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Abstract: Future-generation wireless networks should accommodate surging growth in mobile data
traffic and support an increasingly high density of wireless devices. Consequently, as the demand
for spectrum continues to skyrocket, a severe shortage of spectrum resources for wireless networks
will reach unprecedented levels of challenge in the near future. To deal with the emerging spectrum-
shortage problem, dynamic spectrum access techniques have attracted a great deal of attention in
both academia and industry. By exploiting the cognitive radio techniques, secondary users (SUs) are
capable of accessing the underutilized spectrum holes of the primary users (PUs) to increase the whole
system’s spectral efficiency with minimum interference violations. In this paper, we mathematically
formulate the spectrum access problem for interweave cognitive radio networks, and propose a usage-
aware deep reinforcement learning based scheme to solve it, which exploits the historical channel
usage data to learn the time correlation and channel correlation of the PU channels. We evaluated the
performance of the proposed approach by extensive simulations in both uncorrelated and correlated
PU channel usage cases. The evaluation results validate the superiority of the proposed scheme in
terms of channel access success probability and SU-PU interference probability, by comparing it with
ideal results and existing methods.

Keywords: dynamic spectrum access; interweave cognitive radio; deep reinforcement learning;
channel usage aware; spectral utilization efficiency; interference violation

1. Introduction

In the past decade, mobile data traffic has grown tremendously due to the increase
of wireless communication terminals and spectrum-hungry applications. The monthly
global data traffic reached 77 exabytes in 2022, i.e., a seven-fold increase over 2017, which
is predicted to reach 131 exabytes per month by 2024. This blossoming traffic demand is
driving the need for either improved spectrum efficiency in traditional sub-6 GHz frequency
band or the utilization of additional spectrum in millimeter wave (mmWave) frequency
bands. The wireless communication in mmWave band has a huge potential, however,
its high blockage and scattering losses characteristics limit the mmWave band use cases.
On the other hand, the spectrum resource below 6 GHz is comparatively easy to use for
mobile communication systems. However, the frequency bands below 6 GHz are already
almost fully allocated to various existing wireless systems in a static and exclusive way,
e.g., TV broadcasting, video camera services, radar systems, fixed satellite systems, etc.
In the current spectrum allocation paradigm, some primary systems have extremely low
spectral utilization efficiency, since they have a large amount of unutilized or underutilized
spectrum resources in both time and space domains [1]. To this end, dynamic spectrum
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access (DSA) which is empowered by interweave cognitive radio techniques, has been
widely investigated [2–5], in which the secondary users (SUs) are allowed to access the
abundant spectrum holes i.e., whitespaces, in the licensed spectrum bands that belong to
the primary users (PUs).

Two kinds of DSA approaches have been extensively studied recently, i.e., database
driven spectrum access approaches and opportunistic spectrum access approaches. In the
database driven spectrum access approaches [6–10], the SU queries a spectrum database
about the spectrum availability information before the channel access. The spectrum
database could be either constructed by propagation models [6] or crowdsourced spectrum-
sensing measurements [7–10]. The main concern in this kind of approach is the database’s
accuracy and high maintaining/updating cost. In opportunistic spectrum access ap-
proaches [11–18], the SU senses or predicts the spectrum holes of PUs, and accesses them
dynamically. Ideally, the PUs are oblivious of the presence of SUs, if the SUs do not cause
any interference. This approach is cost-efficient but may suffer from severe interference if
the sensing or predicting results are not accurate. The key issue for opportunistic spectrum
access is to predict the PUs’ channel usage status, and thus let SU access a channel that
most likely to be idle to minimize the interference ratio and maximize the system’s total
spectral utilization ratio. To this end, neural network model based primary user activity
prediction methods were proposed in [13–15], with the objective of reducing both the
spectrum underutilization and interference violations. In [16], by assuming that the PUs’
channel occupancy pattern obeys an exponential ON-OFF time distribution, a predictive
channel selection algorithm was proposed and implemented in a wireless test-bed. Without
the assumption of channel usage patterns, model-free spectrum access methods have been
extensively investigated by utilizing the learning algorithms, and the details of them will
be introduced in Section 2. In our previous work [19], we investigated the dynamic channel
access problem in a specific uncorrelated three-PUs scenario, and provided some prelim-
inary results to validate the practicability of the proposed deep reinforcement learning
based method. However, the method proposed in [19] is dedicated to a very specific case
without formal formulation, and is hard to be extended to general channel access problem.

