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Abstract: This paper discusses an active droplet generation system, and the presented droplet
generator successfully performs droplet generation using two fluid phases: continuous phase fluid
and dispersed phase fluid. The performance of an active droplet generation system is analysed based
on the droplet morphology using vision sensing and digital image processing. The proposed system in
the study includes a droplet generator, camera module with image pre-processing and identification
algorithm, and controller and control algorithm with a workstation computer. The overall system
is able to control, sense, and analyse the generation of droplets. The main controller consists of a
microcontroller, motor controller, voltage regulator, and power supply. Among the morphological
features of droplets, the diameter is extracted from the images to observe the system performance.
The MATLAB-based image processing algorithm consists of image acquisition, image enhancement,
droplet identification, feature extraction, and analysis. RGB band filtering, thresholding, and opening
are used in image pre-processing. After the image enhancement, droplet identification is performed
by tracing the boundary of the droplets. The average droplet diameter varied from ~3.05 mm to
~4.04 mm in the experiments, and the average droplet diameter decrement presented a relationship
of a second-order polynomial with the droplet generation time.

Keywords: active droplet generation; droplet microfluidics; performance analysis; computer vision;
image processing; lab on a chip

1. Introduction

Virus and bacteria identification has been challenging yet lifesaving throughout the
entire lifespan of humans. The recent COVID-19 pandemic has specified the necessity of
fast, reliable, and low-cost diagnostic tools and techniques. Microelectromechanical systems
(MEMS) based point-of-care (POC) devices show a promising future in satisfying the earlier
requirements. Lab-on-a-chip (LOC) devices are chips developed on the micro and nanoscale,
capable of performing laboratory functions on biomolecular samples such as blood, urine,
sweat, and sputum. Such devices can sense, control, and actuate on the micro-scale [1].
Therefore, these devices are identified as POC devices capable of performing laboratory
tests at the point of diagnostics. The literature presents comprehensive studies on the
designing and development of LOC devices capable of performing various functionalities
required for pathology detection, cell analysis, particle manipulation, advanced drug
delivery systems, and other biomedical applications [2]. Requiring small amounts of
samples and detection reagents, precise control over the cellular environment, and a
higher degree of portability are the significant advantages of LOC devices [3]. Lower
power demand, the minimisation of waste production, the reduction of operation cost,
the capability to obtain accurate results within a short period of time, and minimising
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the human interactions by automating the testing process are additional benefits [4]. To
perform complicated laboratory functions, the microfluidic devices require complex channel
arrangements and geometries which are not feasible with the available microfabrication
techniques. Small variations in microscale geometric parameters of LOC devices due
to limitations imposed by microfabrication techniques, low signal-to-noise ratio due to
high solvent dilutions, and interference of dominant features such as capillary forces
and surface roughness with the reaction process may result in poor performance of the
device [5]. Several key areas related to LOC devices identified in the literature are presented
in Figure 1.
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Since the biomolecular samples in the fluid phase are processed in LOC devices, mi-
crofluidic plays a major role in LOC devices. Microfluidics is a large area that deals with
systematics control and manipulation of miniature fluid volumes on a micro-scale. Prelimi-
narily, microfluidics is divided into two; continuous-flow microfluidics and droplet-based
microfluidics [6]. In continuous-flow microfluidics, fluids are guided inside microchannels
while maintaining the continuity of the flow. Continuous flows are used in microfluidic
mixers to investigate the viability of cells (e.g., endothelial cells in different concentra-
tions of glucose and phosphate-buffered saline) [7], segmented continuous-flow multiplex
polymerase chain reaction [8], inertial microfluidics for bioparticle focusing and separa-
tion [9], and to perform microfluidic sieving to separate target red-fluorescent proteins in
protein mixtures [10]. Droplet-based microfluidics deals with generating and manipulating
discrete minute-scale fluid volumes through immiscible multiphase flows inside microchan-
nels. It has advantages in miniaturisation, compartmentalisation, and parallelisation [11].
Droplet-based microfluidics is dominant in detecting molecules with a higher sensitivity
and throughput in single-molecule experiments (e.g., fluorescence polarisation immunoas-
say to determine angiogenin concentration) [12], developing a microfluidic platform to
identify bacteria (e.g., Escherichia Coli in water) [13], cell biology to produce artificial lipid
bilayers [14], and to engineer polymeric microcapsules [15]. Droplet generation is essential
in droplet microfluidic systems where precise sample preparation and controlled trans-
portation are required. Generally, the droplet generation consists of four stages; lagging,
filling, necking, and detachment [16]. Common methods studied for droplet generation
are geometry-based, aspiration-based, slip-chip and digital microfluidic methods such as
electrowetting, dielectrophoresis, opto-electrowetting, thermos-capillary effect and surface
acoustic waves [17–19]. The geometry-based method utilises the geometric arrangement of
the microchannels to generate droplets. Cross-flow, flow-focusing, and co-flow are three
geometric arrangements widely used in the literature [20]. The droplet generators are
categorised into two classes: active and passive devices. Active devices use external forces
to drive the flow, and no external forces are used in passive devices. Comparatively, active
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devices provide higher controllability because of the ability to regulate using external forces
precisely [21].

