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Abstract: The SARS-CoV-2 virus has posed formidable challenges that must be tackled through
scientific and technological investigations on each environmental scale. This research aims to learn
and report about the current state of user activities, in real-time, in a specially designed private indoor
environment with sensors in infection transmission control of SARS-CoV-2. Thus, a real-time learning
system that evolves and updates with each incoming piece of data from the environment is developed
to predict user activities categorized for remote monitoring. Accordingly, various experiments are
conducted in the private indoor space. Multiple sensors, with their inputs, are analyzed through
the experiments. The experiment environment, installed with microgrids and Internet of Things
(IoT) devices, has provided correlating data of various sensors from that special care context during
the pandemic. The data is applied to classify user activities and develop a real-time learning and
monitoring system to predict the IoT data. The microgrids were operated with the real-time learning
system developed by comprehensive experiments on classification learning, regression learning,
Error-Correcting Output Codes (ECOC), and deep learning models. With the help of machine learning
experiments, data optimization, and the multilayered-tandem organization of the developed neural
networks, the efficiency of this real-time monitoring system increases in learning the activity of
users and predicting their actions, which are reported as feedback on the monitoring interfaces. The
developed learning system predicts the real-time IoT data, accurately, in less than 5 milliseconds and
generates big data that can be deployed for different usages in larger-scale facilities, networks, and
e-health services.

Keywords: SARS-CoV-2; real-time learning and monitoring; big data; indoor air; user activity;
infection transmission control

1. Introduction

The COVID-19 disease, caused by the SARS-CoV-2 virus, was declared as a global
pandemic in March 2020 [1]. The pandemic has forced several scientific and technological
investigations to discover possible solutions [2–4], which also made this research inspect
and apply technological advancements in the environment built for healthcare. The capaci-
ties of hospitals have been challenged by the SARS-CoV-2, and other healthcare services,
such as surgery operations, have also been influenced negatively due to the decreasing
number of allocated beds in public healthcare facilities [5]. This compelled us to investigate
infection transmission control, at the private scale, by providing big data to be generated
with the help of sensors, IoT devices, and learning models that can also be applied for
e-health and smart health systems [6,7].

Motivated by the earlier research in constructing intelligent environments with smart
systems operated with learning models, potential crowdsourcing and data processing
methods, via sensors, are surveyed for possible usage scenarios [8] (p. 115) to generate
big data when fighting against the SARS-CoV-2. The widely used application and smart
healthcare system “Life Fits into Home” has also inspired this research to investigate the
significance of monitoring for infection control at the private scale [9]. In that regard, the
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special care contexts are found as significant to be monitored for infection transmission
control, inside private indoor spaces, by closer surveillance against COVID-19 [4,10,11].

This research has aimed to generate and process big data that belongs to various sen-
sors, such as gas, temperature, humidity, and motion sensors, which are seen as critical for
infection transmission control in private indoor spaces during the pandemic. Furthermore,
the research attempts to deploy multiple sensors and analyzes their inputs accordingly
to find correlating data about user activities and data from an indoor environment. Thus,
the research has aimed to apply machine learning and deep learning models to better find
correlating changes and primary classifications in these acquired data. The classified user
activities, with inputs from the experiment environment, are used to develop a real-time
learning and remote monitoring system to predict user activities that are seen as critical for
infection transmission control and wellbeing in indoor environments.

Accordingly, the learning system is applied to report the current state and activities of
the participants in the experiment environment. The research also surveys different usage
scenarios applying sensors and learning models to develop an IoT-based real-time learning
and monitoring system in infection transmission control. In the scope of the research,
the selected experiment environment, designed for users who needed intense care at the
private scale during the pandemic, was installed with microgrids, sensors, and Internet
of Things (IoT) devices to produce real-time IoT data to be monitored instantly by the
real-time learning and monitoring system, which is believed to decrease the interaction
among users.

The indoor environment with sensors has enabled the generation, acquisition, and
processing of lightweight and ubiquitous big data regarding the air quality, temperature,
and humidity of the indoor space, together with user activity and rated health state val-
ues, to be registered to the e-health systems with less digital storage concerns. Stepwise
experimental analyses are conducted via machine learning and deep learning models to
recognize correlations between different sensor values, which are used to learn, classify,
and predict user activities together with the environmental data. Thus, the learning system
is also developed, with the help of machine learning models, to detect the correlating data
of sensors. The system includes multilayered trained neural networks that are configured
and operated, subsequently, to save the incoming/transferred data that the previous model
cannot register to update the system. This unique configuration of the learning models
increases the efficiency of saving and updating the system’s training and validation data.
The training and validation data, as well as the neural networks in the system, evolve
by each update without any need for further optimization. The outcomes of the research
reveal that the system helps generate and process big data efficiently to alerting caregivers,
in real-time, from the indoor environment, which is organized for palliative care at the
private scale. The real-time learning system predicts each incoming real-time data as
recorded by categorical user activities in 2–5 ms on average. The acquired and predicted
data are provided, ubiquitously, to the IoT cloud that is publicly monitored by caregivers
and doctors for infection transmission control in the fight against SARS-CoV-2.

