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Abstract: Most modern vehicles are connected to the internet via cellular networks for navigation,
assistance, etc. via their onboard computer, which can also provide onboard Wi-Fi and Bluetooth
services. The main in-vehicle communication buses (CAN, LIN, FlexRay) converge at the vehicle’s
onboard computer and offer no computer security features to protect the communication between
nodes, thus being highly vulnerable to local and remote cyberattacks which target the onboard com-
puter and/or the vehicle’s electronic control units through the aforementioned buses. To date, several
computer security proposals for CAN and FlexRay buses have been published; a formal computer
security proposal for the LIN bus communications has not been presented. So, we researched possible
security mechanisms suitable for this bus’s particularities, tested those mechanisms in microcontroller
and PSoC hardware, and developed a prototype LIN network using PSoC nodes programmed with
computer security features. This work presents a novel combination of encryption and a hash-based
message authentication code (HMAC) scheme with replay attack rejection for the LIN communica-
tions. The obtained results are promising and show the feasibility of the implementation of an LIN
network with real-time computer security protection.

Keywords: computer security; in-vehicle networking; LIN; encryption; HMAC; microcontroller; PSoC

1. Introduction

The lack of computer security in vehicles’ internal wired communications (CAN,
LIN, FlexRay buses), combined with security flaws in the complex onboard computer’s
operating system and user interface, constitutes a real threat to the safety of the occupants
by means of remote attacks to this computer, which can spread through these buses to the
vehicle’s Electronic Control Units (ECUs). The ECUs control and monitor a wide range of
vehicle systems such as the engine, brakes, tire pressure, door and window control, etc.
This has been an area of concern for several years among researchers, some of whom have
even been able to remotely manipulate certain critical systems of a (physically unmodified)
Jeep vehicle since 2014 [1].

We developed a particular interest in LIN bus’s computer security flaws and re-
searched for a possible solution: adding a computer security layer to protect the messages’
confidentiality, integrity, and authenticity in real-time. This additional security layer could
be implemented by software in each node’s microcontroller firmware, as our tests proved.

In our first paper about the subject, “Towards a Robust Computer Security Layer
for the LIN Bus” [2], we summarized several published computer security proposals for
CAN and FlexRay buses, together with a description of known mechanisms for computer
attacks on vehicles and possible consequences. We also collected a set of proposed and
practical attacks targeting the LIN nodes, highlighting the fact that, to date, no computer
security proposal has been presented for the LIN bus. We outlined the main features
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that would need to be implemented to provide computer security for this bus, such as
encryption and authentication, within the old LIN standard’s data width limitations and
node response time.

In our second paper about the subject, “A Proposal for Data Authentication, Data
Integrity and Replay Attack Rejection for the LIN Bus” [3], we proposed and tested the
usage of a hash-based message authentication code (HMAC), together with a timestamp-
based mechanism, to provide a robust level of integrity protection and authentication for
exchanged data between LIN’s master and slave nodes, and also for protection against
replay attacks. We carried out additional hardware tests about this subject to further
establish the selected HMAC function (Blake2s); these updated results and analyses are
presented here.

In the present article, we detail our search for an adequate encryption algorithm
(cipher) for LIN (considering the LIN frame’s inherent limitations) by means of hardware
encryption performance testing in order to choose an algorithm.

In addition, we detail our design and testing of a prototype LIN network, imple-
menting a subset of frame types and using PSoC development hardware and real LIN
transceivers in order to test the proposed secure communication mechanisms in a more
real-life scenario.

We consider this development of a computer security layer for the LIN bus as a major
contribution to: (a) the confidentiality and integrity protection of the data exchanged
between nodes, and (b) the safety of the vehicle’s occupants. A computer attack over the
vehicle’s inner networks can have a variety of consequences, such as erroneous driving
decisions based on altered or old data, the remote manipulation of doors and windows or
other critical mechanisms such as brakes, etc.

The remainder of this document is structured as follows: Section 2 summarizes the
published proposed computer security systems for CAN and FlexRay and the research on
LIN bus cybersecurity; Section 3 presents an overview of the LIN bus and then presents
a general cybersecurity proposal compatible with the physical layer and the current LIN
data format. Section 4 summarizes the encryption mechanism selected, along with hard-
ware performance testing, as does Section 5, which summarizes the selected hash-based
authentication proposal and its performance testing. Section 6 presents the design and
implementation of a prototype LIN network for testing purposes; finally, Section 7 presents
the conclusions and future lines of work for this proposal.

2. Related Work

Several computer security proposals have been published in recent years, mainly
based on encryption and authentication, for the in-vehicle CAN and FlexRay networks in
order to stop or mitigate dangerous computer attacks on the vehicle’s communications. We
felt that a review of such proposals could be useful for developing a proper one for the LIN
bus; we proceed to summarize these proposals in chronological order.