Among the various detection techniques used on the macro-scale, several mechanical,
chemical, optical, electrochemical, and nanomaterials-based techniques are applicable on
the micro-scale to perform object identification and feature extraction in LOC systems [22].
The wide range of applications has resulted in a spectacular technological advancement
of these techniques. Optical sensing is a technique in which an electromagnetic wave or
a change of electromagnetic wave is converted to an electrical signal to acquire data [23].
Optical sensing is widely applied in microfluidic research because of the ability to sense
in real-time and the higher degree of accessibility to required hardware such as micro-
scopes, cameras (both CCD and CMOS), and most recently, smartphones. The simplicity
of interfacing such hardware together with microfluidic systems has enabled methods
such as fluorescence detection, colourimetric detection, chemiluminescence detection, in-
terferometric detection, and surface plasmon resonance-based detection [24]. The most
common method, fluorescence detection, is based on the absorption and emission of light
energy from the particles under investigation, and this method is utilised as a real-time and
endpoint sensing technique. Recently, fluorescence detection-based POC devices integrated
with internet of things (IoT) technology to diagnose infectious diseases and monitor their
spread have been reported [25]. In addition, quantum dot-based sensing techniques have
been used to develop paper-based analytical devices, and these nanoparticles allow for
the accurate tracking of bioparticles [26]. Vision sensing is a branch of optical sensing
which involve data acquisition using a camera module, data processing, and analysis of the
captured image. The advancements in electronics, manufacturing, and computational abil-
ity have enabled vision sensing applicable for miniaturised systems, such as microfluidic
devices [27]. Vision systems and algorithms can perform multiplex operations accurately
with a fast response time and high sensitivity and acquire detailed data with minimum
hardware interactions with other components in a non-contact manner [28]. Digital Image
Processing (DIP) techniques can extract single or multiple features using a digital image [29],
which is highly beneficial in object identification. Hence, it is required to perform complex
data analysis procedures to analyse the acquired information [30]. DIP is performed at
several stages: image acquisition, enhancement, segmentation, feature extraction, and
analysis using appropriate techniques suitable for the applications. Various algorithms
to perform morphological analysis on droplet images are reported in the literature [16].
Droplet generation systems are characterised using the features of the generated droplets.
The droplet size is most commonly considered the governing parameter in analysing a
droplet generation system’s performance [31]. Table 1 presents features of objects which
are identified in droplet images using DIP.

Table 1. Identifiable features using DIP techniques.

Feature Identification

Size [32] Eccentricity [33] Gradient [34] Concavity [35] Projected Surface Area [36] Sphericity Index [37]
Symmetry [38] Roundness [39] Border [40] Radius [41] Membrane Surface Area [42] Contrast Variations [30]

Shape [43] Elongation [44] Saturation [45] Volume [38] Sphericity Coefficient [46] Form factor [47]