Thus, the main contributions of the research to the literature can be briefly summa-
rized: a unique real-time learning and monitoring system is developed for predicting user
activities, and the system updates itself with each incoming real-time input. In developing
the system, the spatial design and configuration of sensors in the indoor environment is
one genuine aspect in generating and validating the correlational data about user activities.
The spatial configuration of sensors, applied machine learning, deep learning models,
error regularization, and data optimization algorithms help to validate the datasets and
each incoming real-time input from the environment. Therefore, the developed learning
system evolves with each update autonomously. The system is proven fast and efficient
in predicting and reporting the current state of the patients and experimental actions that
are classified and seen as critical to decrease the interaction among users for infection
transmission control and wellbeing during COVID-19.
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The remainder of this manuscript is organized as follows: Section 2 discusses the
background research with related works and theories. The methods applied for this
research with the material and models are presented in Section 3. Section 3 also provides
the theoretical framework of the developed system with communication and connection
details and calculations on the initial IoT data. Section 4 provides details about the results
of conducted experiments. Section 5 discusses the outcomes of experiments in assessing
the correlating IoT data, developing learning models, and the real-time learning system
that is evaluated in the scope of the generation of big data for infection control and smart
healthcare. Section 6 briefly concludes the research.

2. Background Research

The pandemic has challenged the capacities of healthcare facilities. Thus, further big
data generation and processing have been needed with deep analyses of data from different
cases and circumstances [5]. Significant surveys and research, including Healthcare IoT
projects, classify various cases into personal and clinical categories in their physical environ-
ments and in dealing with the SARS-CoV-2 [4,5,12]. This distinction has raised the research
question on the methods required for designing a variety of spatial usage scenarios, using
the appropriate technologies and design considerations, for remote monitoring in the scope
of smart health systems.

Microgrids and nanogrids are the primary building blocks of smart grids and the
infrastructural development of smart systems [13–15]. Microgrids with sensors generate
big data, and they are thought to be multiplied at the nodes of networks of e-health,
smart healthcare, and monitoring systems [7,8,16–18]. Smart healthcare and smart city
infrastructure can also be extended via the usage of microgrids and smart grids in the
built environment [8,19]. Furthermore, the deployment of microgrids with sensors and IoT-
based systems, at the residential scale, is thought to encourage the active participation of
users [17,20] for smart healthcare monitoring and infection control against COVID-19 [12].
Thus, this research regards the significance of the active participation of users and patients
at the residential scale with the help of microgrids [4,16,20,21]. This theory has extended
to investigate different ways in which the usage of smart sensing systems and learning
models can be developed, at the private scale, for special care [10,11,22,23].

The rise of smart systems, employed with sensors and artificial intelligence (AI) in
buildings, has also played a key role in fulfilling the special needs of self-care and special
care [10,23]. Moreover, IoT technologies and learning models have significant application
potential in monitoring tasks and healthcare in smart spaces [4,11,21,24]. The IoT data from
indoor spaces can also be crowdsourced by applying remote monitoring systems for smart
healthcare services [7,16,24], and in most recent applications, the technologies are generally
used for real-time monitoring [21,25,26].

The study has also surveyed the design constraints and parameters for the spatiotem-
poral configuration of automated systems in indoor environments, in generating real-time
IoT data, to learn user activity. The geometrical configurations of systems in real-time
data generation are also crucial in grasping geometric mapping-based techniques that can
be modified into location-based setups of smart spaces [12,27,28]. Thus, the design and
construction of intelligent architectural environments, with the physical configuration of
smart systems and IoT technologies for smart health services, motivate this research further
in the transformation of buildings with the accompanying rise in technology and AI for
monitoring the user activity and environmental facts in real-time [8,29–31].

Accordingly, the usages of real-time learning models and smart systems, deployed
with sensors, cameras, imaging devices, wearables, and personal devices for recognizing
user movements, locations, and behavioral patterns in the physical constraints of buildings
and indoor spaces, are also surveyed [21–23,32–35]. Thus, motion sensors are found to be
crucial in keeping the critical distance between non-infected people and infected persons or
caregivers in enclosed spaces. They also help to have crowdsourced data for e-health and
smart health platforms about scattering, as well as the prevention of infection transmission
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during the COVID-19 pandemic [34,36]. The rising challenges of SARS-CoV-2 have also
motivated investigations on the use of other sensors for monitoring the air quality in indoor
spaces and for determining the activity pattern of people [37–40]. Moreover, real-time
learning models have been applied in various research and medical tests in the detection of
the SARS-CoV-2 virus [41–45].

The environmental parameters related to the air quality, temperature, humidity, and be-
havior prediction by learning movement patterns and user activity in indoor environments
via AI models are also crucial for addressing the challenges of the pandemic and for provid-
ing special care conditions for the elderly and asthma patients [4,10,17,20,23,35–40,46–48].
Besides other sensor systems and wireless connections, wearables and Bluetooth devices are
also used to monitor data from indoor environments [27,49,50]. Personal devices, as well
as distance-based precautions by remote control or voice control, operated via language
processing and Internet connections, have also gained importance in infection transmission
control [23]. Furthermore, smart cards and smart personal data for public healthcare can be
desirable for personal usage in dealing with the pandemic and having access to larger-scale
smart health systems [16]. Thus, these technologies and models can also contribute to
smart healthcare and logistics [12]. In addition to IoT and cloud computing, the above-
mentioned technologies and devices provide information to predict the usage patterns
that are processed through machine learning (ML), deep learning, blockchain technologies,
extreme learning machines (ELM), real-time learning system (RLS), and multi-task learning
models [2,3,21,26,33,35,51–57].