Based on the idea and preliminary results in [19], in this work, we consider a general
dynamic channel access problem in a multiple-PU single-SU interweave cognitive radio
network, by taking consideration both correlated and uncorrelated PU channel usage
patterns. We mathematically formulate this problem to an optimization problem with
the goal of maximizing the spectrum access success ratio and minimizing the interference
violation ratio. We propose a novel usage-aware spectrum access scheme by exploiting
deep reinforcement learning technique [20], in which the SU acts as an agent who could
learn the optimal channel access policy by interacting with the wireless environment in
a trial-and-error manner. Specifically, the proposed scheme exploits a deeper historical
channel usage data of PUs by a compressed status representation method, and uses a
usage-status-aware reward function to solve the reward sparsity problem. Moreover, to
reduce the interference probability when the whitespace of PU is very limited, an additional
no access option is provided to further reduce the interference ratio. We perform extensive
simulations to evaluate the performance of the proposed scheme by using a new evaluation
metric which is defined as the difference between the channel access success probability and
the SU-PU interference probability. The evaluation results demonstrate that our proposed
scheme constantly keeps a small gap between the ideal results and outperforms the existing
methods significantly under different PU channel usage patterns.

The rest of the paper is organized as follows. Section 2 introduces the related works.
Section 3 describes the system model and preliminaries of reinforcement learning and
deep reinforcement learning techniques. Section 4 presents the proposed scheme in detail.
Finally Section 5 provides the evaluation results, and Section 6 draws the conclusions.
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2. Related Work

The underutilization of sub-6GHz frequency bands caused by current spectrum al-
location policy has stimulated a flurry of research activities in opportunistic spectrum
access. Besides the conventional dynamic programming [21] and game theory [22] based
channel access approaches, model-free learning-based approaches are widely addressed.
These researches intend to keep track of PUs’ channel usage status, and let SU either sense
the most likely idle channel to avoid interference or access the most likely channel in a
best-effort way with acceptable interference ratio. Specifically, reinforcement learning based
opportunistic spectrum access methods have been employed recently, which formulates the
channel access problem as a Markov Decision Process (MDP). An optimal policy is derived
to maximize the number of time slots with successfully secondarily used while constraining
the interference caused to the PUs. In [23], the channel access problem was formulated as a
multi-arm restless bandit process by assuming the system transition is known a priori, and
a myopic spectrum access policy was proposed, which designs a sensing policy for channel
selection to maximize the average reward. In [24], a restless Multi-armed bandit (MAB)
based approach [24] was investigated for homogeneous channel scenarios without the
requirements of system transition statistics. In [25], the spectrum sensing order problem in
the scenario with idle spectrum across multiple network service providers was investigated,
in which a discounted Thompson sampling method was proposed to address the formu-
lated optimization task. In [26–29], with the assumption that the observable full system
states, reinforcement learning based dynamic spectrum access approaches were proposed.
In [30], a deep reinforcement learning-based dynamic multi-channel access method was
firstly proposed, which takes into consideration the partial observability. In [31], a deep
actor-critic reinforcement learning method was proposed for spectrum sensing problem for
both single user case and multiple users case. Furthermore, a deep reinforcement learning
based distributed dynamic spectrum access scheme for multiple SUs was investigated
in [32], which uses a local observation indicating whether its packet was successfully de-
livered or not as a reward. However, this work assumed that the channel utilizations for
PUs are invariant. A deep recurrent Q-network-based dynamic spectrum access method
for a scenario with multiple independent channels and multiple heterogeneous PUs was
proposed in [33]. Aside from the aforementioned methods that focused on fixed time slot
channel sensing, spectrum sensing with adaptive time slot structure have also been studied.
In [34], the authors deduced the structure of optimal sensing interval policy for channels
with hyper-exponential distribution OFF times through Markov decision process, and
used dynamic programming framework to derive sub-optimal sensing interval policies.
In [35], the authors addressed the problems of which channel to sense and how often to
sense. Specifically, a reinforcement learning based channel selection method and a Bayesian
skip sensing duration method were proposed. In [36], the authors considered the tradeoff
between sensing and transmission, and proposed a deep reinforcement learning based
spectrum sensing strategy with the goal of maximizing the expected achievable throughput
of SU. In [37], a reservoir computing-based distributed spectrum access approach was
proposed, which takes into consideration the spectrum sensing errors.

