and shortwave infrared
(SWIR) were the most imperative. Among the top twenty important variables, geology as
the thematic map was identified, and geomorphology did not make any contribution.
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The most important parameters of the studied models for the prediction of CEC in
the considered study area by the four selected models are presented in Table 3. For the
kNN model, the best-fitted k was obtained at 19. For the RF model, ntree and mtry were
obtained at 550 and 5, respectively; regarding the SVM model, sigma and C were obtained
at 0.3744 and 0.5, respectively. Finally, for the Cu model, committees and neighbors were
10 and 0, at the best run, respectively.

Table 3. The best model parameters for predicting CEC in the study area.

Model kNN RF SVM Cu

Parameter k ntree mtry sigma C committees neighbors

Value 19 550 5 0. 3744 0.5 10 0

The average validation criteria for cation exchange capacity (CEC) prediction in the
studied area are represented in Table 4. Among the employed models in the training
dataset, the most and least accuracy was obtained by the RF and kNN models for predicting
soil CEC. Among the four selected models, the following performance was achieved in
ranking: RF > SVM > Cu > kNN. In this stage, RF with R2 = 0.86, RMSE = 2.74 cmolec
kg−1, and RPIQ = 3.74 had the best performance. Contrary to the validation results, the
most precise and accurate model in the validation dataset was the Cu one with R2 = 0.49,
RMSE = 4.51 cmolec kg−1, and RPIQ = 1.71. In this stage, similar to the training stage, kNN
showed the least performance with R2 = 0.19, RMSE = 5.72 cmolec kg−1, and RPIQ = 1.34.
The applied models thus showed the following performance ranks in this step: Cu > RF >
SVM > kNN.
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Table 4. Performance results of the applied models to predict CEC and clay activity in the study area
(bold values indicate high model performance).

Model
Training Validation

ME RMSE r2 R2 rhoC RPD RPIQ ME RMSE r2 R2 rhoC RPD RPIQ

RF 0.01 2.74 0.93 0.86 0.9 2.67 3.74 −0.7 5.15 0.41 0.34 0.43 1.25 1.49
SVM −0.52 4.47 0.67 0.62 0.73 1.64 2.3 −1.29 5.35 0.34 0.29 0.45 1.21 1.44
kNN 0.59 6.38 0.24 0.23 0.36 1.15 1.61 −0.49 5.72 0.19 0.18 0.32 1.13 1.34
Cu −0.11 4.89 0.56 0.55 0.68 1.5 2.1 −1.02 4.51 0.53 0.49 0.64 1.43 1.71

The bold showed the highest performance for models.

According to Zeraatpisheh et al. (2019), although some models displayed a higher
performance in the training dataset, lower performance in the validation dataset was
observed [16]. The RF performance was poorer with RMSE = 5.15 cmolec kg−1 and R2 = 0.41
in the validation subset, as compared to that in the training subset with RMSE = 2.74 cmolec
kg−1 and R2 = 0.86. Similarly, Zeraatpisheh et al. (2019), in estimating a calcium carbonate
equivalent in central Iran, reported similar findings in regard to shifting the performance
of RF models in calibration and validation datasets [16]. In general, both in training and
validation datasets, RF was performed successfully to predict the soil CEC. Several scholars
have reported the high capability of the RF model for predicting soil properties using
auxiliary environmental variables [41,42]. While the model’s performance is dependent
on several items, such as the target variable, number of field observations, input variables
resolution, soil samples density, and auxiliary covariates type [43], it seems that in a similar
environment with one hundred samples, the RF model could perform reliably. Figure 5
illustrates the relationships between observed and predicted soil CEC for the training as
well as validation subsets. Excellent agreements were found in the training dataset; there
was also a good agreement in the validation subsets for random forest (Figure 5a). In
addition, the relationships between observed and predicted CEC values by the Cu model
are presented in Figure 5b.
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Figure 5. Observed CEC values versus the predicted values by RF model (a) and Cu model (b) in the
training and testing datasets.

Overall, in the calibration step, the best model explained about 86% and 50% of the
variability of CEC for the studied area in the validation stage. Although the RF model, as
the nonlinear model might extract the nonlinear relationships between input and target
variables, the evaluation of the capability of other nonlinear models, such as artificial neural
network (ANN) or ensemble models, is suggested. On the other hand, several scholars have
used various auxiliary variables to predict soil properties [44]. These variables presumably
show the soil-forming factors controlling the variation observed in soil properties, such
as soil CEC. Therefore, it seems that including other auxiliary covariates, such as legacy
soil data and vis-NIR spectroscopy, could improve the model’s performance, which needs
further investigation.

