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Abstract: Autonomous components within electric power systems can be successfully specified by
interpreted Petri nets. Such a formal specification makes it possible to check some basic properties
of the models, such as determinism or deadlock freedom. In this paper, it is shown how these
models can also be formally verified against some behavioral user-defined properties that relate to
the safety or liveness of a designed system. The requirements are written as temporal logic formulas.
The rule-based logical model is used to support the verification process. An interpreted Petri net
is first written as an abstract logical model, and then automatically transformed into a verifiable
model that is supplemented by appropriate properties for checking. Formal verification is then
performed with the nuXmv model checker. Thanks to this the initial specification of autonomous
components can be formally verified and any design errors can be identified at an early stage of
system development. An electric energy storage (EES) is presented as an application system for the
provision of a system service for stabilizing the power of renewable energy sources (RES) or highly
variable loads. The control algorithm of EES in the form of an interpreted Petri net is then written as
a rule-based logical model and transformed into a verifiable model, allowing automatic checking of
user-defined requirements.

Keywords: control system; model checking; Petri net; power energy system; specification; verification

1. Introduction

Interpreted Petri nets, initially introduced for the specification of the control part of
a cyber-physical system [1], have already proved to be useful also in the modelling of
autonomous components within power energy systems [2]. These type of nets, based
on the classic theory of Petri nets [3,4] and benefitting from its analysis and verification
methods [5], also take into account input and output signals to communicate with the
environment, other systems or their components. Input signals are then assigned to
transitions (as their guards), while output signals are assigned to places. Interpreted Petri
nets are safe, that is, a place may contain only one token at any time. An active place
(including a token) indicates then directly the activity of output signal(s) assigned to it.
This feature facilitates code generation.

Formal verification methods, on the other side, allow the discovery of any errors
related to the model at an early stage of system development [6]. Such methods save time
and money, as the earlier an error is detected, the lower the cost of repairing it is. The model
checking technique [7] automatically verifies a model against some user-defined properties
and confirms whether these are satisfied or not. If not, appropriate counterexamples are gen-
erated that allow the identification of the error source. Model checking is a well-established
and appreciated method that received the prestigious Turing award (2008, Edmund Clarke,
Allen Emerson, and Joseph Sifakis) [8]. It is gaining popularity also in verification of power
systems, both symbolic and statistical model checking (e.g., [9–11]), among other more fre-
quently used methods, such as simulations, hardware in loop (HiL), and experiments [12].
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The specification of the control algorithm in a power energy system is therefore not only
for its documentation, it can also be used for validation before implementation.

This work continues our previous research on the use of interpreted Petri nets, initially
introduced for cyber-physical systems [1], with a deterministic modelling methodology
presented in [13] which then proved to be useful for autonomous components within
power energy systems [2]. In our previous paper [2] it was shown how a control algorithm
for a power energy system can be specified as an interpreted Petri net and how it can
then be analyzed against structural properties (focusing especially on the determinism).
The case study used an autonomous system with electricity storage for the provision
of a renewable energy source (RES) stabilization system service or one having highly
variable loads. Herein, further results of our research are reported, showing how to apply
a rule-based logical model and formally verify behavioral requirements with the model
checking technique. The modelling methodology for a deterministic system specified by
the interpreted Petri net proposed in [13] is extended in order to focus on formal verification
and adjustment to the power energy application area.