3. System Model and Preliminaries
3.1. System Model

In this paper, we consider a conventional dynamic channel access model for the
interweave cognitive radio network, where N PUs use N respective channels and a single
SU tries to opportunistically access the whitespace of PUs for secondary use in a slot-by-slot
manner. The PU channel usages could be either correlated or uncorrelated. In each time
slot, the usage status of PU is represented by “−1” when it is busy and “1” when it is
idle. The PU usage patterns can be characterized by two metrics, duty cycle (DC) and
complexity [38]. DC indicates the activity level of PU, which is defined as the time ratio
of its presence. Therefore, a high DC means less whitespace is available for secondary
use. Complexity is an index showing the degree of irregularity in the channel usage by
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measuring the rate of production of new patterns. The complexity could be measured
by the entropy rate given by Equation (1), which is defined as the expected value of the
amount of information that increases when one random variable is added to the random
variable sequence.

h = −∑
ij

δi pij log pij. (1)

In the context of this paper, pij denotes the channel status transition rate, which
includes p00, p01, p10, p11. δ1 represents the DC of PU’s channel usage, and δ0 = 1− δ1. The
usage pattern of PU with large entropy rate indicates that it has high complexity and thus
is hard to predict.

The SU tries to predict all N channels usage status on the next time slot, and either
access a channel that is most likely to be idle or retrain from channel accessing. If the
channel that SU accessed is idle, the spectrum access succeeds and there has no interference
between SU and PU. Otherwise, the spectrum access fails and SU-PU interference occurs.
In this case, the SU must refrain from the channel accessing. Obviously, accurate channel
usage prediction for the next time slot is the key to maximize the spectral utilization ratio
and minimize the interference probability.

3.2. Preliminaries
3.2.1. Reinforcement Learning

Q-Learning [39] is a representative reinforcement learning algorithm that learns the
optimal policy in an interactive environment by trial and error. By assuming discrete time,
in time slot k, the agent observes the state sk of the environment, and takes an action ak
based on a policy π. Upon the action being taken, the state moves from sk to sk+1, and the
agent obtains a reward/cost rk that indicates the benefit/loss by taking ak at sk. The optimal
action policy π∗ is computed by maximizing/minimizing the expectation of the future
cumulative discounted reward/cost. In Q-learning, a Q-function is defined to represent
the expected future cumulative discounted reward for action ak under state sk. The values
of the Q-function, i.e., Q-value, are stored in a Q-table, whose size is the number of states
times the number of actions. The Q-value in time slot k is updated by Equation (2).

Q′(sk ,ak)
= Q(sk ,ak)

+ α

(
rk + γ min

ak+1
Q(sk+1,ak+1)

−Q(sk ,ak)

)
, (2)

where Q′(sk ,ak)
is the Q-value after update, Q(sk ,ak)

is the current Q-value, α is the learning
rate which is in range 0 ≤ α ≤ 1, rk is the cost, γ is the discount factor which is in range
0 ≤ γ ≤ 1, and minak+1 Q(sk+1,ak+1)

represents the minimum Q-value for the actions that the
agent can select at next time slot k + 1 under the new state sk+1. Notice that in Equation (2),
minimum Q-value is used, since rk is a cost instead of a reward, i.e., smaller Q-value is
more desirable.

3.2.2. Deep Reinforcement Learning

When the spaces of state sk and action ak increase, the Q-table based classic Q-learning
method may fail due to the so-called the curse of dimensionality problem, i.e., many state-
action pairs are rarely visited and the storage of the table becomes impractical. To solve
this problem, Deep Q-Network (DQN) [20] has been proposed, which approximates the
Q-table by a neural network. By introducing a weight θk of the DQN, the task of finding
the best Q-function is transformed to search the best weight θk. Therefore, the update of
the Q-value is represented by Equation (3).

Q′
(sk ,ak ,θk)

= Q(sk ,ak ,θk)+

α

(
(1− γ)rk + γ min

ak+1
Q

(sk+1,ak+1,θ̃k)
−Q(sk ,ak ,θk+1)

)
.