The studies on healthcare monitoring and secure e-health systems emphasize the
diverse set of IoT communications and applications, including healthcare by wearables,
such as accelerometers, gyroscopes, smartphones, Global Positioning System (GPS) devices,
motion sensors, and microphones [16,46,58–60]. Moreover, contact tracing applications
implementing centralized and decentralized approaches have become significant in China,
South Korea, Spain, Italy, and Singapore in dealing with symptomatic and asymptomatic
COVID-19 cases [9,34]. To address the advanced inquiries on IoT-based smart healthcare
systems and the role of smart grids in large-scale transformations and services, remote mon-
itoring and the Internet of Healthcare Things can provide further possible solutions [55,58].
These approaches have great implications for the advancement of smart e-health systems,
which can also be developed at the housing level for tackling the particular circumstances
of diseases and healthcare.

Essentially, the increasing capabilities of microgrids with sensors and IoT devices,
operated with real-time learning, monitoring, and prediction models, can generate big data
to enable such large-scale infrastructural transformations through energy-efficient systems
and real-time learning models [8,54]. Therefore, this research investigates how the physical
setup of task-oriented microgrids can derive big data by formulating learning models
and algorithms of different versions of “efficient online learning systems” [54]. These
efforts are also considered as the groundwork, to be deployed in new indoor environments,
for designing and constructing intelligent spaces and buildings providing big data for
healthcare [6,11,12,34,49,58].

3. Materials and Methods

The distinction between the private and public spaces for healthcare is primarily
considered for the methodology and scope of this research [12] (Figure 1). In that regard, the
research first applies to investigate possible usage scenarios by taking into account the space
considerations and participants for infection transmission control during the SARS-CoV-2
pandemic [4,5,8,9,12,19,38]. The surveyed technologies from the background research
are also evaluated to have design and technological approaches for addressing different
spatial usages and needs (Figure 1a). Regarding the problems caused by COVID-19 and
the significance of infection control at the private scale [4,9], the study has aimed to
deploy appropriate monitoring mechanisms for infection transmission control in indoor
environments [40] to decrease the interactions among users during the pandemic. Thus, the
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objective of the research can be briefly declared to crowdsource multiple data points from
different sensors in a private indoor environment for special care and to learn and predict
the categorized data about user activities by developing an efficient real-time learning
system for tracing the correlating changes in these data. In the scope of the research, the
processed data are also seen as experimentally novel to follow the persisting circumstances
that are recognized as critical to alert caregivers during the pandemic (Figure 1b).
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Accordingly, the research project was initiated with the selection of participants and ap-
propriate technologies in the designation of an environment at the private scale (Figure 1).
The selected room of one apartment unit was designed as an indoor environment for pallia-
tive care and monitoring infection transmission control during the pandemic. Participants
are the inhabitants of the house, who are a married couple over 65 years of age, and one is
an asthma patient.

Among the surveyed technologies and design considerations to develop monitoring
technologies, microgrids, as the primary keystones of smart grids and services [13–15] are
found to be appropriate for private scale usage, having greater potential to be integrated
into the smart infrastructure of larger-scale networking and smart health applications.
Therefore, the study decided to operate microgrids, with sensors connected to an IoT
cloud platform [61], to generate and process big real-time data for training and developing
learning models, as well as by considering the physical configuration parameters of the
experiment environment (Figure 1). The microgrids acquire crowdsourced data by sensors
that are also measuring the gas levels and air index values regarding the critical condition
of the asthma patient [47,48].

As one of the primary methods of this research, the correlations among data of multiple
sensors are followed, and these correlations are analyzed to determine categorized activities.
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These categorical activities are also seen as experimentally valuable, to track the user
occupation by following the environmental data and considering the gas sensor and air
index values, in correlation with the user movement with regard to the spatial configuration
of sensors. The acquired inputs are correlated and classified with the help of the spatial
configuration pattern, as well as machine learning and deep learning models, in developing
the real-time learning system. In short, with the special spatial design of sensors, as well
as the developed machine learning and deep learning models, the research is designated
to generate and validate the initial experimental datasets and exclude errors by error-
correcting algorithms that are used to develop an autonomous real-time learning and
monitoring system. The system operates and evolves by applying data validation and
optimization steps.

In the spatial configuration of smart systems, projects for the elderly and patients
with Alzheimer’s and dementia have also inspired this research to consider the purpose of
monitoring and learning about user occupancy [17,62] in infection transmission control.
This was achieved by the method of motion tracking and tracing the correlated activity
pattern of the participants in the indoor space with specially designed microgrids with
multiple sensors and IoT devices. Thus, distance-based motion tracking is applied as a
method of following user activities in the experiment room, wherein the two designed mi-
crogrids with sensors were configured with different angles and synchronized with the IoT
cloud [61]. Spatial design constraints are studied through the angular configuration of the
applied technologies to find correlating motion tracking data from multiple sensors. Social
distancing is primarily considered with the physical constraints and furniture layout of the
selected experiment environment to decrease risky interactions for infection transmission
control during the pandemic.

For networked communication, IoT devices send and acquire real-time IoT data and
deliver inputs for real-time monitoring. The installed smart systems provide IoT data
for remote monitoring activity of users for infection transmission control and wellbeing
during the pandemic. Thus, the IoT devices were connected to the IoT cloud that caregivers
and doctors could view instantly during the pandemic, as it can also be viewed publicly.
Additionally, a Local-Area-Network (LAN) connection is provided so that it can be accessed
by caretakers and hospitals in the closer territory.