Vektor Informatik GmbH (2014) presented [4] the development and implementation
of a cybersecurity layer for the CAN-FD bus, based on AES encryption. J.A. Bruton (2014)
proposed [5] a security system using block encryption, HMAC, and authentication for the
CAN bus. Woo et al. (2014) proposed [6] a security layer for CAN, using dynamic key
generation, authentication, 32-bit truncated MAC, and real-time encryption based on AES-
128 encryption. Spaan (2016) presented [7] a summary on attacks on commercial vehicle
models, encryption options, model key exchange, authentication, etc. Fassak et al. (2017)
presented [8] a secure protocol to authenticate ECUs on the CAN bus and establish crypto-
graphic session keys between these units based on elliptic curve cryptography (ECC), with
real-time communication using symmetric cryptography. Siddiqui et al. (2017) proposed [9]
a secure framework for authentication and encrypted end-to-end communication for ECUs,
using ECC and AES-128 and implementing FPGA. Liu et al. (2018) presented [10] the
design, implementation and experimental results of a FlexRay link layer security scheme
based on AES-128 encryption and HMAC authentication based on SHA-1. Alam (2018)
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proposed [11] the use of symmetric key ECC-based Public Key Encryption (PKE) to ensure
confidentiality and the use of digital signatures to ensure integrity and authenticity in
in-vehicle networks; he proposed the adoption of an identity-based access control in the
master ECU and the use of blockchain technology. Püllen et al. (2019) proposed [12] a model
to exploit the optional dual channel mode of FlexRay, providing authentication through
MACs, which is compatible with previous versions of the protocol; several methods of mes-
sage delivery and security mechanisms were discussed. Zhang et al. (2020) presented [13]
a CAN security evaluation tool (“CANsec”) that simulates malicious attacks and supports
several attack vectors and tested it in a Ford vehicle. The same year, Lee et al. [14] proposed
a custom Ethernet/Flexray gateway implemented in FPGA with a “Security Data Trans-
mission Mechanism” to provide computer security to the data exchanged in the gateway.
Luo et al. (2021) introduced a proposal for lightweight frame authentication for the CAN
bus, tested on CAN and microcontroller hardware. Jadidbonab et al. (2022) proposed [15] a
system based on SoC and FPGA technologies in order to add cybersecurity features for the
CAN bus in Connected and Autonomous Vehicles (CAVs).

Regarding the LIN bus and its lack of computer security, there appears not to be
much published research on the subject, nor is there currently a complete security proposal
that we are aware of. In 2017, Takahashi et al. [16] presented a study on vulnerabilities
and computer attacks on the LIN bus. In 2018, Ernst et al. [17] presented a study on the
security vulnerabilities of the LIN bus, exposing problems such as the implementation
of cryptography, the handling of the keys, attacks by means of sleep commands to the
nodes, and intrusion detection; a significant conclusion of the authors is that the LIN bus
is easier to attack than other buses such as CAN and FlexRay due to its physical layer. In
an extensive article (2020), El-Rewini et al. [18] presented up-to-date research that exposes
vulnerabilities in both automotive wired networks (CAN, LIN, FlexRay, MOST, etc.) and
wireless networks (WiFi, cellular, ZigBee, VANET, etc.).

As a conclusion of this section, it can be stated that the CAN and FlexRay buses have
received much attention and the interest of researchers in the computer security field, with
several published cybersecurity proposals for both standards (mostly CAN), while the
LIN bus has been somewhat neglected in this respect. We felt that current microcontroller
technology could allow for a real-time computer security layer for the LIN bus, and the
experimental results confirmed that it is feasible.

3. Securing Communications over the LIN Bus
3.1. LIN Bus Overview

In brief, LIN (Local Interconnect Network) [19] is a serial, master–slave communica-
tions protocol (Figure 1) specifically designed for its application in vehicles and featuring
error-free communication between various electronic components in the vehicle. Despite
its relative age, LIN continues to be widely used in all types of vehicles (over 700+ million
nodes were installed in 2020 [20]), which, in recent years, have experienced a notable
increase in electronic components for the most diverse tasks, such as the control and super-
vision of the engine, brakes, and energy and the management of body electronics (windows,
seats, air conditioning, door security, etc.). In addition, the LIN bus is also being used by
other industries, such as industrial automation (equipment manufacturing, metal-working
machines, etc.). The main features of the bus are as follows:

• Single master node, up to 15 slave nodes; there is no arbitration. This results in a
deterministic network with almost zero risk of collisions between nodes.

• Broadcast communication, bidirectional, half-duplex, one wire, up to 20 kb/s with a
bus length of 40 m.

• Variable data length to be transported, up to 8 bytes.
• Detection of faulty nodes.
• Guaranteed latency times by scheduling the master node.
• Synchronized broadcast reception.
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• Use of synchronization preamble allows for the use of nodes without quartz crystals
or ultra-precise time bases.

• Use of checksum to detect frame errors.
• Ease of use as a subsystem in hierarchical networks.
• Physical layer based on ISO–9141.
• Nominal operating voltage: 12 VDC, 30 VDC max.
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Figure 1. LIN topology, supporting up to 15 slave nodes.

The standard LIN message frame is shown in Figure 2. This frame is divided into the
header (generated by the master node) and response (the slave node’s response, or even
the master node responding to itself for data transmission to slave nodes). The response’s
checksum is eight bits in size.
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Figure 2. Details of the current, unsecured LIN message frame.

There are several types of LIN frames: unconditional, triggered by events, sporadic,
diagnostic, user-defined, and reserved. Communication is managed by the master node,
which publishes the headers in the bus and waits for the responses from the slaves in a
constant loop with very precise timing (based on a time schedule); communication allows
data to be read from slave nodes (for example, originating from sensors connected to them)
and to also drive actuators by writing data to the slaves.

The latest version (2.2A) of the LIN standard does not feature any computer security
provision, which exposes the network to attacks such as those presented in [2]. The node’s
response time (latency) should not exceed 20 ms; any secure LIN communication to be
designed must be able to be processed within that timeframe. Security mechanisms such
as message encryption and authentication are processor-intensive (and, in some cases,
memory-consuming) tasks, out of reach of most of the eight-bit microcontrollers employed
in LIN nodes. Another significant constraint is the size of the node response’s data field
(the message that we aim to secure): a maximum of eight bytes (sixty-four bits). This will
be discussed in the following paragraphs.