(3)
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A replay memory is used to store the latest U state-action-cost tuples, such as
ϕ = {m(k−U+1), . . . , mk}, where mk = {sk, ak, rk, s(k+1)}. A mini-batch ϕ̃ ∈ ϕ is sam-
pled from the replay memory instead of the most recent experience to calculate the loss
function, which is defined as the difference between a target Q value and the current Q
value. The weight θk of the neural network is updated by the gradient descent method. To
make the training more stable, a target Q-network is used to back-propagate through and
train the main Q-network. The loss function and the gradient are given by Equations (4)
and (5), respectively. By utilizing DQN, the agent could learn the optimal Q-value for a
state-action pair in a semi-online fashion.

L(θk+1) = E{sk ,ak ,rk ,sk+1}∈ϕ̃

[(
(1− γ)rk

+ γQ(sk+1, arg min
ak+1

Q(sk+1, ak+1, θ̃k), θk)−Q(sk, qk, θk+1)
)2
]

,
(4)

∇θk+1 L(θk+1) = E{sk ,ak ,rk ,sk+1}∈ϕ̃

[(
(1− γ)rk

+ γQ(sk+1, arg min
ak+1

Q(sk+1, ak+1, θ̃k), θk)−Q(sk, ak, θk+1)
)

∇θk+1 Q(sk, ak, θk+1)

]
.

(5)

4. Proposed Deep Reinforcement Learning Based Usage Aware Spectrum
Access Scheme

In this section, we firstly mathematically formulate the dynamic spectrum access
problem in a interweave cognitive radio network with multiple-PU and single-SU. Then,
we propose a deep reinforcement learning based usage aware spectrum access scheme
to let the SU predict the channel usage at next time slot and access the most likely idle
channel. The goal of the proposal is to maximize the system spectral utilization efficiency
and minimize the SU-PU interference violations.

4.1. Problem Formulation

In this paper, we consider a typical spectrum access model with K PUs and single
SU. The time is discretized into time slots, and the idle or busy status of PU does not
change during one time slot. The status of total K PUs’ channels at time slot t is denoted
by st = [st

1, st
2, . . . , st

K], where st
k = 1 if the k-th PU’s channel is idle at time slot t, and

st
k = −1 if it is busy. At time slot t, SU determines whether accessing the channel or not

and which channel to access if so. A channel access indicator at time slot t is represented by
at = [at

1, at
2, . . . , at

K], where at
k = 1 if SU accesses the k-th channel at next time slot and at

k = 0
otherwise. Notice that ∑K

k=1 at
k ≤ 1, which indicates that SU can at most access one channel

at a time. Accessing an idle channel leads to a success spectrum reuse, and accessing a busy
channel results in interference and thus the SU must refrain from accessing.

The SU aims at finding a series of optimal channel access policy in total time slots
T, so as to maximize the number of time slots that have been successfully accessed and
minimize the number of time slots in which the interference occurred. The problem could
be formulated as follows.

max
a1,a2,...,aT

T

∑
t=1

(st)Tat,

s.t.
K

∑
k=1

at
k ≤ 1, at

k ∈ {0, 1}
(6)
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where the constraint indicates that the SU could at most access one channel for each time
slot t. For each time slot t, the value of the objective function in Equation (6) has three
possible cases, i.e., 1 when SU accesses an idle channel, 0 when SU refrains from channel
access, and −1 when SU accesses a busy channel.

4.2. Existing Q-Learning and DQN Based Spectrum Access Methods

Before presenting the proposed scheme, we briefly introduce the basic idea of the
existing Q-learning and DQN based spectrum access methods. The Q-Learning based
spectrum access method uses the channel usage status at current time slot t of different
PUs as the states for learning. An illustrative example with 3 PUs is shown in Figure 1a. If
at time slot t, the status of channels #1, #2, #3 are busy, busy and idle, respectively, the states
will be recorded by vector [−1,−1, 1]. The action will be the index of the channel that SU
intends to access at next time slot t + 1. For instance, at = [0, 0, 1] indicates that SU will
access channel #3 at next time slot. If the channel that SU intends to access at time slot t + 1
is idle, the spectrum secondary use succeeds and the system’s total spectral utilization ratio
improves. Otherwise, if the channel that SU accesses at time slot t + 1 is busy, the channel
access fails since the interference occurs. The cost value is defined as 0 if the channel access
succeeds, or 1 otherwise.

(a)

(b)

Figure 1. An illustration of the state definitions for the existing methods. (a) Q-learning based
spectrum access method. (b) DQN based spectrum access method.