The acquired IoT data are applied to advance the real-time learning system. Among
different technological applications, affordable, fast, and efficient methods and models are
explored to develop the real-time learning system. The developed system is deployed to
monitor the acquired data that facilitates remote monitoring via the IoT cloud, predicts the
current state of user activities, and provides feedback about the activity to the IoT cloud.
The acquired predictions are processed to send private electronic mail alerts about critical
circumstances. The experiments were conducted for one year during the SARS-CoV-2
pandemic and ended in November 2021.

The applied methodology has also aimed to re-evaluate the outcomes of learning
models in the scope of the surveyed spatial usages and technologies in the discussion
section with the advantages and limitations (Figure 1b). Therefore, the study also describes
the application of other alternative usage scenarios regarding the applied methods, tech-
nologies, models, and types of monitoring in the scope of spaces and services for e-health
and smart health systems and networks.

3.1. Features of the Microgrids: Microcontrollers with Sensors and IoT Devices

To briefly mention them, three different microcontrollers with sensors and IoT devices
are deployed to acquire multiple data from different sensors that are to be analyzed for
any correlation with each other via user action. Two of the microgrids were installed with
IoT technologies within the special physical configuration of the experiment room. All
three microgrids and ESP32 devices (Espressif Systems, Shanghai, China) are hard-coded
using Arduino IDE software (Italy). The connections of sensors in each microcontroller are
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distributed by considering the workloads with microgrids, as presented in Table 1, along
with other technologies tested during the experiments.

Table 1. Microgrids with sensors and other applied technologies.

Sensors Microgrid X Microgrid Y Microgrid Z ESP32 Raspberry Pi 4

Temperature & Humidity - DHT 11 - - -
Bluetooth - - HC-06 Built-in Built-in
Camera - - - - Camera V2

Display - Liquid Crystal
Display (LCD) - - -

Gas Sensor MQ-2 - - - -

Light Light Emitting
Diode (LED) - - - -

Motion Tracking HC-SR04 HC-SR04 - - -
Remote Control Applied - - - -

Smart Card - - - - -

Sound - - Controlled by
mobile applications - -

Wireless Connection ESP8266 ESP8266 ESP8266 Built-in Built-in
Wearable Devices - - - - -

According to this, “Microgrid X” is built on one microcontroller, including an ultra-
sonic sensor to track motion. The challenges posed by the SARS-CoV-2 pandemic have
made the use of gas sensors vital [37–40,47,48]. One remote controller was applied as a
distance-based precaution to get user-defined health-state values ubiquitously. Accord-
ingly, the rating ranges are set from 1 to 5 with the same controller buttons; otherwise, the
microgrid sends the default value (Table 2).

Table 2. Applied rating system for crowdsourcing/diagnosing the health state of the user.

Value Explanation

1 “I need help!”
2 “I do not feel good”
3 “It is alright!”
4 “I feel good”
5 “I feel great!”

888 Not activated

“Microgrid Y” is also built on one microcontroller with one ultrasonic sensor to
measure the distance from moving agents. Thus, Microgrid X and Microgrid Y were chosen
to be installed in the physical configuration of the experiment environment to have the
correlating motion-tracking data of user activities. A temperature and humidity sensor
is applied to provide ubiquitous data about the indoor space beside other display and
internet connection capabilities.

“Microgrid Z” is built on another identical microcontroller, designed as a discrete
model that is free from physical configuration constraints. It works with Bluetooth, which
is controlled by smartphone applications using numeric, text, and sound commands, and
operates wireless devices by enabling multi-port uses. The connected Bluetooth device
recognizes other paired devices and mobile technologies, which are also deployed to trace
critical contacts by getting commands from other mobile devices [9].

3.2. Spatial Design Concerns of the Experiment Room

The geometrical configurations of Microgrid X and Microgrid Y are designed to
obtain certain location information and data about user activity and validate each motion
tracking input with regard to the other. Thus, the microgrids were installed in an angular
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configuration to correlate the measured distances. Accordingly, the physical setup is
designed to provide a location pattern such that Microgrid X, tilted with an angular
configuration, theta (θ), checks the dimension, tracked by Microgrid Y, with regard to the
triangulation of the measured distances (Figure 2). In other words, the spatial configuration
of microgrids with sensors has not only allowed for tracing the correlating data of multiple
sensors but also provides the basis to validate and predict the motion tracking data of each
microgrid with regard to the other.
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In this configuration pattern, the entrance of the room and the location of the bed of
the patient were considered primarily to find out critical measurements during infection
transmission control. Therefore, Microgrid Y was set on an axis that had a direct view of the
entrance of the experiment room, and Microgrid X was oriented toward the diagonal axis of
the room, with the longest viewing distance from the entrance (Figure 2). The measurement
origins for Microgrid X and Microgrid Y were then fixed based on the placement of other
furniture used by the patient, and the layout of other furniture was configured according
to these constraints. Moreover, the measures for distance from the patient and the furniture
that patient uses were decided as 150 cm for infection transmission and interaction control.
These configuration parametrizations were applied to track a patient in need of care in the
experiment room and to recognize a person who was visiting, taking care of the patient, or
operating some equipment in the room (Figure 2).