3.2. Proposed Secure LIN Communication Mechanism

The added computer security features are to be implemented by developing LIN-
compatible firmware and testing it on prototype nodes, using regular microcontrollers and
SoPC technology.

The goals for our secure LIN communication proposal are as follows: (1) to provide
data confidentiality; (2) to provide data authentication; (3) to provide data integrity, and
(4) to reject replay attacks.

The first goal is covered by means of encryption, which is covered in the next section
of this article. The remaining three goals are covered by means of message authentication
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and are also summarized in this paper by combining the original LIN data to be transmitted
with an original internal node timestamp mechanism detailed in [3].

The LIN standard allows up to eight bytes to be transmitted within the data field
(Figures 3 and 4) at one time. This proposal aims to be compatible as much as possible
with the current standard, so the data securing will be implemented exclusively on the
response’s data field.
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alternate frames.

This raises a problem: it is impossible to fit eight bytes of unencrypted LIN data in
fewer than eight encrypted data bytes, and a message authentication code (MAC) needs a
minimum of four bytes to be of practical security (we want to use a full eight-byte MAC for
added security). Since there is no LIN “superframe” that could fit these 16 bytes to be sent,
we propose two interleaved response frames in sequence, as shown in Figure 4: a 64-bit
encrypted block, followed by the 64-bit HMAC.

The communicating master and slave nodes must keep internal track of which re-
sponse (HMAC data or encrypted data) is being requested/transmitted, which is not a
difficult task to implement. Only after both responses have been received and checked
can the data received be considered valid. We will first discuss the encryption-related
portion of the system. A similar scheme can be used for master-to-slave data frames (LIN
sporadic frames).
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4. Encryption Alternatives and Testing
4.1. Cryptosystems: Overview and Requirements for This Development

As previously established, the confidentiality of the exchanged data between LIN
nodes is achieved by means of real-time encryption and decryption, so an adversary with
unauthorized access to the bus cannot obtain the original data (plaintext) from the en-
crypted data (ciphertext) in a practical manner. A crucial point is the fact that designing a
cryptosystem (or cipher system) for this proposal was pointless, since there are a number
of available, well-designed, and thoroughly tested cryptosystems with very different algo-
rithms, key and block sizes, etc. So, the next logical step was to establish the requirements
for a possible cryptosystem to be used in this proposal, as follows:

• It must be able to produce a 64-bit ciphertext (the encrypted LIN data) from a 64-bit
plaintext (the original LIN data).

• The encryption and decryption processing times must be as short as possible, ideally
in the range of a few milliseconds or less on embedded hardware. To a lesser extent,
RAM memory usage should be also small.

• It must have not been broken by practical, full-round attacks.

Considering the second requirement and the limitations of the node hardware (regard-
ing the processing power, which is much less than that available in a personal computer),
we had to make a major decision: the use of an asymmetric or symmetric cryptosystem.

• An asymmetric cryptosystem, such as ECC [21], RSA [22], etc., provides a good level
of security at the expense of much processing power because of the discrete logarithm
concept involved. This kind of cryptosystem relies on a public key distributed among
the participants, used to encrypt data, along with a secret private key required for
decryption. This also implies long processing times, even in the range of several
seconds in common eight-bit microcontroller hardware, and is therefore impractical
for real-time encryption and decryption in such systems.

• A symmetric cryptosystem, such as AES [23], Blowfish [24,25], Simon/Speck [26,27],
etc. is based on a single private key known by the participants. This kind of encryption
is very fast to compute and less taxing on the system’s processing unit than public key
cryptosytems, and it is therefore adequate for real-time encryption and decryption.

Because of the above, in communication systems, asymmetric cryptography is more
suited for exchanging secret keys before a nominal communication flow is established.
From that point on, real-time encryption and decryption of the transmitted/received data
is performed via symmetric cryptography. So, assuming that the proposed secure LIN
nodes could have a factory-preprogrammed, shared secret key, we opted for symmetric
cryptography. Having established this, we had to choose between a stream or block cipher;
the former operates on a bit-by-bit or byte-by-byte basis in a streaming manner, whereas
the latter operates over fixed-size data blocks. Because the LIN response data field will be
used to its full capacity in fixed 64-bit data blocks, a block cipher was the obvious choice,
(Figure 5; where b = 64; c = 64).
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4.2. Considered Ciphers

Three block ciphers were considered and performance-tested, taking into account the
aforementioned requirements (most prominently the 64-bit block size):

• Blowfish is a symmetric key cryptosystem designed in 1993; to date, no effective
cryptanalysis has been performed. It is a fast block cipher, except when changing
the key; a new key requires the preprocessing equivalent of encrypting around 4 kB
of plaintext, which is relatively slow compared to other block ciphers. Additionally,
this amount of memory puts it beyond the reach of very basic microcontrollers and
embedded systems based on them; however, this is not a problem for modern 32-bit
microcontrollers that usually feature at least 8 kB of RAM. There are also eight-bit
microcontrollers with 8 kB of RAM, such as the ATmega1280/2560, which could
perform this encryption in reasonable time. Blowfish was one of the first secure block
ciphers that is patent-free and therefore freely available for anyone to use; this feature
has contributed to its popularity in crypto software. Blowfish’s key sizes range from
32 to 448 bits; its block size is 64 bits. Plaintext less than 64 bits must be zero-padded
to the required 64-bit size.