In the DQN based spectrum access method, the historical channel usage status is
used as the states for learning. The original Q-table based learning method cannot exploit
the historical data, since it leads to a tremendous increase of the state-action space. For
instance, in the same scenario that the number of PUs is 3, if the past channel usage
status back to time slot t− 4 is applied, the number of states will increase rapidly from
2× 2× 2 = 8 to (2× 2× 2)5 = 32, 768. Hopefully, the DQN algorithm approximates the
Q-table by neural network, and thus is capable of dealing with complicated scenario with
huge state-action space.
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We briefly explain the DQN based spectrum access method by using the same PU = 3
example. Instead of only using the current time slot t’s status, the historical channel us-
age status back to time slot t− 4 is applied. For the example channel usage history that
given in Figure 1b, the state matrix can be represented as [1, 1,−1; 1,−1,−1;−1,−1, 1;
1,−1, 1;−1, 1,−1]. Here, the first row records 1, 1,−1 represent the usage status for chan-
nels #1, #2, #3 at time slot t− 4, the second row records 1,−1,−1 represent the usage status
for channels #1, #2, #3 at time slot t− 3, and so on. Action set and cost value are similarly
defined as that in the Q-learning based spectrum access method described above. Specifi-
cally, the action set has three possible actions since there are three channels and, the cost
value is set to 0 when the channel access succeeds, and the cost is set to 1 when the channel
access fails.

4.3. Proposed Usage Aware Spectrum Access Scheme

In this subsection, we present a novel deep reinforcement learning based usage aware
spectrum access scheme. To improve the training performance, a double Q-network
architecture is applied, in which one is used to determine the action and another is used
to evaluate the action. Furthermore, a replay memory is utilized, and the agent randomly
gathers a mini-batch from the replay memory, and uses it to update the neural network to
approximate the Q-value function. The proposed scheme improves the previous existing
methods in three aspects: compressed states representation, additional action and status
aware cost functions.

4.3.1. Compressed States Representation

In the existing Q-learning and DQN based spectrum access methods, the state vector
and matrix directly record the current and historical PU channel usage status. Specifically,
1 or −1 represents a specific channel for a specific time slot is idle or busy, respectively.
In this paper, in order to exploit a deeper historical PU usage status with a same state
matrix size, we propose a compressed state representation method, in which the number
of continuous channel status and the current channel status are recorded. To facilitate
better understanding, Figure 2 shows an example of how the proposed compressed states
represents the current and historical channel usages in a three-PU-channels scenario. The
compressed state is a matrix, in which each column records the channel usage information
of a specific channel. The last row, i.e., “101” in the example, represents the latest channel
usage status for three channels, i.e., st

1, st
2, st

3. Notice that “−1” which denotes busy is
changed to “0” in the state matrix to let all the elements in the state matrix non-negative,
and the remaining rows record the number of consecutive “−1” (busy) and “1” (idle)
alternately for different channels. For instance, the usage status for channel #1 at time slots
t− 3, t− 2, t− 1, t, i.e., st−3

1 , st−2
1 , st−1

1 , st
1, are recorded as 4 in the compressed state matrix.

The total size of the compressed states matrix is fixed, therefore, once the channel status
is switched twice, the oldest information on the first and second rows is deleted, and the
records following behind will be shifted forward. By using the proposed compressed states
representation, more information regarding the historical channel usages could be recorded
by the same size of state matrix.
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Figure 2. An illustration of the proposed compressed states representation.

4.3.2. Additional Action

In the existing methods, the SU must take an action to choose and access a channel
at the next time slot. However, in the scenario that the DCs of all the PU channel usages
are high, the available whitespace is limited and thus interference between SU and PU
is extremely hard to avoid. To this end, we add an additional “no access” action to the
action set. Specifically, at

k = 0 indicates that the SU refrains from accessing channel k at the
next time slot, therefore |at| = 0 denotes that the SU does not access any channel at next
time slot.