The physical setup of the experiment room aims to obtain critical behavior patterns
from the immediate environment around the patient by using microgrids to generate real-
time IoT data. The outcomes are monitored by the learning system, which is to be applied
to smart health systems.
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3.3. Communication Organization of the Microgrids for the IoT Data

Connections to the IoT cloud [61] and other IoT devices have been provided through
the connected wireless devices of the microgrids via the wireless network connection
with IEEE 802.11 standards. The correlating data from Microgrid X and Y have been sent
to six different IoT channel feeds. The serial data have also been acquired and merged
by the IoT device, ESP32, for better communication (Figure 3). The developed real-time
learning system has also been operated to merge and synchronize the acquired real-time
data, which have, again, been sent to the same IoT channel via the same protocol in the
ongoing experiments. The ESP32 device has also been hard-coded and deployed further
for the local communication between the microgrids with IoT devices in the islanded mode
without an Internet connection.
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Microgrid Z is connected to its web server and provides a distinct rating and command
system, similar to Microgrid X, to collect comparable user data. Based on the same LAN
connection of its web-server, which is designed in Hyper-Text Markup Language (HTML)
for various configurations of its web pages as a search on the capacities of Wi-Fi devices,
this microgrid can be connected from other devices as an access point (AP) (Figure 3).
Microgrid Z is designed as a portable device that can also sense other defined Bluetooth
devices in its near territory. Thus, Microgrid Z is designated to be accessed from closer
wireless areas that include territories of caregivers and a local hospital, and this connection
is secured with a private network security key and Service Set Identifier (SSID) (Figure 3).

3.4. Applying the Learning Models on the IoT Data

The aim of applying machine learning models is to classify initial findings in the data
of sensors that are observed to find critical correlations among motion, gas, temperature,
and humidity sensors besides optimizing the crowdsourced data about user occupancy
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and interactions in the room. The acquired real-time IoT data from Microgrid X and Y
are processed by learning models to develop a real-time learning and monitoring system
for predicting the ongoing activity. Machine learning models are initially explored via
classification and regression tasks, followed by Support Vector Machine (SVM) and ECOC
models. Then, the same IoT data are processed via different deep learning neural networks,
including Convolutional Neural Networks (CNN), Long-short Term Memory (LSTM), and
Binary Layered Long-Short Term Memory (Bi-LSTM) neural networks, with and without
batch normalization (Btc.N.). The initial experiments on the classification and regression
models are related to user activity patterns and the physical configuration variables. In
optimizing the trained neural networks, outcomes of experiments on machine learning
models are also applied in the ceiling analyses of the deep learning models using error-
correcting and data optimization algorithms.

3.5. The Real-Time Learning and Monitoring System

Finally, the real-time learning system is developed with an aim to report the current
state and activities of the participants that are to be classified, according to the correlating
changes, between sensors for infection transmission control in the experiment room. The
system learns and predicts these classified activities to be alert for critical circumstances.
Additionally, the remote monitoring system aims to minimize the interaction among users.

The optimized neural networks are operated, subsequently, for the real-time updating
system that acquires and saves online data with high accuracy for a continuously updated
dataset. Each learning model predicts the user activity and environmental factors that the
previous models could not achieve and returns the labeled results to the IoT cloud that
the caregivers can monitor. Thus, in the general architecture of the system, different types
of deep learning networks are configured to respond, as flexibly as possible, to unknown
online data.

The real-time data are instantly predicted and then introduced as newly updated data,
either to the existing training or validation data, by the data optimization algorithm run in
the system or saved for further analyses. The neural networks are also updated periodically
with these new training and validation datasets, considering the increasing number of data
updates. The system, again, controls the number of data updates to collect further highly
precise online test data and re-train deep learning layers. This research has also enabled the
assessment of the efficiency of the architecture of this evolving real-time learning system
with different weighted prediction scores of the neural networks.

4. Experiments and Results

Following the methodology and methods, experiments were performed to generate
and process correlational data of different sensors, which were sent as unique data to the IoT
cloud [61] and used to develop learning models that run through a real-time learning and
monitoring system efficiently (Figure 1b). Microgrids with various sensors were operated
to create the initial dataset that is also processed to have the training, validation, and test
datasets. The real-time IoT data from sensors are assessed to find strong correlations, in
motion-tracking data and related data, about the air quality and other sensor states in the
indoor space to identify the usage patterns. The initial IoT data are classified and processed
through advanced machine learning techniques to optimize deep learning models and the
training data. The developed deep learning models are organized within the real-time
learning and monitoring system.

4.1. Initial Calculations on the IoT Data from Microgrids

The acquired IoT data from the cloud are, first, classified through motion tracking
analyses. As illustrated in Figure 4, the four different cases are distinguished and recorded
through specific measurements, from Microgrids X and Y, regarding the angle of physical
configurations and the angles of agents with regard to the microgrids.
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Figure 4. Evaluation of cases by spatial configuration and measurements.