• Tiny Encryption Algorithm (TEA) [28,29] is a block cipher that stands out for its simplic-
ity of description and implementation; it was introduced in 1994. This cipher is not
subject to any patent. TEA works with two 32-bit unsigned integers (two halves of a
64-bit data block) and uses a 128-bit key and 32 suggested rounds. It has an extremely
simple key schedule, shuffling the subkeys in exactly the same way for each cycle.
TEA was initially designed to be a small implementation algorithm in terms of the
memory required [30]. As the basic operations are very simple, TEA is also considered
as a very high-speed encryption algorithm and as suitable for embedded systems.
Two further variants, XTEA (1997) and XXTEA (1998), were intended to improve the
security of TEA but introduced new weaknesses; as a result, TEA is still used.

• Speck is a family of lightweight block ciphers that was released publicly by the NSA in
June 2013. Speck is optimized for performance in software implementations and is
an add-rotate-XOR (“ARX”) cipher that does not substitution boxes, unlike Blowfish.
The origins of these ciphers date back to 2011, when the NSA began to work on them,
anticipating that some US federal government agencies would need encryption that
would work well across a diverse collection of IoT devices while maintaining an
acceptable level of security [27]. The authors of the cipher consider it to be very fast
compared to other block ciphers (including AES) and have shown the feasibility of
implementation [27] in FPGAs, ASICs, and 8-, 16-, and 32-bit microcontrollers; in all
cases, both the encryption speed and processing resources used are Speck’s selling
points. On ARM architecture, Speck is practically three times faster than AES.

None of the three considered ciphers have been successfully attacked under real-life
scenarios, which is a notable achievement, especially considering the age of Blowfish and
TEA. Considering that fact, the most important criteria for choosing one of the aforemen-
tioned cryptosystems were the execution time for encryption/decryption and, to a lesser
extent, the amount of RAM required. Now, the hardware platforms used for testing will
be described.

4.3. Hardware Platforms for Testing

General considerations. We felt that it was important to conduct tests on real hard-
ware, representative of LIN nodes, in terms of processing time, because computer security
mechanisms are processor-intensive tasks not suited for low-range microcontrollers. In this
sense, three RISC CPU architectures were considered as microcontroller brains in order
to be able to execute the tests of process time, memory usage, and the general feasibility
of encryption/decryption: 8-bit AVR architecture (well-known due to its massive use on
8-bit Arduino platforms), 8-bit PIC18F architecture (also widely used), and 32-bit ARM
architecture (widely used in cell phones, tablets, printers, hard drives, pendrives, USB in
general, etc.).
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AVR-based platform. The Microchip AVR architecture is available in a range of
microcontrollers with various memory capacities, integrated peripherals, numbers of pins,
etc. The CPU is eight-bit, RISC-type, and very efficient in terms of execution, reaching
up to 16 MIPS @ a 16 MHz clock frequency. The AVR architecture was introduced in
the early 2000s and is still widely used in millions of devices at a very competitive cost.
As a case study, the ATmega328P [31] and ATmega2560 microcontrollers were chosen,
both being part of the AVR family. Regarding the 328 micro, it features 32 kB of program
memory, 2 kB SRAM, three timers/counters, and several internal peripherals. Regarding
the 2560 micro, it has the same architecture and CPU speed as the 328 micro, but it is
equipped with more peripherals and port pins (irrelevant for this development), more
program memory (256 KB), and RAM (8 KB). For testing purposes, the relevant elements
of these micros are the CPU and its clock frequency and the required size of RAM and
program memories. The internal timers allow for the measurement of the execution time of
the cipher algorithms with a precision of 1 µs. The tests were carried out in the Arduino
development environment (Figure 6) using the Nano variant that incorporates the 328 chip.
In certain test scenarios, the program memory and RAM of this chip turned out to be
insufficient; for this case, the ATMega2560 chip, in Arduino Mega Core form, was used.
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Microchip PIC18-based platform. This family of microcontrollers is considered to be
low-to-middle-range, offering a set of features similar to AVR micros (RISC CPU, memory,
peripherals, etc.) but with a lower execution efficiency; PIC18 family micros require four
clock pulses to execute their instructions, reaching a maximum of 10 MIPS @ 40 MHz
CPU clock; note that the previously discussed AVR micros go up to 16 MIPS @ 16 MHz
(ATmega2560) and 20 MIPS @ 20 MHz (ATmega328). However, these PIC devices are still
widely used despite their relative age and thus provide an interesting point of comparison,
especially to the previously discussed eight-bit AVR family. The particular model to be
used will be the PIC18F4680 [32] in 40-pin DIP format, the main reason being its ample
program memory (64 kB), which allows it to accommodate encryption, hash, and HMAC
algorithms that take up a lot of instructions and tables, such as BLAKE2 or RIPEMD. Other
relevant features for this work are its 3KB SRAM memory and a variety of timers which
allow for precise measuring of the encryption processing time. The hardware board used
is a PICDEM Plus model (Figure 7); a 4 MHz crystal was used, in conjunction with the
micro’s internal PLL (fixed 4x multiplier); this drives the CPU to work at 16 MHz, on par
with the other micros for testing purposes.