There are also some other approaches in the power energy domain that use Petri nets
(in general). Chamorro and Jimenez [14] proposed using them for load sharing control in
distributed generation applications. Lopez de Alba et al. [15] applied hybrid Petri nets for
contingency analysis in power systems. Zhao et al. [16] proposed a method to help decide
a multi-fault rush repair robust strategy in post-disaster distribution networks using timed
Petri nets with inhibitor arcs, adapted for description of the repairing process of analyzing
the impact of each fault on the process. Zhumadirova et al. [17] applied colored Petri nets
as formal specification of the protective device for single-phase-to-ground short circuit.
Such a specification is then analyzed to check its structural properties, involving liveness,
reversibility, and safeness. Beniuga et al. [18] used Petri nets for analysis of power systems
protections, focusing also on structural properties, such as liveness, boundedness, or
coverability. Simon et al. [19] expressed generically the networked behavior of photovoltaic
systems with timed Petri nets. Another type of Petri net, namely resource-oriented Petri
nets [20], were used for scheduling, e.g., for cluster tools in semiconductor manufacturing
by Pan et al. [21] or for crude oil operations in refineries (hybrid, colored, timed Petri
nets as an extension of resource-oriented Petri nets) by Wu et al. [22]. However, these
above-mentioned approaches benefit only from Petri net formalism and available analysis
methods to check structural properties of the model. They are also based on some other
types of Petri nets, each one having some advantages and disadvantages. In our previous
work [23], Petri nets were combined with a model checking technique for the specification of
a direct matrix converter and for checking the reachability of particular states. Nevertheless,
the focus was also on structural properties.

In this paper, the model checking technique is applied for verifying behavioral prop-
erties related to system safety. As far as we know, it is the first study where interpreted
Petri nets and a rule-based logical model (as an intermediate format) are used to formally
check behavioral properties of autonomous components within electric power systems
with symbolic model checking. This allows us not only to check some structural properties
of the model, but also to check the behavioral ones, regarding the relations between the
various output signals or output and input signals.

The main contributions of the paper can be summarized as follows:

(1) It is shown how to apply a rule-based logical model as an intermediate format between
interpreted Petri net model and a verifiable model in the power system domain;

(2) A novel modelling and verification methodology for control algorithms in the power
energy area with the use of interpreted nets and model checking is proposed that
allows verification of behavioral properties at an early stage of system development;

(3) The presented idea is illustrated with a case study of an energy storage system.

The remainder of the paper is structured as follows: Section 2 presents some back-
ground on interpreted Petri nets and a rule-based logical model. Section 3 introduces a
novel method for the modelling and verification of power energy system components.
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Section 4 illustrates the proposed approach with a case study. Section 5 presents experi-
mental verification. Finally, Section 6 summarizes and concludes the paper.

2. Background

Let us introduce some definitions for easier understanding and reading as well as a
simple illustrative example.

Definition 1 (Petri net). A Petri net [3] is a four-tuple PN = (P, T, F, M0), where P is a finite
set of places, T is a finite set of transitions, F ⊆ (P × T)

⋃
(T × P) is a finite set of arcs, and

M0 is an initial marking. A marking involves all places that contain a token. A transition
is enabled in marking M if each of its input places contains a token. A transition can be
fired if it is enabled. Then, a token is removed from all its input places and added to all
its output places. A marking is reachable from any other marking if it can be reached by a
sequence of transition firings.

Definition 2 (liveness). A Petri net is live [24] if from any reachable marking it is possible
to fire any transition by a sequence of firings of other transitions.

Definition 3 (safeness). A Petri net is safe [24], if there is no reachable marking such that
the place contains more than one token.

Definition 4 (interpreted Petri net). An interpreted Petri net [1] is a six-tuple IN = (P, T, F,
M0, X, Y), where the first four elements describe a live and safe Petri net; X is a finite set of
logic input signals, and Y is a finite set of logic output signals. A transition in an interpreted
net can be fired if it is enabled and all the conditions of its input signals (assigned to it)
are fulfilled.

An example of a simple interpreted Petri net is shown in Figure 1a. It can be formally
written as INE = (P, T, F, M0, X, Y), with P = {p1, p2, p3, p4}; T = {t1, t2, t3, t4}; F = {(p1 -> t1),
(t1 -> p2), (p2 -> t2), (t2 -> p3), (p3 -> t3), (t3 -> p4), (p4 -> t4), (t4 -> p1)}; M0 = {p1}; X = {go};
and Y = {y1, y0}.
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Definition 5 (strong determinism). An interpreted Petri net is strongly deterministic [13] if
for each reachable marking and any fixed input values, the net comes into a stable marking
and at the same time there is no stable marking into which the net can come with the same
input values. Additionally, for each reachable marking and any fixed input values there is
only one next marking possible.

