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Abstract: For underwater acoustic (UWA) communication in sensor networks, the sensing informa-
tion can only be interpreted meaningfully when the location of the sensor node is known. However,
node localization is a challenging problem. Global Navigation Satellite Systems (GNSS) used in
terrestrial applications do not work underwater. In this paper, we propose and investigate tech-
niques based on matched field processing for localization of a single-antenna UWA communication
receiver relative to one or more transmit antennas. Firstly, we demonstrate that a non-coherent
ambiguity function (AF) allows significant improvement in the localization performance compared
to the coherent AF previously used for this purpose, especially at high frequencies typically used
in communication systems. Secondly, we propose a two-step (coarse-to-fine) localization technique.
The second step provides a refined spatial sampling of the AF in the vicinity of its maximum found
on the coarse space grid covering an area of interest (in range and depth), computed at the first step.
This technique allows high localization accuracy and reduction in complexity and memory storage,
compared to single step localization. Thirdly, we propose a joint refinement of the AF around several
maxima to reduce outliers. Numerical experiments are run for validation of the proposed techniques.

Keywords: ambiguity function; matched field processing; receiver localization; refinement; underwater
acoustic communications

1. Introduction

In recent years, underwater acoustic (UWA) communication in sensor networks has
attracted significant interest due to a wide range of commercial and military applica-
tions [1–8]. Typical applications are search and rescue [9], environmental and biological
monitoring [10], sea floor mapping [11], mining exploration [12] and oil and gas explo-
ration [13]. Underwater localization for acoustic sensors is considered as a major task
for those applications since the information collected by the sensors is often associated
with the node location. Thus underwater sensors, in particular, sensors with communica-
tion transceivers within sensor nodes, require accurate localization. Another important
application where the information about the receiver location is essential is the trans-
mit beamforming (also called the antenna precoding) in multiuser underwater acoustic
communication networks [14]. Such beamforming can significantly increase the network
throughput, and the use of the receiver location allows achieving this goal without a high
data-rate feedback communication channel.

However, underwater localization is a challenging task since the techniques used in
terrestrial radio systems, such as the global positioning system (GPS), cannot be operated
underwater due to the strong attenuation of radio waves [15–17]. For underwater local-
ization, matched field processing (MFP) is an effective technique and has been widely
investigated [18–21]. MFP exploits an acoustic model to calculate the field replica, from
an acoustic source, to match the field measured by an array of hydrophones [22,23]. A
measure of the match defines an ambiguity function (AF) computed on a grid of points
in space (range and depth) covering the area of interest. The peak of the AF indicates the
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estimate of the source location [20,24]. In MFP, the coherent AF is most often used and it is
effective at low frequencies, e.g., up to 1 kHz [19,21]. However, the MFP with a coherent
AF may lead to false localization estimates (outliers) at high frequencies, at which UWA
communications systems typically operate. In [19], it is suggested that a non-coherent AF
is used for MFP localization of a UWA communication receiver. Using numerical and real
experiments, it is shown in [19] that, with a non-coherent AF, the localization accuracy at
high frequencies (8–16 kHz) significantly improves.

The work in [14] considers the underwater localization in a communication network
with multiple transmit antennas at the base station and single-antenna receivers at the
network nodes. The purpose of the localization is to reduce the amount of data representing
the channel state information sent from nodes back to the base station for the transmit
antenna precoding. In this work, the coherent AF is used for the MFP localization, and
therefore, a large number of transmit antennas and dense spatial sampling are required,
resulting in high complexity and high memory storage requirements.

In this paper, we propose and investigate MFP techniques for localization of a single-
antenna UWA communication receiver relative to one or more transmit antennas in a
number of scenarios. The contributions of this paper are as follows.

• We demonstrate that a non-coherent AF allows significant improvement in the local-
ization performance compared to the coherent AF previously used for this purpose,
especially at high frequencies.

• A two-step (coarse and fine steps) technique is proposed. The first step is to find
the AF maximum by comparing the estimated channel frequency response with the
pre-computed frequency responses in the grid map; the second step provides a refined
spatial sampling of the AF in the vicinity of its maximum found on the coarse space
grid covering an area of interest (in range and depth), computed at the first step.
This technique allows high localization accuracy and a reduction in complexity and
memory storage, compared to single step localization.

• A joint refinement of the AF in the vicinities of several maxima is proposed to
reduce outliers.

• For validation of the proposed techniques, we run numerical experiments in different
UWA environments, with different parameters of spatial sampling, number of transmit
antennas and different accuracy for the estimation of the acoustic channel response.

This paper is organized as follows. Section 2 introduces the background for receiver
localization based on the work in [14]. Section 3 presents the non-coherent metric and
describes the refinement approach. Simulation results are presented in Section 4. Section 5
ends with discussion and concluding remarks.

The following notation is used. Boldface upper case letters denote matrices, boldface
lower case letters denote column vectors and standard lower case letters denote scalars.
The superscript (·)H denotes the Hermitian transpose, ‖·‖2 is the Euclidean norm and � is
the Hadamard product.

2. Background

In this section, we present a communication scenario and MFP localization technique
exploiting a coherent AF.