Precise droplet production and manipulation are critical in droplet-based bioassays.
Droplet-based analytical devices have demonstrated promising results, but most systems
are trained to generate predefined droplets, and the devices are incapable of adapting to
performing complex bioassays which require step-by-step processing. On-demand droplet
generation systems are important in this regard for applications which specifically deal
with extremely dilute samples [48]. Previously discussed on-demand droplet generation
systems are developed using expensive hardware and software which are not accessible in
general-purpose laboratories. In this study, we investigated a low-cost system feasible with
a microfluidic droplet generator fabricated using a laser-based fabrication technique, an in-
house developed controller, an experimental setup with fluidic and electrical connections,
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and control software for the performance analysis using DIP. We have conducted an
experimental performance analysis using the droplet size on a geometry-based active
droplet generator to understand the system’s behaviour. A powerful technique, vision-
based non-contact sensing followed by DIP, is used for data acquisition and processing. In
a geometry-based microfluidic droplet generator, the geometric parameters of the device
significantly affect the droplet generation process [49]. Therefore, it is of utmost importance
to study the behaviour of the droplet generation system, specifically the variation of droplet
size with time. Based on that study, the droplet generation system can be characterised and
further investigate the suitability for on-demand droplet generation.

2. Materials and Methods
2.1. Proposed System

As shown in Figure 2, the proposed hardware configuration consisted of a droplet gen-
eration geometry, two reservoirs, two submersible pumps, fluid supply tubes, a controller,
a camera, and a workstation computer.
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2.1.1. Droplet Generator

The droplet generator used in this study was based on flow-focusing geometry, and the
device was previously developed by the research group [50]. The laser machining technique
was used to fabricate the layers of the design, and polymethyl methacrylate (PMMA) was
used as the material. Finally, the layers were assembled using a thermal bonding process.
As shown in Figure 3, the droplet generator included two inlets, one for each fluid phase
and an outlet channel having a width of 6 mm to guide the fluid flow for further observation
and analysis. As illustrated in the inset image, the height of inlet channels, outlet channel,
and contraction geometry was 1 mm. The contraction geometry was designed with a
reduction of the channel width, and it directly affected the droplet formation process. All
of the dimensions were obtained using numerical simulations [49,50].
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2.1.2. Controller and Control Algorithm

The controller consisted of a microcontroller, dual-channel H-bridge motor driver,
voltage regulator, and a power supply. The control algorithm was deployed in a workstation
computer to control the system. The control signal was transmitted to the microcontroller,
and the subsequent output signal was transmitted to the submersible pumps through the
motor controller outputs. Figure 4a shows the wiring diagram of the controller, whereas
Figure 4b represents the assembled controller.
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ATmega328P-based microcontroller drove the direct current (DC) motors inside the
submersible pumps. The dual-channel H-bridge motor driver drove the DC motors, and the
motor driver controlled the motor speed. A power supply with an AC-DC converter was
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selected to obtain a 12 V DC supply from a 230 V input. The voltage regulator modulated
12 V DC input in a range from 1.1 V to 12 V. Two centrifugal-type submersible pumps
were placed inside the reservoirs. Two pumps must be independently controlled to supply
continuous phase and dispersed phase fluids at different flow rates, which was essential in
obtaining the required flow rate ratios for droplet generation. MATLAB software with the
Arduino hardware support package [51] was used to deploy the control algorithm to receive
user inputs and transmit the control signal to the microcontroller. The microcontroller
generated the pulse width modulation (PWM) signal to control the motor controller. The
output signals of the motor controller were generated separately at two output channels
to regulate the flow rate of the pumps resulting in a controlled fluid flow towards the
droplet generator.

2.2. System Architecture

The proposed system architecture for the study’s performance analysis consisted
of steps belonging to the two major subsystems (shown in Figure 2); the active droplet
generation and vision systems. Figure 5 shows the steps of controlling the active droplet
generation and vision-based droplet identification systems.

Sensors 2022, 22, x FOR PEER REVIEW 6 of 17 
 

 

the motor driver controlled the motor speed. A power supply with an AC-DC converter 
was selected to obtain a 12 V DC supply from a 230 V input. The voltage regulator mod-
ulated 12 V DC input in a range from 1.1 V to 12 V. Two centrifugal-type submersible 
pumps were placed inside the reservoirs. Two pumps must be independently controlled 
to supply continuous phase and dispersed phase fluids at different flow rates, which was 
essential in obtaining the required flow rate ratios for droplet generation. MATLAB soft-
ware with the Arduino hardware support package [51] was used to deploy the control 
algorithm to receive user inputs and transmit the control signal to the microcontroller. 
The microcontroller generated the pulse width modulation (PWM) signal to control the 
motor controller. The output signals of the motor controller were generated separately at 
two output channels to regulate the flow rate of the pumps resulting in a controlled fluid 
flow towards the droplet generator. 