Definition 6 (rule-based logical model). A rule-based logical model [25] is a formal nota-
tion of control system behavior suitable both for formal verification (with nuXmv model
checker) and prototype code generation (VHDL language for FPGA devices), consisting of
the following sections: VARIABLES, INITIALLY, TRANSITIONS, OUTPUTS, and INPUTS
which include:

(1) Definition of variables (places P, input signals X and output signals Y);
(2) Initial values of variables (initial marking of the Petri net as well as initial values of

the signals);
(3) Rules as descriptions of transitions T showing how the token flow evolves;
(4) Assignment of output signals to corresponding places;
(5) Assignment of expected changes in input signal values to preceding places (in order

to avoid the state explosion problem while model checking).

To illustrate the above definitions, a sample interpreted Petri net modelling the func-
tionality of a two-bit counter (taken from [2]) is presented in Figure 1a with a description of
signals in Figure 1b. One input signal is used to proceed with counting, and two output
signals are used to control the light emitting diode lights. The corresponding rule-based
logical model is shown in Figure 1c. In the rule-based logical model, the variables (lines
1–4) correspond to the set of places (P), input signals (X), and output signals (Y). These
variables change their value according to transition firings (places, lines 9–13), activity of
places (output signals, lines 14–17), or expected moment for value change (input signals,
lines 18–22).

3. Proposed Modelling and Verification Methodology of Control Algorithms in the
Power Energy Area

The proposed modelling and verification methodology is based upon the basic mod-
elling method presented in [2], where it is shown how to properly specify the autonomous
components with power energy system with interpreted Petri nets. Here, the complete
design flow from informal specification to formal verification is proposed.

The proposed methodology is shortly illustrated in Figure 2. The modelling part
(blue background) was already proposed in [2] and ends with a properly formed, live,
safe, reversible, and strongly deterministic interpreted Petri net. In this paper, the focus
is put on the second part, namely formal verification (green background). The last stage,
experimental verification (orange background), is the final verification of the implemented
system and control strategy (previously formally verified) to confirm that the system
operates correctly in accordance with the set algorithm in a real setup. Therefore, the
general flow can be summarized as follows: information specification -> modelling ->
formal verification -> experimental verification. It should be noted that formal verification
is here applied before any implementation in order to make sure that the system model
satisfies the user-defined requirements. If this is not the case, either necessary corrections
need to be performed in the system model or the requirements need to be carefully analyzed
(for an interesting case study of an incorrect requirement please refer to the catastrophe of
the Lufthansa Flight LH 2904/14 in 1993 [26]).
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Figure 2. The schema of the proposed modelling and verification methodology.

Let us focus on the stage of formal verification, which is the main contribution of this
paper. Firstly, the interpreted Petri net is written as a rule-based logical model in a text
form. Places, input, and output signals are coded as variables. Then, initial marking and
initial values of signals are specified. Transitions appear as rules that change the marking
(activity of their input and output places). Finally, output and input signals are assigned
to the appropriate places. The assignment of output signals is important from the point
of view of both model checking and implementation. However, the assignment of input
signals is only used in the generation of a verifiable model (in the generation of a prototype
code it is omitted), in order not to face the state explosion problem. The input signals
are allowed to change their value only if such a change may influence transitions firing.
This aspect brings us to the problem of completeness of input signals that are guards to
transitions coming out from the one particular place.

Problem. An interpreted Petri net model being an input for rule-based logical model may
work correctly after implementation, but incorrectly during formal verification.

Illustration. Let us consider a simple interpreted Petri net model as shown in Figure 3 (left).
Input signals x1, x2, and x3 are mutually exclusive, as they refer to the same parameter
with different (disjoint) value ranges (indeed, the value of the parameter is either lower or
equal or greater than the threshold). Therefore, in the real world it is not possible for any of
the three input signals to be true at the same time. The interpreted Petri net then works
correctly after implementation (for the sake of simplicity, what happens in places p2, p3,
and p4 is omitted).
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The interpreted Petri net (Figure 3, left) is written as the rule-based logical model listed
in Listing 1a with 21 lines of code. Based on that, the verifiable model in nuXmv format
is generated automatically (Listing 1b), with 59 lines of code. It should be noted, that the
transitions, although correct in interpretation (lines 10–12 of the rule-based logical model),
result in incorrect model behavior (lines 31, 36, and 41 of the verifiable model). Therefore,
when place p1 is active, then none of the places p2, p3, or p4 may be active, this structural
property (satisfied in the model) can be written in CTL temporal logic as follows:

AG !(p1 & (p2 | p3 | p4)) (1)

Property (1) is satisfied, but it is no longer the case for any two of the places chosen
from p2, p3, and p4. Checking the mutual activity of any two places from the set {p2, p3,
p4} can be specified in CTL temporal logic as:

AG !((p2 & p3) | (p2 & p4) | (p3 & p4)) (2)

This can also be specified as results in the produced counter-example as shown in
Listing 1c. Indeed, if input signals x1 and x2 are active at the same time (although not
possible in the real world), both rules t1 and t2 are executed, and finally both places p2 and
p3 become active, which is definitely an undesired behavior.

Solution. Although the input for preparing a rule-based logical model is a live, safe, and
strongly deterministic interpreted Petri net (that works correctly after implementation),
the net must be supplemented by some additional input signal assignments. Some input
signals are, by their definition, disjointed, e.g., input signal x1 representing the condition
“value < 1.5” and input signal x3 representing the condition “value > 1.5”. It is obvious that
in the real world both signals cannot be true at the same time, as the ranges of acceptable
values are disjointed, i.e., in the first case the value must be lower than 1.5, in the second
one, greater than 1.5. Hence, after implementation the model would behave strongly
deterministically. However, in a rule-based logical model the expected changes in input
signal values are specified to simplify the model checking process. Therefore, if there are
two transitions with two different input signals assigned, it is assumed in the rule-based
logical model that both the input signals may change, although their interpretation is
disjointed. In order to reflect this difference in perception of determinism, the interpreted
Petri net needs first to be supplemented, as is shown in Figure 3 (right). In the rule-based
logical model, lines 10–12 in Listing 1a are replaced with lines listed in Listing 2a. This
results in changes in the verifiable model, whereby lines 20–43 of Listing 1b are replaced
with lines listed in Listing 2b. Afterwards, model checking of the model reveals that both
properties (1) and (2) are satisfied in the model. �
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Listing 1. (a) Rule-based logical model of the interpreted Petri net from Figure 3 left;
(b) generated verifiable model in nuXmv format; and (c) results of model checking.
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2. VAR 

3. p1 : boolean; 
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6. p4 : boolean; 

7. x1 : boolean; 
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9. x3 : boolean; 
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11. ASSIGN 
12. init(p1) := TRUE; 
13. init(p2) := FALSE; 
14. init(p3) := FALSE; 
15. init(p4) := FALSE; 
16. init(x1) := FALSE; 
17. init(x2) := FALSE; 
18. init(x3) := FALSE; 
19. init(y) := FALSE; 
20. next(p1) := case 
21. p1 & x1  : FALSE; 
22. p1 & x2  : FALSE; 
23. p1 & x3  : FALSE; 
24. p2  : TRUE; 
25. p3  : TRUE; 
26. p4  : TRUE; 
27. TRUE : p1; 
28. esac; 
29. next(p2) := case 
30. p2  : FALSE; 
31. p1 & x1  : TRUE; 
32. TRUE : p2; 
33. esac; 
34. next(p3) := case 
35. p3  : FALSE; 
36. p1 & x2  : TRUE; 
37. TRUE : p3; 
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strongly deterministic interpreted Petri net (that works correctly after implementation), 

the net must be supplemented by some additional input signal assignments. Some input 

signals are, by their definition, disjointed, e.g., input signal x1 representing the condition 