4.3.3. Status Aware Cost Function

In the existing Q-learning and DQN based spectrum access methods, the cost is set to
either “0” or “1” depending on the channel access is successful or not. This cost setting has
two problems. The first one is that the sparse cost value setting has a negative impact on the
learning process and may result in an unstable learning result. The second one is that the
cost setting has not taken into consideration the no access case. To this end, in the proposed
scheme, the cost functions are delicately designed, which has several discrete values based
on the PU channel usage status and SU’s actions. The cost value is assigned based on the
state-action pair’s “inappropriate level”. The basic idea is that, the most appropriate one is
assigned to a cost value equals to 0, and the most inappropriate one is assigned to a cost
value equals to 1. Specifically, the cost value calculation for all the possible state-action
pairs is defined in Equation (7), which is related to the PU channel usage status and SU’s
corresponding actions. For instance, choosing no access action when all the channels are
idle is more inappropriate compared with that when only one channel is idle.

Ct =


Nδ
N , |at| = 0

Nδ
2(N−1) + 0.5, at

k = 1 & st
k = −1

0, at
k = 1 & st

k = 1
(7)

Here , Nδ and N denote the numbers of idle channels and total channels, respectively. Nδ

could be easily derived by measuring the total received power. Notice that Nδ is required
only when the SU does not access the channel or it has to refrain from accessing due to
interference occurring. Specifically, if SU chooses the no access action, the cost value will
increase in proportion to the number of idle channels. If SU chooses to access the channel
k, and unfortunately interference occurs, the cost will proportionally increase with the
number of idle channels in the range [0.5, 1]. Finally, if SU chooses to access the channel k,
and channel k is idle, then the cost will be 0. A flowchart to illustrate the proposed status
aware cost function design is given by Figure 3.
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Figure 3. An flowchart of the proposed status aware cost function.

5. Simulation Results
5.1. Simulation Settings

In the simulation, we considered a typical interweave cognitive radio network with
multiple PUs and single SU. Regarding the PU channels, both the traditional correlated
channels and extremely challenging uncorrelated channels are considered. Various DCs
and complexities for the PU channel usages are adopted. The DC varies in range [0.1, 0.9].
For each DC, nine patterns of data with different complexities are used, and the complexity
is measured by entropy rate that given by Equation (1). The entropy rates for each DC are
shown in Table 1. From pattern η1 to pattern η9, the complexities gradually increase. An
example of the PU channel usages for DC = 0.5 with pattern η1 and pattern η9 are illustrated
in Figure 4. It is obvious that the channel usage pattern η1 with low complexity is much
easier to predict compared with pattern η9.

To validate the performance of the proposed scheme, we compare it with the ideal
results, random channel access method, Q-learning based method [26], and DQN based
method [30]. The ideal result is obtained by assuming that the SU has the perfect knowledge
of all PUs’ channel usage status at all future time slots, which provides an upperbound for
the performance evaluation. The random channel access method is a baseline method, in
which the SU randomly picks a channel and accesses it at the next time slot. The Q-learning
and DQN learning based methods are introduced in Section 4.2. The proposed scheme’s
major parameters are summarized in Table 2. We use Matlab [40] to generate the channel
usage time series with different DCs and complexities, and Python [41] to derive the ideal
result and realize the proposed scheme, the DQN-based method, the Q-learning based
method and the random channel access method.

Table 1. Entropy rates for different patterns at each DC.

DC 0.1 0.3 0.5 0.7 0.9

η1 0.1261 0.3195 0.4689 0.3195 0.1261

η2 0.2104 0.5119 0.4690 0.5119 0.2105

η3 0.2777 0.6519 0.7219 0.6519 0.2777

η4 0.3330 0.7539 0.7219 0.7539 0.3330

η5 0.3788 0.8141 0.8813 0.8247 0.3788

η6 0.4152 0.8247 0.8813 0.8141 0.4152

η7 0.4152 0.8659 0.9710 0.8659 0.4431

η8 0.4431 0.8669 0.9710 0.8669 0.4617

η9 0.4617 0.8813 1.0000 0.8813 0.4690
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(a) (b)

Figure 4. A channel usage example for 3 PU channels (DC = 0.5). (a) Pattern η1. (b) Pattern η9.

Table 2. Main parameters for the proposed method.

Parameters Value

Number of PUs 3, 10

Total time slots 110,000

Evaluation time slots 10,000

Mini-batch size 2500

Replay memory size 125,000

Exploration rate 1→ 0.001

Learning rate 0.00009

Discount factor 0.1

Number of hidden layers 1

Number of neurons 512

In this paper, we aim at maximizing the SU’s channel access success probability and
minimizing the SU-PU interference probability simultaneously. Therefore, we define a new
evaluation metric, i.e., Ps − Pi, which is the channel access success probability Ps, minus the
SU-PU interference probability Pi. The range of the evaluation metric Ps − Pi will be from
−1 to 1. In real applications, PU will inform the interfering SU to refrain from transmitting
once the interference is occurred.