Consider an UWA environment, where a geographical area of interest is defined as
illustrated in Figure 1. We assume that the UWA environment is perfectly known, in
particular, the sound speed profile (SSP) is available. The area of interest is covered by grid
points, each at a specific sea depth and range from the transmit antenna. Using an acoustic
model and the UWA environment parameters, the channel response between the transmit
antenna and every grid point is computed and stored in memory. We will call the result
of this computation a grid map for the transmit antenna. Such computations are repeated
for every transmit antenna and the corresponding grid maps represent a dictionary. This
dictionary is available at the receiver, which is located within the area of interest. Using the
signal transmitted from each transmit antenna, the receiver estimates the channel responses
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and compares them with the channel responses of the corresponding grid maps. The best
match is assumed to indicate the grid point closest to the true receiver location.

Figure 1. An example of two grid maps for a geographical area; every grid map corresponds to a
specific transmit antenna.

In [14], it is assumed that by using a feedback communication channel, the node sends
the grid point index to the base station, where the dictionary channel responses are used
for optimization of transmit antenna beamforming. However, this information can also be
used for other applications, e.g., attributing the information from sensors to geographical
locations. In this paper, we only consider the localization problem.

For comparison of channel estimates with entries in the dictionary, different metrics
can be used. For communication systems, it is typical to describe the channel as a linear
filter with an impulse response or corresponding frequency response. Let gm be a K× 1
vector representing the channel frequency response, corresponding to the mth grid point.
Elements of the vector are K samples of the frequency response (K subcarrier amplitudes)
within the frequency bandwidth of the communication system. Let ĥ be a K× 1 estimate of
the channel frequency response at the receiver. For comparison of these two vectors, the
following metric can be used [14]:

cm =
|gH

m ĥ|2

‖gm‖2
2‖ĥ‖2

2
, m = 1, . . ., M, (1)

where M is the number of grid points in the grid map. The set of values cm over m represents
a coherent AF. The best match between the channel response estimate and channel responses
in the grid map is given by

mo = arg max
m=1,...,M

cm, (2)

where the grid point index mo defines the receiver location estimate.
With the knowledge of the specific acoustic environment including the SSP, acoustic

parameters of the sea bottom, the depth of transmit antennas, and the position of the grid
point, a ray tracing acoustic simulator is used to compute gm. Elements of the vector gm
are then given by

gm( fk) =
Lm−1

∑
i=0

Am,ie−j2π fkτm,i , (3)

where fk, k = 0, . . . , K − 1, are subcarrier frequencies at which the channel frequency
responses are computed, Lm represents the number of rays, Am,i is the complex-valued
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amplitude and τm,i is the delay of the ith ray on the mth grid point. For our simulation
below, the ray information is generated by the BELLHOP3D ray tracing program [25].

However, there is an unknown propagation delay τ between the channel response
estimate and channel responses in the grid map. This delay is due to the fact that the
pilot transmission and reception are not synchronized and there is an unknown delay
between the channel impulse response estimate at the receiver and the impulse responses
pre-computed on the grid map using the wave equation [14]. Therefore, in practice, we can
only compare shapes of the pre-computed impulse responses and the channel response
estimate. Thus, we need to find the best delay shift between these two, for which the
covariance is maximized, and this maximum covariance is the measure of similarity of the
impulse responses.

In the frequency domain, at a frequency f , according to the time-shifting theorem [26],
this delay is represented as a factor e−j2π f τ . With the unknown delay τ, the measure for
comparison of channel frequency responses is given by

cm =
maxτ∈[τmin,τmax] |g

H
m Λτĥ|2

‖gm‖2
2‖ĥ‖2

2
, (4)

where

Λτ =

e−j2π f0τ 0
. . .

0 e−j2π fK−1τ

,

Λτ is a K× K diagonal matrix. The parameters τmin and τmax define the delay uncertainty
interval. The metric (4) describes a coherent AF {cm}, which provides an improved location
estimate mo compared to the AF in (1).

Computation in (4) can be efficiently done using the fast Fourier transform (FFT),

cm =
maxi=1,...,pK |q(i)|2

‖gm‖2
2‖ĥ‖2

2
, (5)

where q(i) are elements of the vector q = Fη and η is obtained by zero-padding the vector
gH

m � ĥ, F is a pK× pK discrete Fourier transform (DFT) matrix and p is an integer, p ≥ 1.
Using p > 1 allows improvement in the delay resolution.

Note that the AF for a particular transmit antenna can have multiple maximums close
in magnitude. Since the channel estimates are corrupted by noise, a wrong (local) AF
maximum can be chosen for the localization, resulting in outliers. The probability that AFs
computed for different antennas have the same positions of maximums is low, which can
be exploited to reduce the outliers.

Therefore, with multiple transmit antennas, the localization performance could be
further improved by using the AF

cm =
NT

∑
t=1

maxτ∈[τmin,τmax] |g
H
t,mΛτĥt|2

‖gt,m‖2
2‖ĥt‖2

2
, (6)

where NT is the number of transmit antennas, gt,m is the channel frequency response vector
at the mth grid point on the tth grid map and ĥt is the estimate of the channel frequency
response between the tth transmit antenna and receiver antenna.