“value < 1.5” and input signal x3 representing the condition “value > 1.5”. It is obvious 

that in the real world both signals cannot be true at the same time, as the ranges of ac-

ceptable values are disjointed, i.e., in the first case the value must be lower than 1.5, in the 

second one, greater than 1.5. Hence, after implementation the model would behave 

strongly deterministically. However, in a rule-based logical model the expected changes 

in input signal values are specified to simplify the model checking process. Therefore, if 

there are two transitions with two different input signals assigned, it is assumed in the 

rule-based logical model that both the input signals may change, although their 

It should be noted that the rule-based logical model has a compact form and therefore
it is easy to use. It is also an intermediate model that permits automatic generation of a
verifiable model (and VHDL code for prototype implementation), using the implemented
m2vs tool. The generated model is ready to be used in the nuXmv model checker [27]
for simulation or formal verification. Thanks to automatic generation of the verifiable
model, errors related to manually input code writing can be eliminated. The consistency
between the rule-based logical model and the verifiable model is ensured through formal
transformations between models (model-to-model transformation). This step is fully
automatic and its output is the verifiable model.
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Listing 2. (a) Exchanged lines of rule-based logical model of the interpreted Petri net in Figure 3
right, with respect to Listing 1a; and (b) exchanged lines of generated verifiable model in nuXmv
format, with respect to Listing 1b.
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Theorem. Rule-based logical model faithfully reflects the given interpreted Petri net.

Proof. The interpreted Petri net can be formally written as IN = (P, T, F, M0, X, Y) (see
Definition 4). The rule-based logical model consists of five parts (see Definition 6): VARI-
ABLES, INITIALLY, TRANSITIONS, OUTPUTS, and INPUTS. The correspondence between
these two models is established as follows:

� Set P is directly reflected in sections: VARIABLES (definition of places) and TRANSI-
TIONS (changing of marking), indirectly appears also in INITIALLY (with set M0);

� Set T is directly reflected in section TRANSITIONS (each transition is written as a
separate rule that, given the conditions are satisfied, changes the marking of its input
and output places);

� Set F is directly reflected in section TRANSITIONS (connection of places and transi-
tions with each other);

� Set M0 is directly reflected in section INITIALLY (initial marking of all places);
� Set X is directly reflected in sections: VARIABLES (definition of input signals), INI-

TIALLY (initial values of input signals), TRANSITIONS (as rule conditions) and
INPUTS (assignment of input signals to the places where values change is expected,
but it is not sure in which time point it will happen);

� Set Y is directly reflected in sections: VARIABLES (definition of output signals),
INITIALLY (initial values of output signals), and OUTPUTS (assignment of output
signals to the corresponding places).

From the above, it is clear that the structure of the interpreted Petri net with assigned
input and output signals is consistent with the rule-based logical model. �

Safety and liveness requirements are crucial in any system with human interaction. The
health and prevention of human facilities must be guaranteed to prevent any harm. Safety
issues are the primary challenge that must be tackled in all systems involving humans,
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e.g., in robotic workstations [28,29] or spacecraft power systems [30]. A safety requirement
asserts that nothing bad ever happens, and a liveness requirement, that something good
will eventually happen. The requirements to be checked in the nuXmv tool are specified
with temporal logic formulas [31].

So, the common desired safety property is that it should never be the case that two
processes are at the same time in some critical state or that two (conflicting) output signals
are active at the same time. This property (with two output signals y1 and y2) can be
expressed by the following LTL formula:

G !(y1 & y2) (3)

or CTL formula:
AG ! (y1 & y2) (4)

The common desired liveness property is that whenever a process wants to enter its
critical session, it eventually does; or that whenever a request is made by the operator, the
task is eventually completed by the system. This property (with input signal request and
output signal action) can be expressed by the following LTL formula:

G (request -> F action) (5)

or CTL formula:
AG (request -> AF action) (6)

All user-defined requirements are added at the end of the generated verifiable model
using the syntax of the nuXmv model checker. Finally, model checking can be performed.
The system model is then verified against the requirements. If any of them is not satisfied,
generated counterexamples help find the error source and correct it. Only after successful
verification can the design flow proceed, and the designed system be implemented and
experimentally verified.

4. Case Study

Let us illustrate the proposed approach with a case study of an energy storage sys-
tem [32,33]. It is used to provide a system service related to the stabilization of power
resulting from fluctuations in the power generated by RES or loads with large and sudden
power changes. For the informal specification of the system please refer to [2].