ARM-based platform. The ARM CPU microarchitecture is ubiquitous today as the
main processor of countless devices and embedded systems. The use of 32-bit ALUs
and registers and a micro-design optimized for high performance in MIPS v/s power
consumption makes this architecture ideal for portable devices. It is necessary to note the
dramatic difference in the capabilities and processing speed of an ARM CPU compared
to an eight-bit CPU at the same clock frequency, as will be seen later when comparing the
encryption/decryption, hashing, and HMAC-processing times. This architecture is usually
implemented in microcontrollers or other system-on-a-chip equivalents. The tests were
carried out on the ARM-CortexM3 architecture—in particular, on the Cypress CY8C5888LTI-
LP097 chip [33] in USB module form (Figure 8); it is a programmable system-on-a-chip
(PSoC) and essentially consists of a 32-bit ARM CPU core, an FPGA area interconnected
with the CPU, 64 kB SRAM memory, 256 kB of Flash program memory, 2 kB EEPROM,
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and other non-digital and hybrid blocks such as ADCs, DACs, OpAmps, etc. What really
matters for the tests is the CPU section, the memory required, and the use of internal
timer blocks to measure the execution speed of the code. For development purposes, the
IDE provided by Cypress (PSOC Creator 4.2) was used, which allows for the creation of
peripherals in the FPGA area and programming in C language (by means of the GNU
gcc compiler) for the ARM CPU. The CPU processing time was quantified by means of a
hardware counter with a resolution of 1 µs.
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4.4. Encryption Performance Results

Before proceeding with the tests, the following Table 1 shows the key sizes and number
of rounds executed for each tested cryptosystem. In all cases, the plaintext and cyphertexts
are 64 bits in size. Note that the number of rounds (algorithm’s iterations) is a key parameter,
since various theoretical attacks on these cryptosystems base their results on execution
with fewer rounds than those recommended, or standardized, for these cryptosystems, i.e.,
not full-round usage. We used full-round tests for each cryptosystem.

Table 1. Test Parameters for the Considered Cryptosystems.

Cryptosystem Key Size Rounds

Blowfish64 56 bits 16
TEA64 128 bits 32

Speck64 128 bits 27

Both the AVR and PIC18 microcontrollers were tested at a 16 MHz CPU clock, while
the PSoC ARM core was tested at 16 MHz (for direct comparison with the AVR and PIC18
micros at the same speed) and 64 MHz. We feel that modern technology makes it perfectly
feasible to use a 64+ MHz chip in an LIN node at a reasonable cost, should that be the case.
The tests’ results are presented in Table 2.
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Table 2. CPU Processing Times for Encryption.

Criptosystem AVR @16 MHz PIC18F @16 Mhz ARM @16 MHz ARM @64 MHz

Blowfish64 124 µs N/A 50 µs 13 µs
TEA64 376 µs 689 µs 44 µs 11 µs

Speck64 1.28 ms 8.14 ms 56 µs 14 µs

Regarding Table 2, we developed firmware for the microcontrollers using C and C++
languages, written using Arduino IDE (for AVR micros), Microchip MPLAB (for PIC18F),
and PSoC Creator (for Cypress PSoC). The PIC18F chip could not run the Blowfish64 test
because of its RAM size of 3 kB. It is also noteworthy that, in practical terms, the decryption
times are almost the same as the encryption ones (as will be shown in Section 6), so Table 2
is a valid reference for both encryption and decryption performance. The PIC18 architecture
was the worst in terms of general execution speed, although the TEA performance was
more than acceptable in this case. Blowfish needs about 4 to 5 kB of RAM because of the
pre-computed s-boxes, a relatively high amount for a basic microcontroller; this narrowed
the decision to TEA or Speck (Blowfish did not offer special qualities over these ciphers).
We preliminary chose the Speck64 cipher because of its outstanding performance in ARM
architecture (and acceptable AVR performance); it is also a contemporary cryptosystem
with little RAM memory consumption. However, since the proposed security system
must also provide authentication using MAC, a significantly time-consuming process in a
microcontroller, it was necessary to perform the MAC hardware tests in order to confirm
Speck64 as the chosen cipher for our proposal (because of the combined execution times
for both the encryption and MAC computing).

Regarding side-channel attacks, there is some research related to the Speck cipher,
including a very interesting one using transfer-learning techniques, “Side Channel Analysis
of SPECK Based on Transfer Learning” [34], focusing on the XOR operations used by the
cipher. However, the study itself acknowledges that “Aiming at the problem that the
lightweight algorithm is difficult to crack due to the lack of nonlinear operation”, and a
successful key extraction was not achieved. Side channel attacks are also difficult to execute
in real time and require large quantities of data traffic in order to achieve its goal. Finally,
to the best of our knowledge, no successful side-channel attack has been performed on a
full-round Speck algorithm (which is precisely the mode that we used in our proposal).

5. MAC Alternatives for the LIN Bus
5.1. Summary

In our previous article [3], we established the need for a MAC in order to provide
authentication and data integrity for the LIN data to be transported within the bus. The
MAC is transmitted after the encrypted data, allowing the receiver to check the veracity
of the message. We decanted for hash-based MAC (HMAC), a technique for obtaining an
MAC by means of an underlying hash function. As a quick reminder, a hash function is a
computed mathematical transformation applied to a block of binary data of arbitrary size
in order to obtain a fixed-size digest or “hash”; a change of one or more bits in the original
data block dramatically changes the result of the hash (the so-called avalanche effect).

We also proposed an in-node 32-bit time counter mechanism to protect against re-
play attacks, which is to be combined with the 64-bit LIN data before applying HMAC
computing to the combined 96-bit data (the 64-bit LIN data concatenated with the 32-bit
time counter).

A brief recap of the timer counter mechanism is as follows: A 32-bit counter register is
embedded into each prototype node; each node’s register increases at the same rate. This
counter starts as zero every time the whole LIN network is simultaneously powered up.
Before a response is sent, the original, unencrypted LIN data (8 bytes) is concatenated
with the 4 bytes of the counter register, and the whole 12-byte array is HMAC’ed into
8 bytes (the 2nd LIN response). When the master receives the HMAC response, it computes
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its own HMAC by first concatenating the eight decrypted bytes with the master’s own
four-byte counter. A fresh message will yield identical received and computed HMACs
that are treated as valid. However, replayed messages will not be valid because its HMAC,
computed by the slave using an old counter value, will not match the master’s computed
HMAC using its updated counter.