Figure 2 shows the coherent AF defined in (6) for an acoustic environment described
in Table 1. Specifically, the SSP is uniform (sound speed is consistent, 1500 m/s) as shown
in Figure 3, the number of transmit antennas NT = 4, the area of interest in range is from
100 m to 220 m and in depth from 30 m to 100 m, the grid steps in both range and depth are
1 m. It can be seen in Figure 2 that the true position of the receiver is at the range of 184.5 m
and in 70 m depth. However, the maximum of the AF is found at the depth 41 m and range
108 m. It can be seen that the location estimate is very poor, the estimate is about 82 m away
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from the true location. This happens because the spatial sampling interval is too large to
provide accurate representation of the AF, i.e., the AF samples miss the AF maximum. To
overcome this problem, we need to reduce the spatial sampling interval, so that we do not
miss the AF maximum. However, this results in a higher number of grid points M, and
thus the memory required for saving the dictionary increases and the complexity of the
AF computation in (6) also increases. In order to keep the memory and complexity low, a
non-coherent AF is proposed as described in Section 3.
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Figure 2. An example of the coherent AF in (6) for the parameters of acoustic environment in Table 1.
The crossing point of the horizontal and vertical black lines indicates the true receiver position.
The black square indicates the position estimate (the AF maximum). Here we use the acoustic
environment with the uniform SSP as shown in Figure 3.
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Figure 3. Sound speed profiles (SSPs): uniform, SWellEx-96 [27] and the mismatched SWellEx-96
when the variance sound speed σ2

ssp = 1 (m2/s2) . (Note: there is no change for the SSP when σ2
ssp = 0,

the mismatched is discussed in Section 4.4).
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Table 1. Simulation parameters used in an example of receiver localization.

Variable Name Value Description

B 1024 Hz Frequency bandwidth
Cd 1 m Coarse grid step in depth
Cr 1 m Coarse grid step in range
DT 50, 60, 70, 80 m Depth of transmit antennas
Dl 70 m Depth for area of interest
fc 3072 Hz Carrier frequency
K 1024 Number of subcarriers

NT 4 Number of transmit antennas
Rl 120 m Range for area of interest
δ 1 Hz Subcarrier spacing
τ [−0.5 s, 0.5 s] Delay uncertainty interval

3. Non-Coherent AF and Refinement

In this section, we introduce a non-coherent AF and demonstrate its efficiency for the
localization in comparison to the coherent AF and describe the proposed coarse-to-fine
localization approach.

3.1. Non-Coherent AF

The coherent AF requires dense spatial sampling, which results in a high computation
complexity and large memory storage for saving the dictionary. The example of the coherent
AF in Figure 2 shows that even with a relatively low carrier frequency fc = 3072 Hz and
small grid step Cd = Cr = 1 m, false localization (outlier) can happen when the receiver is
located between grid points.

A better localization performance can be achieved with the non-coherent AF defined as

cm =
NT

∑
t=1

maxτ∈[τmin,τmax]

∣∣g̃H
t,mΛτh̃t

∣∣2∣∣∣∣g̃t,m
∣∣∣∣2

2

∣∣∣∣h̃t
∣∣∣∣2

2

, (7)

where g̃t,m = F̃abs(F̃Hgt,m), h̃t = F̃abs(F̃Hht), F̃ is the K × K DFT matrix and the vector
function abs(g) is defined as

abs(g) =

 |g1|
.̇
|gK|

,

where gk, k = 1, . . . , K, are elements of the vector g.
This AF is based on comparison of magnitudes of channel impulse responses, and

thus the phase information is removed from the comparison.
Figure 4 shows an example of receiver localization using the non-coherent AF in (7) for

the parameters of acoustic environment in Table 1. When comparing Figures 2 and 4, it can
be seen that the non-coherent AF is significantly smoother than the coherent AF and the
maximum of the non-coherent AF provides an accurate estimate of the receiver location.

3.2. Refinement

The receiver location can be estimated on the grid map using the coarse localization
scheme. However, the accuracy of the coarse estimation is limited by the coarse grid
steps; additionally, outliers are more likely when the receiver is not located on a grid point.
Therefore, a fine estimation of the receiver location is required to reduce the error between
the estimated and true receiver positions. For the refinement, the estimated position
resulted from the coarse estimation is regarded as a center point, and a small-size (refined)
grid map around the center point is generated with a finer resolution.
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Figure 4. An example of the non-coherent AF in (7) for the parameters of acoustic environment
in Table 1. The crossing point of the horizontal and vertical black lines indicates the true receiver
position. The black square indicates the position estimate (the AF maximum). Here we use the
acoustic environment with the uniform SSP as shown in Figure 3.

The localization performance can be improved by the refinement of the grid map in
the vicinity of the coarse estimate. Figure 5 demonstrates how the refinement works. The
sign4 indicates the true receiver position. The sign indicates the maximum of the AF on
the coarse grid. Assuming that this is not an outlier, these two positions will be close to
each other as shown in Figure 5. For the refinement, additional grid points are computed
with a finer resolution; in Figure 5a, the refined steps in both range and depth are half that
of the coarse grid steps. In Figure 5a, the refinement area is chosen as 2Cr × 2Cd. In some
cases, as will be shown in Section 4, a larger refinement area can improve the localization
performance, e.g., as shown in Figure 5b, where the refinement area is 4Cr × 4Cd. The error
of the coarse localization is the distance between the signs4 and , whereas the error of
the fine localization is the distance between the sign4 and the closest refined grid point,
which is smaller than the coarse error due to the use of a small refined step.

The refined grid map can be computed by using the ray tracing model in the same
way as the computation of the coarse grid map. However, a computationally more efficient
approach is based on the bilinear interpolation between coarse grid points.