2.2. System Architecture 
The proposed system architecture for the study’s performance analysis consisted of 

steps belonging to the two major subsystems (shown in Figure 2); the active droplet gen-
eration and vision systems. Figure 5 shows the steps of controlling the active droplet gen-
eration and vision-based droplet identification systems. 

 
Figure 5. Control architecture of the system. Figure 5. Control architecture of the system.

As explained previously, the droplet generation system was deployed based on the
PWM values. The vision system was deployed based on time, and it was initiated after
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an interval to provide an adequate time for the system to stabilise. The captured images
were stored in the internal storage of the workstation computer, and then the images were
processed to analyse the performance of the active droplet generation system.

2.3. Vision-Based Droplet Identification and Feature Extraction

Image acquisition was integrated with the control algorithm of the active droplet
generation system. Therefore, once the droplet generation was initiated, the algorithm
could acquire images in real-time and store them throughout a given interval. The images
were captured with a resolution of 640× 480 using a CMOS-based camera module mounted
above the output channel of the droplet generator. As a result, the images were captured
from the top view.

2.3.1. Pre-Processing Droplet Images

The droplet identification algorithm used several filtering and thresholding steps to
isolate and differentiate droplets by reducing background noises. Band filtering, binary
conversion, thresholding, and opening techniques were used. Band filtering is based on
extracting red, green, and blue colour bands from an RGB image to enhance the features
in the image. Different band images assist in object identification depending on the back-
ground colour and the object colour. Then, the band image was converted to a binary
form: a matrix having values between 1 and 0 depending on the brightness. Assuming
the resolution of the images captured using the camera is M × N, the RGB format of the
image was represented by a three-dimensional matrix of size M × N × 3. The third
dimension represents details of the image’s red, green, and blue segments. The three colour
layers of the RGB images were extracted to identify the suitable band image for further
processing. Then, the band image was converted to a binary image. Equation (1) defines
the threshold method:

BI(x, y) =
{

RBI(x, y) ≥ ThrV 1
RBI(x, y) < ThrV 0

(1)

RBI was the band image which was the input image. The pixel position was repre-
sented using x and y coordinates towards the row and column directions. ThrV was the
thresholding value, and BI was the binary image generated by the binarization algorithm.
A threshold value was required to separate pixels that belonged to the droplets and the
background. In image processing, morphological operations such as erosion, dilation, open-
ing, and closing provided the capability of removing imperfections in the input images [52].
In this study, the opening operation, which is a combination of erosion and dilation, was
used to remove the noises, and Equation (2) describes the opening of an input image (A) by
a structuring element (B):

A o B = (A 	 B) ⊕ B (2)

2.3.2. Identification of Droplet Boundary

Moore-neighbourhood and von Neumann neighbourhood are the two most com-
mon approaches based on cellular automata to define the neighbourhood for boundary
tracing [53]. In this study, the Moore-neighbour tracing algorithm (MNTA) followed by
Jacob’s stopping criterion was implemented to trace the boundary of each droplet [54].
Moore-neighbourhood (NM) of range ‘r’ for a set of pixels surrounding a given pixel at
(x0, y0) coordinates is given by the Equation (3):

NM
(x0,y0)

= { (x, y) : |x− x0| ≤ r, |y− y0| ≤ r } (3)

In MATLAB, MNTA is deployed based on 8 connected pixels surrounding a given
pixel (P). In identifying the boundary of a droplet, MNTA scans the Moore-neighbourhood
searching for a white pixel. Initially, the image segment was scanned in sequential order
until a white pixel was found. After a white pixel was found in the Moore-neighbourhood,
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that white pixel was set as the pixel P. The scanning process restarted on the newly defined
Moore-neighbourhood surrounding the pixel P. The stopping criterion played a significant
role in object identification. Jacob’s stopping criterion was used in this work. In Jacob’s
stopping criterion, the scanning algorithm is terminated after entering the starting pixel a
second time in the same way it initially entered.