Let us just shortly summarize the basic features: The algorithm is initiated when the permis-
sible power fluctuations at the point of common coupling (PCC) are exceeded ∆PRES/LOAD > PLim.
Correct operation of the algorithm requires the maintenance of the SoC of an energy storage that
enables both charging and discharging. Therefore, after the algorithm is initialized, the energy
level in the energy storage should be brought to 60–65% SoCmax. When the required SoC level
is achieved, the power stabilization algorithm can be started. The proposed algorithm keeps
adjusting the power setpoint, which changes in an unpredictable way. As a result of the algo-
rithm in the PCC, a constant power level Pref is maintained for periods of 1 min. The Pref value
in the next minute is determined from the average RES/LOAD power that was recorded in the
previous one-minute period Pref(n) = avg(PRES/LOAD_1_min(n−1)). The energy storage then injects
energy into the grid or is charged with grid energy so as to keep the line power constant at Pref.
The algorithm takes into account the maximum allowable power change ∆Pref = Pref(n-1) − Pref(n),
which results from the short-circuit power at the PCC point and which adversely affects the
flicker Pst. This means that the power step change should not cause a relative voltage change
in the power system of more than 3%. Therefore, the following relationship must be satisfied:
∆Pref/SkQ < 0.03, SkQ is a short-circuit power at the PCC. If ∆Pref ≥ PLim, the charging/discharging
power of the energy storage is limited to PES = PLim.

The control algorithm of power stabilization of RES and loads is written as an inter-
preted Petri net (shown in Figure 4, with input and output signals in Table 1) that is live,
safe, reversible, and strongly deterministic, using the methods provided in [2]. The original
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net from [2] was here supplemented by assignment of input signals (solving the problem
of the generated verifiable model presented in the previous section).
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Figure 4. An interpreted Petri net describing the overall supervisory energy management system of
the algorithm for power stabilization of RES/LOAD with all input signals assigned, prepared to be
used in a rule-based logical model.

Table 1. Binary input and output signals.

Input Description Output Description

x1 SoC ≤ 0.6 SoCmax y1 Idle state

x2 Request to quit the algorithm y2 Initialization of initial conditions of the
algorithm

x3 ∆Pref/SkQ ≤ 0.03 y3 Battery pre-charging
x4 ∆PRES/LOAD ≤ PLim y4 Battery charging with |PESmax| ≤ |PLim|
x5 PES > 0 y5 Battery charging with |PESmax| = |PLim|
x6 SoC = SoCmin y6 Battery discharging with |PESmax| ≤ |PLim|
x7 SoC = SoCmax y7 Battery discharging with |PESmax| =|PLim|
x8 SoC ≥ 0.65 SoCmax y8 Battery pre-discharging
x9 Request to start the algorithm

Then, the rule-based logical model was created, presented in Listing 3, with 69 lines of
manually entered code. It was then automatically transformed into a verifiable model with
193 lines of code (approx. three times longer).
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Listing 3. Rule-based logical model describing the overall supervisory energy management
system of the algorithm for power stabilization of RES/LOAD based on Figure 4.
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AG !(y1 & y8) (7) 
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nals y4 and y6 are never active at the same time): 

AG !(y4 & y6) (8) 

(3) When |PESmax| = |PLim| the battery is either charging or discharging (both output sig-

nals y5 and y7 are never active at the same time): 

AG !(y5 & y7) (9) 

(4) Every request to start the algorithm (occurrence of signal x9) results eventually in 

initialization of initial conditions of the algorithm (output signal y2): 



Sensors 2022, 22, 6936 13 of 18

The nuXmv model can now be supplemented by user-defined requirements. Sample
safety properties defined as CTL temporal logic formulas include checking whether the
following situations are always true:

(1) Idle state is not activated during battery pre-discharging (both output signals y1 and
y8 are never active at the same time):

AG !(y1 & y8) (7)

(2) When |PESmax| ≤ |PLim| the battery is either charging or discharging (both output
signals y4 and y6 are never active at the same time):