Consider an example of the bilinear interpolation of the acoustic field at the refined
grid point (x, y) using the acoustic fields computed at the four neighboring coarse grid
points. To compute amplitudes and delays for rays arriving at the point (x, y), we will be
using the approach in [28]. The approach in [28] is illustrated in Figure 6. The vector of
amplitudes is given by

a =


(1− w1)(1− w2)a1

(1− w1)w2a2

w1w2a3

w1(1− w2)a4

,
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where aj is the `j × 1 vector of arrival amplitudes at the jth coarse grid point, j = 1, . . . , 4.
`j 6 `max, `max defines the maximum number of arrivals. The weights are given by

w1 =(x− x1)/(x2 − x1),

w2 =(y− y1)/(y2 − y1),
(8)

where w1 and w2 represent proportional distance in the x direction and y direction, respec-
tively. The vector of delays is given by

d =


d1 + ∆d1
d2 + ∆d2
d3 + ∆d3
d4 + ∆d4

, (9)

where dj is the `j × 1 vector of arrival delays at the jth coarse grid point, The adjusted
delays from position (xj, yj) to position (x, y) are computed as

∆dj = (∆xjcos θj + ∆yjsin θj)/cj, (10)

where

∆xj = x− xj,

∆yj = y− yj,
(11)

θj is the `j × 1 vector of arrival angles at the jth coarse grid point, j = 1, . . . , 4, and cj is the
sound speed at the depth of the jth coarse grid point.

Figure 5. The structure of refined area: (a) 2Cr × 2Cd; (b) 4Cr × 4Cd. The refined grid step in depth
is Fd = Cd/2, the refined grid step in range is Fr = Cr/2. Notation: 4 is the true receiver position,
is the coarse location estimate, are coarse grid points, are refined grid points.

Elements of the frequency response for the nth refined grid point, the point (x, y) as
shown in Figure 6, are given by

gmo
n ( fk) =

`1+`2+`3+`4−1

∑
i=0

aie−j2π fkdi , (12)
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where k = 0, . . ., K− 1, ai and di are elements of vectors a and d, respectively. The vector
gmo

n with elements from (12) is used to compute the AF cmo
n .

Figure 6. An illustration of the bilinear interpolation. Points (x1, y1), (x1, y2), (x2, y2), (x2, y1) are
grid points on the coarse grid map. The point (x, y) is the refined grid point. The vectors aj, dj, θj,
j = 1, . . . , 4, are vectors of the ray amplitudes, delays and angles of arrivals for the jth coarse grid
point in this figure.

With such a refinement, an improved position estimate is found from the maximum
AF within the refinement area:

no = arg max
n=1,...,MR

cmo
n , (13)

where MR is the number of refined grid points in the vicinity of the coarse receiver location
estimate mo and the set of values cmo

n over n from 1 to MR is the AF computed on the refined
grid map. For the refined area in Figure 5a, MR = 25; for the refined area in Figure 5b,
MR = 81. As will be shown in Section 4.2, the refinement can greatly reduce the error
between the estimated and true receiver positions.

3.3. Multiple Refinement Areas

The receiver position is found as the position of the global AF maximum. The AF, as a
continuous function of range and depth, apart from the global maximum, has multiple local
maxima. With a finite spatial sampling rate, i.e., finite grid steps in range and depth, the
AF maximum on the grid map might correspond to a local maxima. In this situation, the
location estimate is an outlier, i.e. the location error can be arbitrary high. The refinement
does not overcome this problem since it is possible the refinement is performed in the
vicinity of the outlier.

In order to solve this problem, we can choose several AF maxima, the number of
which is defined as Nmax, from the coarse grid map, perform refinement in the vicinity of
each of them and find the AF maximum jointly on all the Nmax refinement areas.

This can be implemented as illustrated in Figure 7. Firstly, the AF maximum is found
on the coarse grid map, the maximum position is m(1)

o . Then, coarse grid points in the
corresponding refinement area, around the coarse grid point m(1)

o , are removed from the
coarse grid map. We will consider two cases of removing the coarse grid points. In the
first case, only the maximum point is removed (one point). In the second case, 9 points
are removed including the maximum and eight neighboring coarse points. Then the AF
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maximum at the grid position m(2)
o is found on the updated coarse grid map. The same

procedure can be repeated to find the third AF maximum at the position m(3)
o , etc. For each

new grid position with AF maximum, the refinement is now performed in the vicinity of
the possible candidate for receiver location. The position of a joint AF maximum over Nmax
multiple refinement areas is the final location estimate. As will be shown in Section 4.3, the
multiple refinement can remove outliers in the localization process.

Figure 7. An illustration of multiple refinement areas (Nmax = 3 as an example) in the area of interest
(See notation in Figure 5).

3.4. Complexity of the Two-Step Localization

In this subsection, we present an analysis of the complexity of the proposed localization
technique.

For the localization, the following steps should be done:
1. Coarse step, including the AF computation in (7) processed by an efficient algorithm

in (5), and finding the AF maximum.
2. Refinement step, including the computation of Nmax refined grid maps with the

bilinear interpolation described by (9) to (12), computation of the refined AFs and their
maxima using (5), (7) and (13).