2.3.3. Extracting Droplet Features for Performance Analysis

Droplet diameter is the morphological feature that was studied in this research. Area
and perimeter values were used to calculate the average diameter to test the system’s
performance. In this regard, the areas of the identified droplets were obtained by counting
the number of white pixels that belong to each droplet separately. The perimeter was also
obtained in pixels. The radius of each droplet in an image was calculated in pixels using
the obtained area and the perimeter separately. The average radius of each droplet was
calculated using the two radius values. The radii values of the droplets in an image were
averaged, and an average droplet diameter value was defined for each image. Finally, the
average droplet diameter values were converted to millimetres by defining the pixel-to-
millimetre ratio based on the outlet channel width (6 mm), which was a known parameter.

2.4. Experimental Setup for Vision-Based Droplet Generation System

The hardware arrangement used for the experiment is shown in Figure 6. Submersible
pumps were attached to each reservoir’s bottom surface, containing continuous phase
(fluid A) and dispersed phase (fluid B). The submersible pumps used in the experimental
setup had a voltage rating of 9 V. However, the voltage regulator was set to 9.4 V to
compensate for the voltage drop in the voltage regulator. Therefore, the PWM value varied
for the voltage range from 0 to 9 V with a resolution of 0.035 V.
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For the experiment, coconut oil having 900 kgm−3 density and 55 cP viscosity was used
as the continuous phase, and water having 1000 kgm−3 density and 1.01 cP viscosity was
used as the dispersed phase. The coloured water was used as the colour difference increased
the capability to differentiate the water droplets from coconut oil flow in image processing.
Since the study was based on the variation of droplet diameters at a given period, the setup
was configured to generate droplets for a fixed time period and capture images.
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2.5. Design and Development of Graphical User Interface (GUI) for Vision-Based
Performance Analysis

The functional requirements of the overall setup and the related features in the devel-
oped software are shown in Figure 7.
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MATLAB GUI development environment (GUIDE) was used to develop the GUI.
The GUI designed for the experiment is shown in Figure 8, and it was developed with
features to test the droplet generation system separately. Therefore, droplet generation can
be monitored without running an entire experiment. Using the GUI, the pumps could be
tested at full speed or a given PWM value. Additionally, it was possible to reverse the fluid
flow, which allowed the system to remove the fluid inside the channels and the droplet
generator to reduce the stagnation of debris in the device, as it caused errors in experiments.
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3. Results and Discussion

At first, a droplet generation experiment was carried out for 45 min to observe the
camera’s performance, the effect of the lighting in the laboratory environment, and the
quality of the acquired images. Starting at t = 15 s, the images were captured at 15 s
intervals. Figure 9 shows images captured at 10 min intervals.
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The resulting images (as shown in Figure 9) convey a visible brightness variation
when the test was carried out over a long period. The lighting conditions affected the
captured images and provided faulty results for a fixed threshold value in image processing.
Therefore, the surrounding lighting conditions were identified as a significant parameter,
and with that consideration, it was carefully controlled to acquire the experimental images.

3.1. Detecting Droplets in a Single Image

The three colour layers of the RGB image are presented as the third dimension of the
M × N × 3 matrices. The original RGB image is shown in Figure 10a, and the extracted
red, green, and blue band segments are shown in Figure 10b–d. Respective histograms are
shown in Figure 10e–h. The red band segment of the RGB image is selected to proceed with
further analysis by observing the band images because the red band segment displays a
clear difference between the pixels that belong to droplets and the background.

In binarization, each pixel’s grey value in the image is converted to a value between 0
and 1. With this, 0 represents black pixels, and 1 represents white pixels. The threshold
value is varied from 0.1 to 0.9 to identify the optimum thresholding value. As shown in
Figure 11, traces of droplets are visible in the range from 0.6 to 0.8, and hence the optimum
thresholding value is identified as 0.7.
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The obtained binary images of the droplets presented with noise caused due to lighting
conditions, tiny water particles in the coconut oil flow, stagnated fluid particles near
the channel walls, and uneven surface properties in the channel walls. Such noises are
identified as small objects and are filtered based on their size. Figure 12 shows the stages of
the opening operation, which reduces unnecessary noises present in binary images.