In the same article, we tested the hardware execution times for several hash functions
and their corresponding HMACs, tentatively choosing HMAC-Blake2s, considering some
crucial advantages such as fast processing in microcontroller hardware and the built-in
keyed hash offered by Blake2s.

In the present article, we expanded the scope of the hash and HMAC tests by including
the PIC18F microcontroller previously discussed and updated the result tables, allowing
for further analysis and commentary.

5.2. Updated Test Results

We used the same development tools, hardware platforms, and CPU clocks previously
used for encryption tests; as before, the hash functions and HMACs were coded using
C/C++ language and tailored for each platform and its development software. The follow-
ing are the updated execution test results for the hash and HMAC functions considered.

Regarding Table 3, it can be seen that RIPEMD-160 offers the lowest processing times
in ARM architecture; the results of BLAKE2s are quite good, making it feasible to use it on
eight-bit AVR micros. SHA is the least suitable in terms of the required processing time,
especially on the eight-bit platforms. All hash functions perform very slowly on PIC18F
hardware; the execution times are well past the 20 ms mark. A significant advantage of
BLAKE2s is that it does not require the truncation of the results, unlike the other tested
hashes, which return more than 64 bits (in this case, the recommended procedure by the
NIST [35] is to keep the n most significant bits of the hash). What will finally be used for
the proposed system will be an HMAC based on a specific hash; therefore, Table 4 presents
the execution times for the previously discussed HMACs.

Table 3. Processing Times for the Considered Hash Functions (less is better).

Hash Function AVR @16 MHz PIC18F @16 Mhz ARM @16 MHz ARM @64 MHz

RIPEMD-160 5.87 ms 29.1 ms 256 µs 95 µs
BLAKE2s 3.41 ms 31.8 ms 293 µs 96 µs
SHA-224 11.1 ms 57.5 ms 434 µs 112 µs

Table 4. Processing Times for the Considered HMAC Functions (less is better).

HMAC Type AVR @16 MHz PIC18F @16 Mhz ARM @16 MHz ARM @64 MHz

HMAC-RIPEMD160 23.1 ms 70.6 ms 923 µs 350 µs
HMAC-BLAKE2s 6.78 ms 61.6 ms 539 µs 181 µs
HMAC-SHA224 44.3 ms 230.0 ms 930 µs 490 µs

As seen on Table 4, the HMAC processing times are several times greater than the
corresponding hash functions, except for Blake2s (which requires roughly double the time).
As previously mentioned, the shortest execution time for the security mechanisms is desired
in an LIN node; therefore, in terms of authentication, the chosen HMAC type to be used in
this security system proposal was BLAKE2s.

Considering ARM’s much shorter times required for the encryption, decryption, and
HMAC mechanisms, the development continued on ARM architecture, also considering its
wide availability and low cost of implementation.
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6. Prototype LIN Network Design and Testing
6.1. Introduction

The tests performed in Sections 5 and 6 proved the feasibility of running the secu-
rity mechanisms in real-time using common microcontroller hardware. These tests were
performed in the microcontrollers as isolated units, using internal data buffers with no
communication. However, we wanted to go further and test those mechanisms with
communication functionality in a real prototype LIN network as a testbed.

The LIN bus is a fairly complex standard to implement (despite its apparent simplicity
when compared to CAN or FlexRay), especially at the network and higher layers, consider-
ing the communication planning (scheduling), the subscription and publication mechanism
of the nodes’ master and slave tasks, etc. The diagnostic frames (ID 60,61) make the issue
more complex. Considering that this proposal “retrofits” computer security elements in
the data bytes of the response frame, it is necessary to point out that the scope of the tests
does not consider LIN nodes programmed with the complete standard, since the core of
the experiment is the verification of the proposed security mechanisms. That being said,
the following elements are involved:

• A real LIN physical layer using specialized transceivers, combined with microcon-
trollers or equivalent SoC, to implement nodes in the network.

• One master node, one “normal” slave node, and one “attacker” slave node (Figure 9).
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• The communication will use the security mechanisms previously chosen: Speck64 and
HMAC Blake2s; in both cases, a pre-shared 128-bit key is used.

• The nodes’ prototype firmware includes the following:

- An SCI block emulated with a UART and additional FPGA logic.
- LIN header publishing and response reception in two discrete buffers in the

master node for decryption and HMAC verification, respectively; because of the
very nature of the development and testing procedure, the first header will be
manually triggered, the results will be displayed on each node’s LCD screen, and
no time scheduling is needed nor implemented.

- The usage of an LIN-enhanced checksum.
- A 64-bit LIN response, generated by the slave nodes, according to the particular

scenario being tested. This data will be the result of encryption and HMAC
(normal slave) or plaintext data (attacking slave) in alternate response fashion.

• The 32-bit counter register of each node protecting against replay attacks, as discussed,
was set to increase every 250 ms, providing an ample communication window for
testing purposes.

6.2. Testbed Hardware Design

LIN node microcontroller. As previously established, the 32-bit ARM architecture
was chosen as the CPU for testing purposes; specifically, the Cypress CY8CKIT-059 module
chip previously discussed (32-bit ARM CPU, 256 kB Flash program memory, 64 kB SRAM,
and a built-in FPGA area). These resources are somewhat oversized for the proposed
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application, but at the same, time they provide enormous flexibility for hardware design.
In particular, to send and receive LIN frames, a UART block will be used, combined with
available logic in the FPGA area of the Cypress chip; such blocks will be assigned to
arbitrary physical pins of the CY8CKIT module, which in turn will be connected to an LIN
transceiver. The Cypress chip’s CPU will be powered by a 16 MHz clock, a medium-to-low
speed for the capabilities of this architecture, which is more representative of a real LIN
node. According to the performance tables presented, such a clock speed allows for very
fast processing of the characteristics of the proposed security system. The programming
was carried out in the Cypress IDE, using C language to implement the necessary parts of
the LIN standard for communication between the nodes of the proposed network, along
with the security mechanisms.