Specifically, for the coarse step, in (7), the vector g̃t,m, related to the channel frequency
response on the mth grid point corresponding to the tth coarse grid map, can be pre-
computed and stored into memory. Here, we consider the computation of the vector h̃t,
related to the estimated channel frequency response. h̃t = F̃abs(F̃Hht) requires two FFT
operations of size K; when using the split-radix FFT algorithm in [29], the complexity
of computing each FFT requires Klog2K multiply and accumulate operations (MACs).
The complexity of computing abs(F̃Hht), requires 6K MACs. In (5), the computation is
considered for every grid point in each grid map. The complexity of computing q̃ requires
the FFT operation of size pK, which requires pKlog2 pK MACs; the complexity of computing
g̃H

m � h̃ is K MACs; the complexity of computing square of elements in q̃, |q̃|2, requires 2pK
MACs; the complexity of computing the maximum requires pK MACs; for the ‖h̃‖2

2, the
complexity of this computation is about K MACs. Therefore, the complexity of computing
the coarse receiver localization for each trial is

Ccoarse ≈ NT [2K log2 K + 6K + M(pK log2 pK + 3pK + 2K)]. (14)

For the refined step, based on the tth coarse grid map, the complexity of computing (12)
requires 4K`max for every refined point corresponding to each local maxima. The complexity
of computing the refined AFs using (7) and (5) is the same as the coarse step for each point,
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it requires 2K log2 K + 6K + pK log2 pK + 3pK + 2K MACs. Therefore, the complexity of
computing the fine receiver localization for each trial is given as,

Cfine ≈ NT NmaxMR(4K`max + 8K + 2K log2 K + pK log2 pK + 3pK). (15)

The total complexity of computing the coarse-to-fine receiver localization is

Ctotal = Ccoarse + Cfine. (16)

The complexity for coarse-search computation and fine-search computation is shown
in Figure 8. Figure 8a shows the complexity of the coarse localization algorithm with different
number of transmit antennas NT. For the whole area of interest with M = 201× 501 ≈ 105

coarse grid points, the complexity of the coarse search for NT = 4 transmit antennas,
Ccoarse ≈ 5.7 × 1010 MACs. This complexity may be excessive for a general-purpose
processor, especially the ones that can be practically used on low-power communication
nodes. However, most of the computation is based on the FFT and vector multiplication, i.e.,
operations well suited to implementation as hardware accelerators [30,31]; moreover, since
the coarse search involves multiple parallel computations, its hardware implementation,
e.g., on Field Programmable Gate Array (FPGA) design platforms can be very efficient,
making this stage of the proposed localization algorithm feasible. As for the coherent AF,
as was mentioned in [14], the number of the grid points M needs to be significantly higher
even for such a low carrier frequency as fc = 3072 Hz, thus making the coarse search less
suitable for practical implementation than that with the non-coherent AF.
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Figure 8. The complexity of the proposed localization algorithm against the number of grid points M
or refined points MR: (a) Coarse-search complexity; (b) Fine-search complexity.

A reduction in the coarse-search computation can be achieved by using a pre-localization
of the receiver by any known methods. e.g., the knowledge of the receiver depth can
significantly reduce the grid size M and, as will be shown in Section 4.4, also results in a
higher localization accuracy. As an example, from Figure 8a, it is seen that with four coarse
grid points in depth, the total number of grid points is reduced to M = 4× 501 ≈ 2000; in
this case, Ccoarse ≈ 1.1× 109 MACs, which is more affordable at the receiver node.

Figure 8b shows the complexity of the fine localization algorithm with different
combinations of the product NT Nmax. For the highest accuracy, when the refined steps are
set to Fr = Fd = 0.1 m, we have MR = 441 points in a refined area, and with NT = 4 and
Nmax = 4, the fine-search complexity, Cfine ≈ 1 × 109 MACs, which is high, but still
lower than the complexity of the coarse search. For the lower localization accuracy, when
the refined steps are set to Fr = Fd = 0.5 m (MR = 25), the fine-search complexity,



Sensors 2022, 22, 6968 12 of 24

Cfine ≈ 9× 106 MACs for NT = 1 and Nmax = 1, which is significantly lower than the
coarse-search complexity. Thus, the refinement stage does not result in a significant increase
in the total algorithm complexity compared to the coarse-search complexity.

4. Numerical Results

In this section, we present results of numerical experiments. The objectives of the
numerical experiments are:

• Comparison of the coarse localization accuracy using the coherent and non-coherent AFs.
• Analysis of the coarse-to-fine localization performance.
• Analysis of using multiple refinement areas for the localization.
• Analysis of robustness of the localization to the mismatch between the acoustic envi-

ronment used for computation of the dictionary and true acoustic environment.
• Analysis of robustness of the localization to the channel estimation errors due to

the noise.

In the experiments, to measure the localization performance, the cumulative distribu-
tion function (CDF) is computed for the position error

ε =
√
(x̂− x)2 + (ŷ− y)2, (17)

where x̂ and ŷ are estimates of the true range x and depth y, respectively. The CDF is
obtained in 100 simulation trials. In each simulation trial, the receiver position is uniformly
random within the area of interest. The main simulation parameters are given in Table 2.

Table 2. Parameters for coarse receiver localization.

Variable Name Value Description

Cd 1 m Coarse grid step in depth
Cr 1 m Coarse grid step in range
DT 50, 60, 70, 80 m Depth of transmit antennas
Dl 200 m Depth for area of interest
K 1024 Number of subcarriers

NT 1, 2, 3, 4 Number of transmit antennas
Rl 500 m Range for area of interest
Sc 201× 501 Size of the coarse grid map
δ 1 Hz Subcarrier spacing
τ [−0.5 s, 0.5 s] Delay uncertainty interval