As shown in Figure 12c, the droplet area is visible; therefore, the droplets are identified
by detecting and tracing the external boundary of the droplets. A region that includes a
segment of the outlet channel of the droplet generator is considered for droplet identifica-
tion, as shown in Figure 13. The pixels belonging to droplets are represented in white, and
the background pixels are black.



Sensors 2022, 22, 6900 12 of 16
Sensors 2022, 22, x FOR PEER REVIEW 12 of 17 
 

 

 
Figure 12. Morphological opening: (a) Binary image; (b) Opening step 1; (c) Opening step 2. 

As shown in Figure 12c, the droplet area is visible; therefore, the droplets are identi-
fied by detecting and tracing the external boundary of the droplets. A region that includes 
a segment of the outlet channel of the droplet generator is considered for droplet identifi-
cation, as shown in Figure 13. The pixels belonging to droplets are represented in white, 
and the background pixels are black. 

 

(a) 

 
(b) 

Figure 13. Droplet identification: (a) Original RGB image; (b) Detected droplets using DIP. 

3.2. Performance Analysis 
The tests were conducted to observe the system’s behaviour and analyse its perfor-

mance for 225 s each at 15 s intervals, and five image sets were selected to process further. 
Figure 14 shows the first (at 15 s), middle (at 120 s), and the last (at 225 s) image of each 
test after the image pre-processing steps. 

Figure 12. Morphological opening: (a) Binary image; (b) Opening step 1; (c) Opening step 2.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 17 
 

 

 
Figure 12. Morphological opening: (a) Binary image; (b) Opening step 1; (c) Opening step 2. 

As shown in Figure 12c, the droplet area is visible; therefore, the droplets are identi-
fied by detecting and tracing the external boundary of the droplets. A region that includes 
a segment of the outlet channel of the droplet generator is considered for droplet identifi-
cation, as shown in Figure 13. The pixels belonging to droplets are represented in white, 
and the background pixels are black. 

 

(a) 

 
(b) 

Figure 13. Droplet identification: (a) Original RGB image; (b) Detected droplets using DIP. 

3.2. Performance Analysis 
The tests were conducted to observe the system’s behaviour and analyse its perfor-

mance for 225 s each at 15 s intervals, and five image sets were selected to process further. 
Figure 14 shows the first (at 15 s), middle (at 120 s), and the last (at 225 s) image of each 
test after the image pre-processing steps. 

Figure 13. Droplet identification: (a) Original RGB image; (b) Detected droplets using DIP.

3.2. Performance Analysis

The tests were conducted to observe the system’s behaviour and analyse its perfor-
mance for 225 s each at 15 s intervals, and five image sets were selected to process further.
Figure 14 shows the first (at 15 s), middle (at 120 s), and the last (at 225 s) image of each test
after the image pre-processing steps.

It was observed that there is a decrement in droplet diameter with time, and the
droplet generation frequency is also decreasing, as shown in Figure 14. Droplet detection
and feature extraction were done for all the 75 images in five image sets to obtain the area
and perimeter of droplets in each image. The average droplet diameter of each image in a
test was observed to have a decrement throughout the experimenting period, and Figure 15
is plotted considering the average of the tests.

The graph shows that the diameter of the generated droplets decreased with the
experiment time in all the tests, and the decrement equates to a second-order polynomial.
In addition, the average droplet diameter is varied in a range from ~3.05 mm to ~4.04 mm.



Sensors 2022, 22, 6900 13 of 16Sensors 2022, 22, x FOR PEER REVIEW 13 of 17 
 

 

 
Figure 14. First, middle, and last image of each experiment. 

It was observed that there is a decrement in droplet diameter with time, and the 
droplet generation frequency is also decreasing, as shown in Figure 14. Droplet detection 
and feature extraction were done for all the 75 images in five image sets to obtain the area 
and perimeter of droplets in each image. The average droplet diameter of each image in a 
test was observed to have a decrement throughout the experimenting period, and Figure 
15 is plotted considering the average of the tests. 

Figure 14. First, middle, and last image of each experiment.
Sensors 2022, 22, x FOR PEER REVIEW 14 of 17 
 

 

  
Figure 15. Time vs. average droplet diameter. 