In addition to the user activity and health–check values, correlating inputs regard-
ing temperature, humidity, and gas sensor values are also investigated. The changes in
temperature, humidity, and gas sensor values of the interior space were observed under
different circumstances, as in the exemplar experiment, by providing natural ventilation
to the well-heated room for 15 min on 18 November 2020, as illustrated in Figure 5a, with
an outside temperature of 13.9 ◦C. In this experiment, the received temperature, humidity,
and gas sensor values are found to be strongly correlated. Accordingly, machine learning
and deep learning models are further applied for analyzing the correlating changes in
indoor air, temperature, and humidity conditions besides movement behavior. Thus, a
regression learning task is conducted, initially, to determine the best computation method
for precisely calculating the changes of gas sensor values by natural ventilation of the
indoor space (Table 3). MATLAB Regression Learner is run to predict the gas sensor values
in correlation with temperature and humidity values, allocated as predictors, using 5-fold
cross-validation. In this experiment, Gaussian Process Regression (GPR) returns the best
Root-Mean-Squared-Error (RMSE) result, as illustrated in Figure 5b and Table 3.

4.2. Experiments on Machine Learning Models

Machine learning models are also applied to find and classify the correlating changes
among different sensor values in the motion-tracking data. With the help of the physical
configuration of the microgrids, the incoming inputs from different sensors are correlated
and processed to also be classified by machine learning models. Thus, classification learning,
regression learning, and ECOC Classification models are deployed to identify and predict
the correlating data in classifying user activities.
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Figure 5. (a) Sensor values from the ventilation experiment and (b) its Regression Model.

Table 3. Outcomes of experiments on Machine Learning models: Regression Models to predict the
correlating changes in Gas Sensor values.

Regression Model RMSE

Linear regression

Linear regression 0.88
Interactions linear 0.88

Robust linear 0.89
Stepwise linear 0.88

Tree
Fine tree 0.43

Medium tree 0.57
Coarse 0.79

SVM

Linear SVM 0.91
Quadratic SVM 12.1

Cubic SVM 955.97
Fine Gaussian SVM 0.7

Medium Gaussian SVM 0.8
Coarse Gaussian SVM 0.87

Ensemble
Boosted trees 2.31
Bagged trees 0.46

GPR

Squared exponential GPR 0.63
Matern 5/2 GPR 0.63

Exponential GPR 0.39
Rational quadratic GPR 0.63
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4.2.1. Classification Learning

The given equations and configuration angles, between the microgrids in Figure 4,
provide a basis to distinguish the three cases and regress the outcomes as correlational
facts. However, some anomalies that do not fit any of the three equations in Figure 4 are
classified as the fourth case (Figure 6). Thus, machine learning models are further applied
to determine and validate these four classes, including minor differences and anomalies
that cannot be classified by simpler equations (Figure 6). Based on the initial classifications,
“MATLAB Classification Learner” is used to check the validity of each classification among
Cases 1, 2, 3, and 4 (labeled as 0).
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Figure 6. Initial Classification of the Movement Behavior of Users.

Therefore, in classification tasks, 1012-by-2 and 1012-by-4 inputs are introduced with
their classification labels using 5-fold cross-validation. For optimizing the classification
models, each model is experimented with using Principal Component Analysis (PCA) with
an enabled variance of 0.95. Two different experiments are performed: In the first one,
1012-by-4 inputs include the configuration angles of Microgrids X and Y; in the second one,
1012-by-2 inputs are classified without the angle information (Table 4). The classification
results are presented in Table 4.

Accordingly, the weighted K-means the Clustering for the Nearest Neighbor (KNN)
algorithm returns the best outcome, with an average accuracy of 95.8, for two variables over
the dataset with 1012-by-4 inputs (Figure 7). The fine Gaussian SVM method yields the
best result with an average accuracy of 98.6 for the dataset with 1012-by-2 inputs (Figure 7).

Table 4. Outcomes of experiments on Machine Learning models: Accuracy results for different
classification learning models.

Classification Model
Two Variables of 1012-by-4 Inputs 1012-by-2 Inputs (without Angles)

Accuracy Accuracy

Free
Fine tree 93.6 96

Medium tree 89 91
Coarse 78.1 74.6
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Table 4. Cont.

Classification Model
Two Variables of 1012-by-4 Inputs 1012-by-2 Inputs (without Angles)

Accuracy Accuracy

Discriminant
Linear discriminant 43.9 43.2

Quadratic discriminant 92.5 96

Naïve Bayes Gaussian 75.5 80.4
Kernel 78.8 81.9

SVM

Linear SVM 76.3 79.2
Quadratic SVM 94.8 97.3

Cubic SVM 87.7 97.5
Fine Gaussian SVM 95.3 98.6

Medium Gaussian SVM 88.8 95.4
Coarse Gaussian SVM 63.8 75.8

K-nearest neighbor

Fine 94.8 98.4
Medium 92.9 95.8
Coarse 70.8 72.9
Cosine 82.4 82.7
Cubic 92.7 95.3

Weighted 95.8 98.3

Ensemble

Boosted trees 93.4 96.2
Bagged trees 95 97.4

Subspace KNN 74.6 76
RUSBoosted trees 89 91.3Sensors 2022, 22, x FOR PEER REVIEW 15 of 30 

 

 

 

Figure 7. Exemplar confusion matrices and prediction plots for classification tasks. 

4.2.2. Regression Learning 

Depending on the spatial configuration of microgrids, regression models are further 

deployed to validate and predict the motion tracking data of each microgrid. As regres-

sion models were also applied to follow the correlating changes between the air index and 

gas sensor values, further experiments are conducted to determine the precision in corre-

lating changes in the user movements. Therefore, it is also aimed to provide outcomes 

about which learning model performs best in predicting the cases and correlating data 

with regard to the other. 