AG !(y4 & y6) (8)

(3) When |PESmax| = |PLim| the battery is either charging or discharging (both output
signals y5 and y7 are never active at the same time):

AG !(y5 & y7) (9)

(4) Every request to start the algorithm (occurrence of signal x9) results eventually in
initialization of initial conditions of the algorithm (output signal y2):

AG (x9 -> AF y2) (10)

(5) Every request to quit the algorithm (occurrence of signal x2) results eventually in
returning to the idle state (output signal y1):

AG (x2 -> AF y1) (11)

Safety properties expressed by CTL temporal logic Formulas (7)–(9) are satisfied in
the model, as well as liveness property (10). Liveness property (11) is not satisfied, as
demonstrated by the generated counter example. Request to quit the algorithm does not
result in going into an idle state when made in the initialization state. A weaker property,
excluding initialization step, is already satisfied in the model:

AG ((x2 & !p2) -> AF y1) (12)
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Listing 4. Generated counterexample for request to quit the algorithm.
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5. Experimental Verification

Experimental research was carried out on a prototype with batteries fabricated using
lithium-titanium-oxide (LTO) [32] technology. The energy storage consists of Rechargeable
Battery SCiB 23Ah cells manufactured by Toshiba. The achieved power of the tested electric
energy storage was 100 kW, while its capacity was 35 kWh. Fabricated using the SiC tech-
nology, the bidirectional DC/AC power electronic converter connecting the energy storage
with the power grid consists of two 50 kW inverters operating in parallel. The prototype of
the energy storage was implemented on the low voltage side of the MV/LV transformer
station with a rated power of 630 kVA. The experiments with the load power stabilization
algorithm were carried out using the Fluke 437-II Network Parameter Analyzer.

In the test, one large load with a power of 18 kW was used as a variable load, which
changed its power from zero to a nominal value within one minute. Moreover, the loads
normally operating in the network were also included in the general profile of network
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load changes. The test results are shown in the Figure 5. Before starting the algorithm, the
energy storage was set to the appropriate state of charge 0.6 SoCmax ≤ SoC ≤ 0.65 SoCmax.
The physical start of the algorithm took place at the time t0, where the main contactor
supplying the power electronic converter was turned on. Then, the converter and energy
storage were initialized, which lasted about 4 s. During the initialization, it is not possible
to interrupt the algorithm, because then the main control unit exchanges data with its
peripherals and initializes them to work. Only a hard reset of the main control unit can
interrupt the initialization process. At the time t1, the inverter output signals are generated,
which is equal to the start of the algorithm operation.
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Figure 5. Time waveforms of the grid power Pgrid, power of the energy storage PES and load power
PLOAD during the operation of the power stabilization algorithm of unstable loads with energy
storage prototype.

As a result of the operation of the prototype with an energy storage and the imple-
mented power stabilization algorithm, the power consumed from the power grid did not
exceed 38 kW, with low-frequency fluctuations not exceeding 10 kW. The test results show
the lack of compensation for rapid changing load power fluctuations, which results from
the measuring system used in the prototype having a measurement acquisition time of
250 ms. This time is too long to successfully stabilize the rapidly changing load in the
power grid.

Because the prototype of the energy storage was installed in a real power system as
an autonomous, maintenance-free device, it was not possible to measure the control and
set signals in the control system. Nevertheless, the implemented algorithm was verified in
the testing phase using the method proposed in the article. The experimental prototype
test was carried out only for load changes because the power changes generated by RES
were not possible in our laboratory. The difference in the operation of both load and RES
power stabilization algorithms is that the energy storage system charges when generation
from RES is too high, and discharges in the case of reduced generation from RES. For the
stabilization of the load power, the situation is opposite as shown in the article.