4.1. Coarse Localization Using Coherent and Non-Coherent AFs

In this subsection, we compare the coarse localization performance using the coherent
AF and non-coherent AF metrics. Figure 9 shows the localization performance of using
coherent and non-coherent AF at two carrier frequencies with number of transmit antennas
NT varying from 1 to 4. It can be seen that the localization performance provided by
the non-coherent AF is significantly better than that provided by the coherent AF. With
the increase of the number of transmit antennas NT, the performance improves for both
metrics. At the low carrier frequency fc = 3072 Hz, when using the non-coherent AF with
NT = 2, all receivers are localized within an error ε ≤ 2 m, whereas, for the coherent AF
even with NT = 4, in more than 40% of cases, the error is higher than 2 m. Thus, the use
of the non-coherent AF significantly reduced the number of outliers, as was previously
demonstrated in Figure 4. It can also be seen in Figure 9 that the increase of the carrier
frequency fc results in significant degradation of the localization performance with the
coherent AF, whereas, for the non-coherent AF, the localization performance is consistent.
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Figure 9. CDF of the localization error ε for the coarse localization using the coherent and non-
coherent AFs at low and high carrier frequency fc against the number of transmit antennas NT;
the SSP is uniform as shown in Figure 3. (a) Coherent AF, fc = 3072 Hz. (b) Non-coherent AF,
fc = 3072 Hz. (c) Coherent AF, fc = 15,360 Hz. (d) Non-coherent AF, fc = 15,360 Hz.

4.2. Coarse-to-Fine Localization

We now demonstrate the benefit of the refinement for improving the localization
performance. Figure 10 shows the localization accuracy against the refinement steps in
both depth and range with two sizes of refinement areas. It can be seen that the localization
accuracy proportionally improves with the reduction in the refinement step, as long as there
are no outliers. Figure 10a presents results for one transmit antenna, and the refinement
area in Figure 5a. It is seen that if the non-coherent AF maximum on the coarse grid map
is found in one of four coarse grid points surrounding the grid cell where the receiver is
positioned, i.e., ε < 1.4 m, then the localization accuracy improves proportionally to the
reduction in the refined step. It is also seen that there is a “step” in the CDF at ε ≈ 1.4 m.
This error corresponds to the maximum distance within the grid cell, and this means that, in
a significant number of the trials, the non-coherent AF maximum is found in neighbouring
grid cells.
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Figure 10. CDF of the localization error ε for the coarse-to-fine localization using the non-coherent AF
against different refined steps in range Fr and depth Fd with two refinement areas of different size as
shown in Figure 5; the SSP is uniform as shown in Figure 3. (a) NT = 1, refinement area: 2 m× 2 m.
(b) NT = 1, refinement area: 4 m× 4 m. (c) NT = 4, refinement area: 2 m× 2 m.

Figure 11 illustrates one such case. The increase in the refinement area from 2 m× 2 m
to 4 m× 4 m (as shown in Figure 5b), improves the localization accuracy as can be seen
from the comparison of Figure 10a,b. The increase in the refinement area allows somewhat
reduction in “small” outliers. The number of outliers can also be reduced by increasing
the number of transmit antennas, as demonstrated in Figure 10c. In this case, not only
“small”, but also “large” outliers are also eliminated. It will be shown in Section 4.3 that the
probability of outliers can be significantly reduced when using multiple refinement areas.

4.3. Multiple Refinement Areas

We now demonstrate the benefit of using multiple refinement areas for improving the
localization performance, primarily by reducing the probability of outliers. Figure 12 shows
the localization accuracy against the number of refinement areas Nmax. In this experiment,
after finding an AF maximum on the coarse grid map, the maximum point is removed
before the search for the next maximum. It can be seen that even with such large range
and depth refined steps (Fr = Fd = 0.5 m), the search in two refinement areas significantly
reduces the probability of outliers. Further increase in the number of refinement areas to
Nmax = 4 provides further significant improvement; the probability of localization error
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ε < 1 m is as high as 96%. Note that this performance is achieved with only one transmit
antenna. With two transmit antennas, as can be seen in Figure 13, there is no outliers and
the localization error is lower than 0.5 m in all simulation trials.
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Figure 11. An example of the “continuous-range continuous-depth” non-coherent AF in an area of
3 m× 3 m. The circles are positions of coarse grid points; the triangle is the position of the receiver;
the blue cross is the coarse grid point closest to the true position of the receiver; the red cross is the
coarse grid point with the AF maximum on the coarse grid map; NT = 1.
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Figure 12. CDF for the localization error ε in the acoustic environment with the uniform SSP against
the number Nmax of refinement areas; NT = 1, the size of a refinement area is 2 m× 2 m as shown in
Figure 5a.
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Figure 13. CDF for the localization error ε in the acoustic environment with the uniform SSP against
the number of transmit antennas NT; Fr = Fd = 0.5 m, the number of refinement areas is Nmax = 4,
where only one point is removed after finding the next maximum and the refinement area is 2 m× 2 m
as shown in Figure 5a.

In Figure 14, we compare the localization performance with multiple refinement areas
at different refined steps using four transmit antennas. With NT = 4 and Nmax = 4, the
localization accuracy depends only on the refined step size, the smaller the refined step,
the higher accuracy can be achieved.
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Figure 14. CDF for the localization error ε in the acoustic environment with the uniform SSP against
the refinement step and multiple refinement areas, where only one point is removed after finding the
next coarse AF maximum; NT = 4, the refinement area is 2 m× 2 m as shown in Figure 5a.
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We now present results for another acoustic environment, with the SSP from the
SWellEx-96 experiment [32] shown in Figure 3.