The graph shows that the diameter of the generated droplets decreased with the ex-
periment time in all the tests, and the decrement equates to a second-order polynomial. In 
addition, the average droplet diameter is varied in a range from ~3.05 mm to ~4.04 mm. 

4. Conclusions 
The active droplet generation system’s performance was considered in this study, 

and the presented experimental setup successfully generated droplets based on the active 
flow-focusing method having two submersible pumps. These two pumps were controlled 
separately to obtain the required flow rate ratios for droplet generation. The control sig-
nals were provided from a GUI to the ATmega328P-based controller. Image processing 
was used to process captured images and to calculate the droplet diameter over five ex-
periments using a total number of 75 images. Band filtering, binarization, thresholding, 
and opening techniques eliminated the background noises and isolated the droplets in an 
image. The red band segment produced during band filtering was used as the input image 
for binarization. 

Furthermore, an optimum threshold value (ThrV) of 0.7 was identified experimen-
tally and used in the binarization algorithm. Boundaries of droplets were traced using 
Moore-neighbor tracing algorithm followed by Jacob’s stopping criterion. The area and 
perimeter of droplets were obtained in pixels to calculate an average droplet diameter in 
pixels. Then, the average droplet diameter values were converted to millimetres at a ratio 
of 17.128 pixels per millimetre, which is obtained using the ‘ImageJ’ software. In the per-
formance analysis of the droplet generator, an average droplet diameter value defined for 
each image and droplet generation frequency had been observed. A decrement in droplet 
diameter and droplet generation frequency was experienced with time. 

According to the results obtained using the aforementioned experimental setup, it 
was realised that several other factors affect the droplet diameter and the generation fre-
quency. The flow rate was not constant even under a fixed voltage supply. In addition, 
the effect of the reservoir head was not negligible as the flow rate depends on the reservoir 
head. The channel surface chemistry, geometry of the microfluidic chip, flow actuation 

3

3.2

3.4

3.6

3.8

4

4.2

0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240

A
ve

ra
ge

 D
ia

m
et

er
 (m

m
)

Time (s)

𝑦 = 2 ×  10ିହ𝑥ଶ − 0.0077𝑥 + 7.5948  𝑅ଶ = 0.9718 

Figure 15. Time vs. average droplet diameter.



Sensors 2022, 22, 6900 14 of 16

4. Conclusions

The active droplet generation system’s performance was considered in this study,
and the presented experimental setup successfully generated droplets based on the active
flow-focusing method having two submersible pumps. These two pumps were controlled
separately to obtain the required flow rate ratios for droplet generation. The control signals
were provided from a GUI to the ATmega328P-based controller. Image processing was used
to process captured images and to calculate the droplet diameter over five experiments
using a total number of 75 images. Band filtering, binarization, thresholding, and opening
techniques eliminated the background noises and isolated the droplets in an image. The red
band segment produced during band filtering was used as the input image for binarization.

Furthermore, an optimum threshold value (ThrV) of 0.7 was identified experimentally
and used in the binarization algorithm. Boundaries of droplets were traced using Moore-
neighbor tracing algorithm followed by Jacob’s stopping criterion. The area and perimeter
of droplets were obtained in pixels to calculate an average droplet diameter in pixels. Then,
the average droplet diameter values were converted to millimetres at a ratio of 17.128 pixels
per millimetre, which is obtained using the ‘ImageJ’ software. In the performance analysis
of the droplet generator, an average droplet diameter value defined for each image and
droplet generation frequency had been observed. A decrement in droplet diameter and
droplet generation frequency was experienced with time.

According to the results obtained using the aforementioned experimental setup, it was
realised that several other factors affect the droplet diameter and the generation frequency.
The flow rate was not constant even under a fixed voltage supply. In addition, the effect of
the reservoir head was not negligible as the flow rate depends on the reservoir head. The
channel surface chemistry, geometry of the microfluidic chip, flow actuation stability, and
total-flow rate ratio significantly affect the uniform and stable droplet generation. Further
studies on controlling the reservoir head and precise microfluidic pumping systems are
required to improve this system to generate uniform droplets at a constant frequency for
extended periods. In addition to that, high-end vision hardware and AI-based feature
extraction and analysis will help to achieve better performance.
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