In order to ease the hardware and software development, a special board (Figure 10a),
adding an LCD screen, buttons, and other peripherals to the Cypress module, was used for
each LIN prototype node. The screen allowed for in-node, real-time information display
such as LIN data, execution times, etc. and proved to be very useful for this development.
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LIN transceiver. The LIN node’s microcontroller must incorporate a serial commu-
nication interface (SCI), very similar to a UART, which is responsible for sending and
receiving serial data to and from the bus. However, the physical connection to the bus itself
is through the LIN transceiver, which is connected to the LIN wiring, that is, to the physical
layer of the bus (which has strict electrical specifications, protection against ESD, bit timing,
etc.). For this particular case, the eight-pin TJA1021 LIN transceiver chip [36] has been
chosen in the form of a breakout module (Figure 10b) powered by a 12 VDC laboratory
power source. The transceiver is driven by the Cypress chip by means of the TX and RX
signals; no additional control or enable signal is used.

Each of the prototype nodes is composed of a development board as a base unit
(programmed and debugged via USB) plus the LIN transceiver, as shown in Figure 11.
Note that the same hardware is used for the three prototype LIN nodes; each one’s role in
the network is determined by its custom firmware.
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Figure 11. Prototype LIN node structure for network testing.

In addition to the C language programming, tailored for each of the nodes according
to their function in the prototype network, SCI blocks were created for each in the FPGA
area of the Cypress chip, combining a UART with logic gates, registers, and edge detectors,
in order to simulate each node’s LIN SCI block. Figure 12 shows the modified UART block
used in the slave nodes. The RX OR gate avoids self-reception when transmitting the
response, the edge detectors (using a 1 MHz sampling rate) allow for the master node’s
header frame detection, and the TX OR gate allows for logic ‘1’ forcing on the transmitting
line. The CPU programming has complete control over these elements.
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We devised and tested two LIN network test scenarios: without and with the
attacking node.

These scenarios allowed us to contrast the theoretical and practical behavior of our
LIN-compatible programming, the security mechanisms, and the general viability of
our proposal.

We did not set up a scenario to solely test the attack replay rejection, because the
HMAC with a counter register is built in to each prototype node’s specific programming
and works seamlessly.
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6.3. Test Scenario 1: Unconditional Frame Transmission, No Attack

This scenario tests the response generated by the slave node (normal) when detecting
the header from the master node, which is the most common LIN communication frame.
The attacker node does not participate. This scenario is useful for testing the communication
itself (logical and physical layers), the base programming of the master and normal slave
nodes, and the security mechanisms’ function and performance.

The key parameters for the test are as follows:

• Both the master and slave nodes share a 128-bit key, which is equal to
$030201000B0A0908131211101B1A1918. This is the same key used for encryption,
decryption, and HMAC computing.

• The slave node has been assigned an arbitrary LIN ID = $31 (which translates to an
LIN PID = $B1).

• The slave node holds 32 bits of plaintext LIN data, equal to $13941761, an arbitrary
value. These data could represent a number of automotive sensors attached to the LIN
slave. Internally, this 32-bit word will be zero-padded to 64 bits before applying the
encryption and HMAC mechanisms.

• These data will be transmitted to the master in two LIN responses (corresponding to
two successive headers with the same PID, as previously discussed; Figure 4): the
encrypted data go first, followed by the HMAC data.

• The test begins when the master node’s hardware pushbutton is pressed: immediately
after, the first header is published in the prototype LIN bus.

Figure 13 shows the initial screens displayed by both the master and slave (normal)
nodes, waiting for the communication to begin. The data to be transmitted by the slave
node (“LINslv_N”) are displayed on its own screen.
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Figure 13. Initial states displayed after reset or power-on: (a) master node, (b) normal slave node.

When the first header is published, the slave node first checks the PID, which must
match its own. In such case, the encrypted data are calculated and sent as a standard LIN
response. After reception, the master publishes an identical header, and the slave node
calculates the HMAC and sends it to the master, again as a standard LIN response. Then,
on the screen, the slave shows the execution times (µs) for both the encryption (“CyphT=”)
and HMAC (“HMACT=”) calculations on each of the two passes (Figure 14). These times
are obtained using an internal hardware counter. If the PID does not match, no response is
sent by the slave node.
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Figure 14. Normal slave node’s screen status after sending the two interleaved LIN responses.

On the master’s side, two internal RAM buffers are used to separately receive the en-
crypted and HMAC data before any processing; if both buffers have a valid LIN checksum,
the decryption is executed. Both the encrypted data (“Rx.Cyph=”) and the decrypted LIN
data are shown in the LCD (“Decyph=”) (Figure 15). All data are presented in hexadecimal
format; in this case, the decrypted data are the same as the original LIN slave’s data shown
in Figure 13b.
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Figure 15. Master node’s decryption result display.

By pressing the same button on the master node’s hardware, the HMAC result screen
is shown; here, both the received HMAC data (“Rx.HMAC=”) and the calculated HMAC
data (“CalHMAC=”) are displayed (Figure 16). A mismatch between the two implies that a
forged, inauthentic message was transmitted to the master node.
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Figure 16. Master node’s first HMAC display.