Recall that in Figure 12, we showed the localization performance with different number
and size of refinement areas for the uniform SSP. The refined step used is 0.5 m. Figure 15
shows the localization performance for the SWellEx-96 SSP. As can be seen from comparison
of results in Figures 12 and 15, the coarse localization performance with one transmit
antenna with the SSP from the SWellEx-96 experiment provides significantly more outliers
than that with the uniform SSP environment. For the uniform SSP, 85% of cases have the
error ε < 1.4 m, whereas, for the SWellEx-96 SSP, only 58% of cases have such localization
accuracy. By adopting four refinement areas of size 2 m× 2 m, the probability of outliers in
the SWellEx-96 SSP environment is reduced from 42% to 26%, while in the uniform SSP
environment, it is reduced from 15% to 4%. Even with a larger refinement area of 4 m× 4 m,
in the SWellEx-96 SSP environment, the probability of outliers is still as high as 14%.
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Figure 15. CDF for the localization error ε in the acoustic environment with the SWellEx-96 SSP
against the size of the refinement area Sf and number of refinement areas Nmax, where one points are
removed after finding the next coarse AF maximum; NT = 1; Fr = Fd = 0.5 m.

In Figure 16, we show the localization performance with the SWellEx SSP using four
transmit antennas. Two cases are considered as described in Section 3.3. For the first case,
only one point is removed from the coarse grid map after finding the AF maximum; in the
second case, nine points are removed. It can be seen that the use of four transmit antennas
allows significant reduction in the number of outliers. The localization accuracy can be
further improved by using a smaller refined step. It also can be seen that when a smaller
refined step is used, the localization performance can be further improved by removing
more (nine) points from the coarse grid map before finding the next maximum. This can be
explained by the fact that positions of several maxima are close to each other resulting in
overlapping refinement areas, thus reducing the probability of finding the global maximum.
For the rest of the paper, we adopt the case of removing nine points from the coarse grid
map when a smaller refined step (0.1 m) is used.
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Figure 16. CDF for the localization error ε in the acoustic environment with the SWellEx-96 SSP
against refined steps Fr = Fd; NT = 4; Nmax = 4, after finding the AF maximum, two cases considered,
one point and nine points are removed from the coarse grid map as described in Section 3.3; the
refinement area is Sf = 4 m× 4 m (as shown in Figure 5b).

4.4. Mismatched Environments

In this subsection, we consider scenarios with mismatched environments when acous-
tic parameters used for computation of the dictionary differ from real acoustic parameters.

In the first experiment, the dictionary is computed using the SWellEx-96 SSP, while
the true SSP used in the experiment is given by

SSP(i) = SSP(i) + n(i), i = 1, . . ., Nd, (18)

where Nd is the number of depth points with SSP values, i is the index of the corresponding
depth, n(i) are independent Gaussian random numbers with a variance of σ2

ssp.
The SWellEx-96 SSP and a realization of the mismatched SSP used in the experiment in

the case σssp = 1 m/s is shown in Figure 3. Figure 17 shows the localization performance
for different levels of the SSP mismatch. It can be seen that the localization performance
is close to the matched performance for σssp ≤ 1 m/s. The performance degrades for a
higher level of mismatch of the SSP (σssp = 3 m/s). It can be concluded that the localization
performance is robust against the small mismatch of the SSP.

To reduce the sensitivity of a mismatched model, we consider a scenario when the
depth of the receiver is known. This can be easily achieved in practice by using a re-
ceiver equipped with a depth sensor. Figure 18 shows the localization performance of a
mismatched acoustic environment with σssp = 1 m/s, with and without knowledge of
the receiver depth. It can be seen in Figure 18a that the localization performance can be
improved by increasing the number of transmit antennas to NT = 4. Further improvement
of the performance can be observed by increasing the size of refinement areas to 4 m× 4 m,
resulting in the localization error ε to be smaller than 0.3 m in 99% of the trials. In Figure 18b,
we assume the depth of a receiver is known. It can be seen that the localization performance
improves, the most significant improvement is observed when we use NT = 4 and a small
refinement area of 2 m × 2 m.



Sensors 2022, 22, 6968 19 of 24

(m)

P
ro

ba
bi

lit
y

matched (
ssp

 = 0)

mismatched (
ssp

 = 0.1)

mismatched (
ssp

 = 1)

mismatched (
ssp

 = 3)

Figure 17. CDF for the localization error ε in mismatched acoustic environments against the variance
sound speed σ2

ssp; NT = 1; Nmax = 4, nine points are removed after finding the next coarse AF
maximum; the refinement steps, Fr = Fd = 0.1 m; the size of a refinement area is 2 m× 2 m (as shown
in Figure 5a).
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Figure 18. CDF for the localization error ε in a mismatched acoustic environment when σssp = 1 m/s
as shown in Figure 3: (a) Depth is unknown; (b) Depth is known. NT = 4; Nmax = 4, nine points are
removed after finding the next coarse AF maximum; the refinement steps, Fr = Fd = 0.1 m; the size
of two refinement areas are 2 m× 2 m and 4 m× 4 m (as shown in Figure 5).

In Figure 19, we consider the scenario where the dictionary is computed assuming a
flat sea surface, whereas the “real” sea surface is a sinusoid of amplitude Asin and a period
of 8 m. We consider a range of sea surface amplitudes from 0.01 m to 0.5 m. It can be seen
that the higher the sea surface amplitude the higher is the localization error. However, for
Asin < 0.2 m, in all simulation trials, the localization error is smaller than 2 m, which is
acceptable for many applications.
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Figure 19. CDF for the localization error ε in the acoustic environment of the sinusoidal surface with
the SWellEx-96 SSP against different amplitudes Asin (Asin = 0 indicates a flat surface); NT = 4;
Nmax = 4, nine points are removed after finding the next coarse AF maximum; the refinement steps,
Fr = Fd = 0.1 m; the size of the refinement area is 4 m× 4 m (as shown in Figure 5b).