Thus, the classified cases are further trained by using “MATLAB Regression Learner” 

to improve fast and efficient regression. Regression models are explored on the dataset 

with 2024 inputs, initially processed by MATLAB Classification Learner, to predict cases 

by considering the responses from Microgrid X and Y. Regression models are also ex-

plored to decide the priority among the microgrids through the correlating data that are 

compared with the RMSE results in Table 5 for optimizing the learning models. The data 

from each microgrid was tested in predicting the action by allocating the other as the pre-

dictor and using 5-fold cross-validation, with the following outcomes, in Table 5. 

  

Figure 7. Exemplar confusion matrices and prediction plots for classification tasks.



Sensors 2022, 22, 7001 15 of 29

4.2.2. Regression Learning

Depending on the spatial configuration of microgrids, regression models are further
deployed to validate and predict the motion tracking data of each microgrid. As regression
models were also applied to follow the correlating changes between the air index and gas
sensor values, further experiments are conducted to determine the precision in correlating
changes in the user movements. Therefore, it is also aimed to provide outcomes about
which learning model performs best in predicting the cases and correlating data with regard
to the other.

Thus, the classified cases are further trained by using “MATLAB Regression Learner”
to improve fast and efficient regression. Regression models are explored on the dataset
with 2024 inputs, initially processed by MATLAB Classification Learner, to predict cases by
considering the responses from Microgrid X and Y. Regression models are also explored to
decide the priority among the microgrids through the correlating data that are compared
with the RMSE results in Table 5 for optimizing the learning models. The data from each
microgrid was tested in predicting the action by allocating the other as the predictor and
using 5-fold cross-validation, with the following outcomes, in Table 5.

Table 5. Regression learning outcomes on the classified movement/interaction behavior.

Regression Models

RMSE Values

Case 1 Case 2 Case 3 Case 4 (Anomalies)

X * Y ** X * Y ** X * Y ** X * Y **

Linear regression

Linear regression 0.98 0.9 0.43 0.42 1.6 1.26 41.54 31.74
Interactions linear 0.98 0.9 0.44 0.42 1.2 0.57 38.79 30.26

Robust linear 0.98 0.9 0.53 0.5 1.6 1.26 41.64 31.85
Stepwise linear 0.98 0.9 0.43 0.42 1.2 0.58 38.79 30.26

Tree
Fine tree 1.45 1.11 1.27 1.38 4.76 4.07 20.79 18.8

Medium tree 2.3 2.18 2.06 2.08 5.41 6.26 29.55 22.1
Coarse 4.96 4.67 3.97 3.77 6.21 7.93 32.72 26.27

SVM

Linear SVM 2.22 2.05 0.9 0.95 1.76 1.31 46.9 33.4
Quadratic SVM 1.83 1.88 1.08 1.17 1.82 1.21 112.51 28.95

Cubic SVM 5.65 1.86 1.28 1.21 2.3 2.05 1665.6 131.81
Fine Gaussian SVM 2.23 2.57 2.96 2.6 5.83 4.81 32.49 27.98

Medium Gaussian SVM 1.98 1.75 1.39 1.3 2.82 2.34 40.77 27.98
Coarse Gaussian SVM 2.12 1.73 1.03 0.97 2.42 1.36 40.85 32.5

Ensemble
Boosted trees 5.01 4.58 4.54 4.37 6.01 4.59 22.01 20.88
Bagged trees 15.79 1.17 2.99 8.81 6.44 4.8 36.81 28.77

GPR

Squared exponential GPR 0.96 0.89 0.21 0.19 0.47 0.33 18.05 19.37
Matérn 5/2 GPR 0.97 0.88 0.21 0.19 0.48 0.33 17.69 18.04

Exponential GPR 1 0.81 0.37 0.34 1.3 0.84 16.74 16.05
Rational Quadratic GPR 0.94 0.89 0.21 0.19 0.47 0.33 16.81 15.96

* Response from Microgrid X. ** Response from Microgrid Y.

Thus, the regression learning models also return distinguished results in determining
the anomalies differing from other cases and finding some classification errors.

4.2.3. ECOC Classification Models with Different Learner Types

ECOC classification models are further applied for the experiments to have precise
learning models and datasets that are validated through the correlations between the mea-
sured distances and critical angles, theta (θ) and phi (Φ). ECOC is one advanced machine
learning method of SVM, for multiclass label classification, for more than two/binary
classes. Thus, ECOC classification models are further applied to classify multiclass cat-
egories, including the information of configuration angles in the dataset. The previous
datasets, including 1012-by-2 and 1012-by-4 inputs, are discretely introduced with and
without cross-validation (Table 6). For obtaining the validation accuracy, MATLAB fitcecoc
function allocates the training and validation data from the dataset [63]. In experimental
cross-validation, the datasets are divided into randomly selected 706 (70%) inputs for
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training/cross-validation and 306 (30%) inputs for test datasets. Some results of the tested
models are reported, in detail, in Table 6 and Figure 8.

Table 6. ECOC classification results with different learner types, hyperparameters, and ranges.