5.2. Evaluation Results for Correlated Channel Usages

First, we validate the proposed method in correlated channel usages cases. In this
setting, 10 PU channels are evenly divided into two groups, i.e., G1 with five channels
and G2 with five channels. In each group, the channels’ idle and busy states changes with
the same pattern. To keep the total DC as 0.5, we consider three kinds of combination for
G1 and G2, specifically DC(G1) = 0.1 and DC(G2) = 0.9; DC(G1) = 0.3 and DC(G2) = 0.7;
DC(G1) = 0.5 and DC(G2) = 0.5.

First, Figure 5a illustrates the results of Ps − Pi for different DC combinations. It is
obvious that the ideal results are always 1, since the channel access success probability is
100% and the SU-PU interference probability is 0%. The random channel access method
could only achieve Ps − Pi = 0, since its channel access success probability and SU-PU
interference probability are both 50%. For the proposed method, it could achieve almost
the same performance as the ideal results for all three duty cycle combinations, which
indicates that both the time correlation and channel correlation of the PU channels are well
learned. On the other hand, the performance of two existing methods, i.e., the Q-learning
based method and the DQN-based method, varies from 0.31 to 0.82 at different duty
cycle combinations, and the DQN-based methods performs slightly better than Q-learning
based method.
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(a) (b)

(c) (d)

Figure 5. Ps − Pi for correlated PU channels (No. of PU = 10). (a) Different DCs for groups G1 and G2.
(b) Different patterns when DC(G1) = 0.1 and DC(G2) = 0.9. (c) Different patterns when DC(G1) = 0.3
and DC(G2) = 0.7. (d) Different patterns when DC(G1) = 0.5 and DC(G2) = 0.5.

Next, Figure 5b–d shows the results of Ps − Pi at different DC combinations with
varying complexities. Firstly as expected, the performance of the ideal results and random
channel access method keeps constant regardless of the complexities. Moreover, it is clear
that the performance of the proposed method also does not change with PU channel usage
complexities, which achieves almost similar results with ideal results at all complexities.
However, it is obvious that the two existing methods’ performance degrades as the PU
channel usage complexity increases, especially for the DC(G1) = 0.5 and DC(G2) = 0.5 case,
and the DQN-based method achieves more stable performance compared with Q-leaning
based method. We can observe that the Q-learning based method fails to predict the
channel state completely at some scenarios, e.g., η3, η5, η7 and η8 when DC(G1) = 0.5 and
DC(G2) = 0.5.

5.3. Evaluation Results for Uncorrelated Channel Usages

Next, we compare the performance of different methods in an uncorrelated channel
usage scenario. First, we show the performance in terms of Ps − Pi in a 3 PU channel
scenario in Figure 6. Figure 6a shows the results of Ps − Pi varying with DC from 0.1 to
0.9. As expected, when the DC of the PUs increases, it becomes more difficult for the SU
to access the channel successfully without interference violation for all the channel access
methods. Even for the ideal results, the Ps − Pi decreases from 1 to 0.26 when the DC
increases from 0.1 to 0.9. For the random channel access method, the performance linearly
degrades from 0.8 to−0.8 when the DC increases from 0.1 to 0.9. Regarding the two existing
methods, they could only achieve limited improvements compared with random channel
access scheme, and the DQN-based scheme performs constantly better than the Q-learning
method, since historical channel usage status is utilized. Besides the ideal results, it is
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obvious that the proposed scheme performs the best, which keeps a small performance gap
to the ideal results. The gap becomes larger when the DC increases, since the whitespace
is extremely limited for the cases that DC is 0.7 and 0.9. However, the proposed scheme
still significantly outperforms the two existing methods at all DC values. When the DC is
low, i.e., 0.1 and 0.3, we consider that the improvements mainly come from two aspects.
One is the proposed compressed states representation scheme which results in learning
with deeper historical channel usage status. Another is the proposed usage aware cost
function design which reduces the cost value’s sparsity. When the DC is high, i.e., 0.5, 0.7
and 0.9, we can confirm that the proposed scheme has a further performance improvements
compared to the existing methods. Aside from the two previously mentioned aspects, we
consider the reason is that the additional “no access” action provides SU a new option to
avoid interference by refraining from channel access.