The next display shows the HMAC comparison between the received and computed
HMAC (Figure 17). If both HMACs are exactly the same, the data are authentic and valid.
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The next and final display shows the master’s processing times required by both the
decryption processing (“DcrypT=”), HMAC calculations (“HMACT=”) and the total time
(“TotalT=”, in microseconds), required by the master node to obtain the full LIN data from
the slave (Figure 18). The displayed time of 14.1 ms includes:

• The time required for the two LIN frames to be transported, taking into account the
19.2 kbps communication speed.

• The time required by the slave node for communication and security
mechanisms’ processing.

• The time required by the master node for communication and security
mechanisms’ processing.

• The generation and validation of checksums (this is a very small portion of the total
time, in the range of microseconds).
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After this screen, pressing the reset button on the master node board returns it to the
initial state, and the test can be repeated. No such reset is needed in the slave node board.

6.4. Test Scenario 2: Unconditional Frame Transmission with Attacking Slave

In this scenario, the attacking node will intentionally corrupt the normal slave’s
LIN response by publishing its own in the bus at the same time. The attack will affect
the first frame sent to the master (i.e., the encrypted data published in the bus by the
normal slave) by simultaneously publishing a 64-bit “attack word”. We developed a small
C-language program in order to generate random alternatives of a 64-bit attack data that,
when combined with the normal data in the bus, would yield the same checksum as
the normal data, thus fooling the LIN checksum validation. Example words of attack
data obtained with this program are $14EAB6333269C9EF, $1192EDB98A10AAB9, and
$44B441E51683D9AD. We used the first one for our case study.
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The second frame, corresponding to the HMAC data published by the normal slave,
will not be attacked. Figure 19a shows the attacking slave’s initial state (identified as
“LINslv Att” and showing the attack data—in this case, $14EAB6333269C9EF). Figure 19b
shows the attacking node’s display after sending the response (no encryption nor HMAC
is performed by this slave in this scenario).
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The result of the attack on the master node is shown in Figure 20. As a result of the
LIN physical layer, the master received the equivalent of a bitwise AND operation between
the data bits simultaneously published by both slaves; the result of this AND operation
yields a “correct” checksum value ($8B), the same checksum value of the encrypted data
without an attack, thus passing the first, standard level of verification in the master. It is
important to highlight that decryption itself cannot detect the alteration of the original
data ($13941761), but the HMAC computation allows the master to identify the altered
data ($1B762139, Figure 20a) as not authentic (Figure 20c); notice the distinct received and
computed HMAC values; Figure 20b.
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Figure 20. Master node’s state after the attacked response; (a) decryption result; (b) HMAC result;
(c) LIN data validity result.

7. Conclusions and Future Work

Through this research, development, and testing, we have presented a robust computer
security layer for the LIN bus that is built from scratch, compatible with its physical and
link layer, computationally feasible to implement, and capable of real-time processing, with
the complete communication scheme (involving two header-response frames) carrying the
information between nodes well below 20 ms, as shown in Figure 18. It has also been built
using flexible microcontroller technology, which is common, compact, and widely available.

We think that this proposal is a valuable contribution to the security of internal
communications in vehicles’ LIN networks, and, by extension, it contributes to the security
of the occupants by preventing the exploitation of the LIN bus’s data traffic, the altering
of critical sensor information, and the injection of old data, which could lead to very
serious consequences.
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The encryption and decryption mechanisms mitigate LIN data spying in a practical
manner, while the HMAC mechanism allows the receiver to discard malicious, forged mes-
sages sent from the attacking node; it also allows for the discarding of old, replayed messages.

Regarding the performance tests and the prototype LIN network, the usage of various
development boards was crucial for the programming and testing; it even allows for easy
in situ display of the communication status and other information. Beyond the somewhat
bulky development and test hardware used, real LIN nodes based on this technology can
be built in a very compact fashion by just using the Cypress chip, the transceiver chip, and
some additional circuitry.

As future developments, we would like to add dynamic key exchange between the
nodes at the startup time, which can be achieved by public key cryptography (such as
ECC). This would prevent the need to use a pre-stored, factory key in all the nodes. As a
starting point, we have tested a 192-bit ECC encryption routine in similar ARM hardware,
obtaining the result in about 70 ms, which we consider a reasonable startup time for each
node in the LIN network.

We also would like to implement more types of LIN frames by means of additional
programming for each of the prototype nodes.

Regarding the PID, being essentially a single byte after the sync bits, we did not modify
its form or function in our prototype LIN network. A computer-security protected PID
would involve adding bytes to the header (such as MAC), and we did not want to deviate
that much from the current LIN standard; however, that could also be considered as a
further development.

Finally, we would like to research alternative ways of transporting the encrypted
and HMAC data, but that inevitably implies more deviation from the LIN standard. One
way could be to assign two correlative IDs to one slave, even and odd, such as $30 and
$31, or $1A and $1B. Instead of two identical ID headers published by the master, as
explained, the slave could deliver the encrypted data when responding to its even ID and
the HMAC data when responding to its odd ID. While this idea is completely feasible using
the same hardware and slightly different programming, the number of available nodes per
LIN network would be cut in half. Another method could be the implementation of the
previously mentioned “superframe”, i.e., a 16-byte data field in the slave’s LIN response,
instead of the current 8. That way, the eight bytes of encrypted data and the eight bytes of
HMAC data could be sent to the master in one frame, avoiding the interleaved sequence.
While this is theoretically possible, it would require additional research on its impact on
both the checksum calculation and the physical layer.
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