4.5. Inaccurate Channel Estimation

In this experiment, the channel frequency response h̃( f ) between a transmit antenna
and the receiver at a frequency f is given by

h̃( f ) = ĥ( f ) + n( f ). (19)

The estimated channel frequency vector h̃ is now represented as h̃ = [h̃( f0), . . ., h̃( fK−1)]
T

.
The noise samples n( fk) are independent complex-valued random Gaussian numbers with
zero mean and variance σ2. The signal-to-noise ratio (SNR) of the channel response estimate
is defined as

SNR =
1
σ2

1
K

K−1

∑
k=0
|ĥ( fk)|2. (20)

Figure 20 shows localization results against the SNR of the channel response estimate.
It can be seen that for SNR = 10 dB, the localization results are close to that of the perfect
channel response estimation. However, even for the SNR as low as SNR = 5 dB, in all the
trials the localization error is smaller than 2 m. This demonstrates the robustness of the
localizations performance against the estimation error of the channel response.
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Figure 20. CDF for the localization error ε in the acoustic environment with the SWellEx-96 SSP
against the SNR of channel response estimation; NT = 4; Nmax = 4, nine points are removed after
finding the next coarse AF maximum; the refinement steps, Fr = Fd = 0.1 m; the size of the refinement
area is 4 m× 4 m (as shown in Figure 5b).

5. Discussion and Conclusions

In this paper, we continue investigation of localization of a receiver relative to trans-
mitter in a communication system using the MFP approach. We have proposed new
localization techniques for a single-antenna UWA communication receiver. Specifically, a
non-coherent AF has been proposed to improve the localization accuracy, especially at high
frequencies. Furthermore, a two-step (coarse-to-fine) localization technique has been pro-
posed. A joint refinement scheme with multiple refinement areas has also been proposed to
reduce the number of outliers and to improve the localization accuracy. The performance
of the proposed techniques has been evaluated in numerical simulations. The robustness of
the localization performance has also been investigated when there is a mismatch of the
acoustic environment or under different levels of channel estimation accuracy.

The MFP in a communication system benefits from the knowledge of the transmitted
(pilot) signal, compared to its application in sonar systems where normally the source
signal is unknown, and thus can potentially provide a higher localization accuracy. Another
difference is that the MFP in sonar systems is based on multiple receive antennas, whereas
in communication systems it can be used with single/multiple transmit and single/multiple
receive antennas. In this paper, we focused on scenarios with multiple transmit and a single
receive antennas, whereas the case of a single transmit antenna is of a special interest since
it is applicable in most communication systems. Our simulation results suggest that even
in the case of the single transmit antenna, when using the non-coherent AF, it is possible to
achieve useful results for localization of the single-antenna receiver.

In noisy environments, the coherent AF can potentially provide a better localization
performance than the non-coherent AF. However, to realise this benefit, the coherent AF
needs to be sampled with a space interval smaller than the wavelength, i.e., the interval is
inversely proportional to the carrier frequency of the communication system. The space
sampling interval for the non-coherent AF depends on the frequency bandwidth. Since, in
a typical communication system, the frequency bandwidth is much smaller than the carrier



Sensors 2022, 22, 6968 22 of 24

frequency, the number of grid points covering an area of interest, for the non-coherent
AF, is significantly reduced and consequently the amount of computation required for the
localization is also significantly reduced, thus making the use of the non-coherent AF more
practical. Moreover, the non-coherent AF also results in a smaller memory required for
saving the information on the grid.

Although the non-coherent AF can reduce the number of grid points, this number
still can be too high for real-time implementation in a communication receiver limited
in computation resources. Further reduction in computation can be achieved by using a
pre-localization of the receiver by any of known methods. For example, the knowledge of
the receiver depth can significantly reduce the grid size and, as was shown in this paper,
also results in a higher localization accuracy.

The spatial refinement and multiple refinement proposed in this paper can achieve
a very high localization accuracy, thus compensating for possibly low space resolution at
the coarse grid when using the non-coherent AF. Since the refinement areas are typically
much smaller than the whole localization area, this improvement is achieved with relatively
small computations. The joint search over multiple refinement areas allows one to avoid
localization outliers that can appear due to errors at the coarse stage in finding the AF area
with global maximum.

Most results in this paper have been obtained based on the assumption that the
acoustic environment (the sea depth, bathymetry, state of sea surface, SSP, etc.) used for
computing the channel state information on the grid is perfectly known. In practice, such
knowledge is almost impossible to achieve; note that this is a common problem of the
MFP approach. This problem can be partly solved by frequent real-time measurements
of the SSP; in particular, this can be done using the MFP inversion techniques [33–36]. It
would be interesting to implement such techniques based on the communication signals,
thus reusing the available resources in the communication system. In this paper, we also
investigated the loss in the localization accuracy for the cases when: (a) the real SSP differs
from that used for the grid computations; (b) the sea surface is not flat; and (c) the channel
estimates are distorted by noise. However, more thorough investigation of sensitivity of
the localization accuracy to the environment mismatch is still required.

It may happen that the receiver is outside the area covered by the coarse grid; this case
has not been addressed in this paper. Another problem is when the acoustic environment is
disturbed by the presence of an underwater object. These cases require special consideration.
We will continue to deal with these and other problems and would be happy to share our
results and data with other research groups.

The ultimate validation of any technique in underwater acoustics can only be done
in sea experiments. However, this research topic is still in its infancy and many research
problems should be solved, in particular the problems mentioned above, before such
experiments can become useful.
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