The results of the proposed approach to model checking of autonomous components
within electric power systems cannot be directly compared with other approaches using
any other metrics, as in the case, e.g., of short-term load forecasting, focusing on such
characteristics of electric load sequence as stability and flexibility sequence [34]. Indeed,
the novelty is built on application of symbolic model checking to verify components of
power electronics systems. So far, the most frequently used verification methods in the
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industry are simulations and experiments. However, they must be performed manually
and do not provide 100% confidence that the system will operate correctly in all situations.
Symbolic model checking can be used to achieve a guarantee that the system satisfies
user-defined requirements. It can be applied automatically before physical production of
the power electronics systems, so that any errors, incorrect assumptions, or unforeseen
situations are detected as early as possible. It should be emphasized that the significance of
the results of symbolic model checking (in general) is correlated with the proper selection
of requirements which are to be verified. The presented results of experimental tests of a
real prototype operating autonomously in a low voltage network are the final verification
of the implemented system and the described control strategy. The correct operation of the
system signifies its verification in real conditions.

6. Conclusions

In the article a novel approach was proposed to formally verify behavioral properties
of autonomous components within electric power systems that are specified by interpreted
Petri nets (using symbolic model checking and the rule-based logical model as an inter-
mediate format). Therefore, the previously proposed modelling methodology [2] was
herein extended to the more complete modelling and verification methodology for a power
system domain based on interpreted Petri nets. A rule-based logical model is applied to
automatically generate a verifiable model, ready to be imported into the nuXmv model
checker, in order to speed up model creation and eliminate errors related to manually
entered code. The model checking technique is used to verify whether the system model
satisfies user-defined behavioral requirements that are expressed as temporal logic for-
mulas. This permits not only the checking of some basic structural properties, including
reachability, but also of the behavioral properties, corresponding to the functionality of
a designed system. Such properties include the cause-and-effect relationships between
input and output signals and enable checking of the most desired safety situations (nothing
bad will ever happen) and liveness situations (something good will eventually happen).
Symbolic model checking provides us 100% confidence about the satisfaction (or lack) of
the defined requirements, which is the key benefit in comparison with other traditional
verification techniques applied in the power energy domain (simulations, experiments,
etc.). Furthermore, it may be applied at an early stage of system development which helps
to save both time and money.

The limitations of the proposed modelling and verification technique include the
need for cooperation with some interdisciplinary engineers. Specific aspects of control
algorithms in power energy systems should here be modelled in a way that is closer to the
automatic and control domain and the engineers need to be familiar with interpreted Petri
nets. Additionally, due to the nature of the rule-based logical model and the definition of
expected changes in input signal values (used to avoid the state explosion problem while
model checking), special attention should be paid to the proper functionality with abstract
meaning of input signals, regardless of their interpretation in the real world.

Plans for the future include the continuation of interdisciplinary cooperation to intro-
duce more advancements into the area of power energy systems. Energy storage systems
are objects that are very difficult to model due to the variability of their nominal parameters,
which depend on the operating conditions. These conditions affect, among others, such
parameters as capacity, cyclical life, and the current charging or discharging power value.
The main factors influencing the change in these parameters are cell temperature, depth
of discharge (DoD), and operating currents. Therefore, further research on the use of
interpreted Petri nets is needed to include the operating conditions of the energy storage.
Then it will be possible to check the correct operation of not only the control algorithms,
but also the operation of the Battery Management System (BMS) and its influence on the
operation of the control algorithm.
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Nomenclature

PCC Point of common coupling
PES Power consumed/delivered from/to the energy storage

PLim
Acceptable limit of power change in the system not causing
deterioration of the electric power quality parameters

Pref Power setpoint at PCC

∆PRES/LOAD
Change in power resulting from the variability of renewable energy
sources (RES) generation or variability of the load power

SkQ Short circuit power at the PCC
SoC State of charge the level of charge of a battery relative to its capacity
PRES/LOAD_1 min Average value of RES power/loads within one minute
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23. Wisniewski, R.; Bazydło, G.; Szcześniak, P.; Grobelna, I.; Wojnakowski, M. Design and Verification of Cyber-Physical Systems

Specified by Petri Nets—A Case Study of a Direct Matrix Converter. Mathematics 2019, 7, 812. [CrossRef]
24. David, R.; Alla, H. Discrete, Continuous, and Hybrid Petri Nets; Springer: Berlin/Heidelberg, Germany, 2010; Volume 1, pp. 17–130.
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