Figure 6b–f show the results of Ps − Pi at different DC by varying the complexities
of the PU channel usage patterns. As expected, the ideal results and the performance of
random channel access method keep constant regardless of the complexities. On the other
hand, the performance of the two existing methods degrades as the PU’s channel usage
complexity increases. This performance variation becomes large when the DC increases.
For the high DC and high complexity cases, i.e., η7 ∼ η9 when DC = 0.7 and η5 ∼ η9 when
DC = 0.9, their performance degrades to the same level as the random channel access
method, which indicates that the learning has failed and the prediction results are not
helpful. It is confirmed that the proposed scheme keeps a constant gap to the ideal results
at all DCs for all the patterns with different complexities. The performance of the proposed
scheme is not affected by the complexities. It performs well even in very challenging
scenarios with high DC and high complexity.

(a) (b)

(c) (d)

Figure 6. Cont.
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(e) (f)

Figure 6. Ps − Pi for uncorrelated PU channels (No. of PU = 3). (a) Varying DCs. (b) Different
patterns when DC = 0.1. (c) Different patterns when DC = 0.3. (d) [Different patterns when DC = 0.5.
(e) Different patterns when DC = 0.7. (f) Different patterns when DC = 0.9.

Finally, we present the performance evaluation results for a very challenging 10 uncor-
related PU channel scenario in Figure 7. Figure 7a shows the results of Ps − Pi with varying
DC from 0.1 to 0.9. Compared with the results for three PU channels scenario that is illus-
trated in Figure 6a, the performance of the proposed scheme degrades considerably, since
the environment becomes extremely complicated and thus the state-action space increases
exponentially. Specifically, the proposed scheme’s Ps − Pi can only achieve approximately
0 when the DC is 0.7 or 0.9, which means that it is hard for the SU to predict the whitespace
and it prefers no access action to avoid interference. The performance of the Q-learning
based method is almost the same as the random access method, which means it cannot
deal with such complicated scenario. Figure 7b–f show the results of Ps − Pi at different
DC by varying the complexities of the PU channel usage patterns. When the DC of PUs
is 0.1, all the methods show the similar performance regardless of the complexities. For
the cases that DCs of PU are 0.3 and 0.5, the proposed scheme can achieve comparatively
satisfied performance compared with other schemes in all patters. The DQN-based method
performs well in low complexity patterns, however, its performance degrades a lot when
the complexity increases. Finally, when the DCs of PU are 0.7 and 0.9, accessing the channel
without interference becomes extremely challenging. The learning results of the proposed
method suggests the SU chooses no access action to avoid interference. Furthermore the
Q-learning based and DQN-based methods have a great number of interference especially
when the complexity is high.

(a) (b)

Figure 7. Cont.
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(c) (d)

(e) (f)

Figure 7. Ps − Pi for uncorrelated PU channels (No. of PU=3). (a) Varying DCs. (b) Different
patterns when DC = 0.1. (c) Different patterns when DC = 0.3. (d) Different patterns when DC = 0.5.
(e) Different patterns when DC = 0.7. (f) Different patterns when DC = 0.9.

6. Conclusions

In this paper, we proposed a novel deep reinforcement learning based usage aware
spectrum access scheme for a typical multiple PUs and single SU cognitive radio network.
Specifically, the proposed scheme consists of three key techniques which are compressed
state representation, additional action option and status aware cost function design. By
learning both the time and channel correlations of the PU channels, the proposed scheme
is capable of reducing the spectrum underutilization and interference violations. We per-
formed extensive simulations by considering both uncorrelated and correlated channel
scenarios, and compared the performance of the proposed scheme with existing schemes
and ideal results. The evaluation results showed that when PU = 3, the proposed scheme
keeps a constant small performance gap between the ideal results, and significantly out-
performs the existing methods especially at high PUs’ DC and complexity cases, e.g., a
3.28 times performance improvement over existing two schemes when DC = 0.9. However,
regarding the results when PU = 10, the performance of the proposed scheme degrades
significantly. In the worst case, i.e., when DC = 0.7, only a 1.22 times performance improve-
ment over DQN-based method is obtained. For the future research, we plan to improve
the performance of the proposed method in complicated scenarios by using deeper neural
networks, and extend the proposed approach to combined channel access scenario and
evaluate it by using real data traffic traces.
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