The best model (RF) was used for the preparation map of the soil CEC in the given
studied area. Figure 6 illustrates the CEC distribution throughout the study area. However,
the uncertainty map of prediction by the RF model is presented in Figure 6. The lowest
CEC values were observed in the study area’s southwestern, north, and northeastern parts.
The occurrence of the lowest CEC in the southwestern coincided with high altitude and
mountainous areas with the lower clay and organic matter in the study area. While soils
in the north and northeastern belong to Quaternary deposits, they are almost in the flood
plain and have recent deposits with coarser particles and lower soil development. Lower
soil evolution in these parts mainly led to the occurrence of clays with lower CEC, such as
mica and chlorite [45]. However, the highest values were observed in the center towards
the southern parts of the study area, which were dominantly covered by early Quaternary
deposits. It seems, therefore, that soil CEC was enhanced in the early Quaternary deposits
with a higher degree of soil development and the formation of smectite [46].
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3.3. Variable Important Analysis

The results of the important variable analysis for two training and validation datasets
are presented in Figure 7. As shown, the RF model was the best for the training dataset, and
the Cu model was the same for the validation dataset. Valley depth derived from DEM was
identified as the most important variable explaining the variability of CEC in the study area.
The calculation of valley depth is according to the difference found between the elevation
and a given interpolated ridge level. Ridge level interpolation applies the algorithm, which
is conducted in the ‘Vertical Distance to Channel Network’ tool [47]. Valley depth, as
the relative position of the valley, controls the variability of soil particles and soil organic
matter influenced by soil erosion and deposition. Therefore, this topographic attribute
seems to affect the soil CEC negatively; with increasing distance from the bottom of the
valley, CEC is reduced. Significant and negative linear relationships were found between
this topographic attribute and CEC (r = 0.53, p < 0.01) (Figure 7a). Following valley depth,
elevation was recognized as the most significant variable. As mentioned in Section 3.2, the
lower the CEC observed, the higher the elevated sites.
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The slope significantly contributed to training and validation datasets in the latter
ranking. Slope and topography could significantly contribute to the soil detachment
variability in the landscape [48,49], and soil properties along the landscape are affected. On
the higher slope, fine particles and soil organic matter are migrated from the surface soils
and translocated to lower positions in the landscape. Therefore, lower CEC is expected in
higher slopes, as confirmed by the results in Figure 8b. A positive relationship between clay
content and CEC (R2 = 0.l569, p < 0.05) is presented in Figure 8c, indicating the effects of
clay content on soil CEC. Furthermore, the translocation of fine clays with higher CEC, such
as smectites derived from soil redistribution along the landscape and their accumulation in
lower areas, may significantly contribute to increasing CEC. Moreover, in these parts of the
area, cultivation activities and the application of manure promoted soil organic carbon. Soil
organic carbon (SOC) has significant and well-known impacts on the enhancement of the
cation exchange capacity of soils. A larger SOC concentration is commonly associated with
a higher CEC [50]. A positive and significant relationship (R2 = 0.1024; p < 0.05) between
SOC and CEC, as shown in Figure 8d, confirmed this speculation.
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Figure 8. Relationships between some environmental variables and soil proprieties with CEC content
in the study area. (a) valley depth vs. CEC, (b) slope vs. CEC, (c) clay vs. CEC, and (d) SOC vs. CEC.

Among the remotely sensed indices, the ferric oxide index (SWIR1/NIR, see Table 1),
ferrous mineral (SWIR1/NIR+Red), salinity index, and normalized difference moisture
index (NDMI) were identified as the most influential variables. Considering the involved
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spectrum bands in the indices, most of them were associated with soil clay behavior,
regarding the higher anions and cations and much more moisture content. Therefore, some
scholars developed soil moisture indices derived from hyperspectral data to improve the
estimation of soil clay and soil organic carbon [51–53]. However, further investigation is
still required to explore the conceptual effects of CEC on these indices.

4. Conclusions

This study, as one of the first attempts to predict CEC in an arid as well as semiarid
region, was performed to investigate the capability of four machine learning models and
the use of some auxiliary environmental variables in the west of Iran. CEC values varied
from 11.15 to 50.83 cmolec kg−1 with a range of 39.68 cmolec kg−1. The high variation of
soil CEC in the study area could be mainly attributed to various contributions of different
clays with different activities in diverse locations. According to the results of the X-ray
analysis, clay types varied from low activity, such as illite and chlorite, to high ones, such as
vermiculite and smectite. The modeling results also show that RF could be the best model
in the training dataset by explaining about 86% of the variability of CEC in the given study
area. On the contrary, the Cu model had the highest performance in the validation dataset.

Meanwhile, kNN had an inferior performance in both datasets. According to the
variable importance analysis, valley depth, elevation, and slope from the topographic
attributes could show the impacts of soil redistribution along the landscape as induced
by soil erosion and deposition. Spatial distribution derived by the best machine learning
model showed that the early Quaternary deposits in the study area center with high soil
development degree had the highest CEC values. In contrast, shallow and undeveloped
soils in the mountainous sites had the lowest values. For future studies, it is recommended
to use other powerful machine learning models and additional auxiliary variables, such as
oil legacy data and vis-NIR spectroscopic data, to improve the prediction accuracy.
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