ECOC Models Learner Type,
Hyperparameter, Range

Validation Accuracy Cross-Validation and Prediction Accuracy

1012-by-2
Inputs

1012-by-4
Inputs

1012-by-2 Inputs 1012-by-4 Inputs

Cross-Validation Test Cross-Validation Test

Surrogate tree & gentle boost ensemble * 83.1 99.1 83.7 76.14 99.1 95.1
SVM, Kernel, Gaussian 86 98.4 81.8 75.49 98.9 92.48
KNN, Distance, Cosine 96 99.8 98.5 94.12 99.9 96.08

KNN, Distance, Euclidean 98.1 98.3 97.6 92.81 99.8 96.08
KNN, Distance weighted, Equal 98.3 99.7 97.6 92.81 99.8 96.08

KNN, Distance weighted, Inverse 98.3 99.7 97.6 92.81 99.8 96.08
KNN, Distance weighted,

Squared Inverse 98.3 99.7 97.6 92.81 99.8 96.08

KNN, Standardize 98.2 98.5 97.3 92.48 100 93.13

* Surrogate tree is used as learner templates fitted for the gentle boost ensemble classification method. The number
of binaries is set to 50 from the ensemble learners objects with 100 learners, and coding design is set to oneVSAll;
the model is tested by cross-validating the ECOC classifier using 10-fold cross-validation.
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4.3. Preparation of the Dataset with Classified User Activities

From the earlier experiments on machine learning models, 2024 (1012-by-2) and 4048
(1012-by-4, with angle information) inputs, with their classification labels, are classified
and regressed. Further regression and classification tasks are applied, as in KNN and
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GPR algorithms, through SVM and ECOC classification to validate the correlating inputs
among microgrids in the experimental datasets as discussed. Depending on the earlier
classification experiments on the movement behavior with distinguished cases, as well
as the correlations between gas sensor values, temperature and humidity values, and the
inputs from the remote control, the acquired data are classified into ten different labeled
activities (Table 7). These activities are seen as experimental, and persisting conditions are
evaluated as critical, to be predicted and reported by the learning system, by following the
correlation between multiple data from different sensors (Table 7).

Table 7. Examples from the initially recorded dataset with classified user activities.

n-by-6 Inputs

Classification
Labels

Recorded &
Classified Activity

n-by-2 Inputs (Motion
Tracking Data) & CASES Temp.

(◦C)
Humidity

(%)
Gas Sensor

Value
User-Rated

Health State
CASE D1 (cm) D2 (cm)

3 66.27 84 25.9 50 566 888
11 Caretaker occupies

1 87.3 95 26.1 49 539 888

2 76.59 78 25.4 36 481 888
12 Ventilation2 77.5 79 25.4 35 472 888

2 77.02 81 25.2 33 472 888
13 Cold-dry indoor air

2 76.26 81 25.3 33 467 888

3 78.31 88 26.1 49 533 888
14 Hot-humid indoor air3 78.63 87 26.1 49 536 888

3 88.8 124 26 50 542 5
15 Empty/(Going) Out

3 86.25 131 26 50 546 5

3 98.43 134 26 48 541 888
16 (Entering) In

1 107.19 123 26 48 540 888

4/Anomaly 75.71 67 25.7 49 501 5
17 Moving towards the bed

4/Anomaly 78.26 69 25.8 49 424 4

3 75.61 102 25.8 50 556 2
18 Gas value & health

state correlation3 77.61 92 26 50 508 5

4/Anomaly 66.4 101 25.9 49 585 888
19 Two people occupy

the room4/Anomaly 66.4 103 25.9 49 578 888

4/Anomaly 77.83 68 25.9 49 425 4
20

Interaction around the
patient/bed4/Anomaly 77.11 53 25.9 49 541 5

For instance, while a person, as a caretaker, sits behind the patient/user, it is also
observed that gas sensor values are high. In labeling the ventilation activity, moving for
opening the windows and sequential changes in the air index and gas sensor values are
observed as being correlated. Furthermore, higher and lower levels of temperature and
humidity are labeled as critical for the comfort and wellbeing of users. The occupation
of the room by its user is tracked by motion recognition and the active usage of remote
control in the room (Table 7). Classified anomalies by the machine learning tasks are also
used to validate and classify the critical activities, such as more than one person occupying
the room, as in the classified sequences from 13 to 16 in Figure 6.

Similarly, moving towards the bed/patient and interacting around the bed of the
patient are also labeled as critical activities regarding the criteria of social distancing for
infection transmission control by following the correlation in the sequential changes of
motion tracking data, as well as gas sensor values and rated user values. The earlier
classified sequences by machine learning models are also used to classify these actions by
finding the anomalies. More significantly, levels of gas sensor data and user-rated values are
labeled as directly correlated, and they are seen as extremely crucial to be followed during
the pandemic (Table 7). In the generation of the initial dataset, each categorized activity
was also recorded by taking pictures to identify and validate the exact behavior besides
getting the help of spatial configuration, especially in validating the motion tracking data.
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Thus, 1872 (312-by-6) inputs with six different input types, including motion tracking,
air quality, temperature, humidity, and crowdsourced health check values, recorded with
ten differing user activity cases, were deployed to train deep learning models (Table 7). Ac-
cordingly, CNN, LSTM, and Bi-LSTM networks were further applied to learn the classified
user activities (Table 7). After optimizing the learning models for the real-time learning
and monitoring system, ongoing experiments were maintained to update the training data
and learning models. The acquired data is applied to develop the real-time learning and
monitoring system to predict user activities and update the training data of the learning
models in the system. In the ongoing experiments, after having precise learning models
to classify anomalies and the distinguished cases, the incoming inputs are validated with
regard to the spatial configuration parameters of the microgrids. All computational exper-
iments are performed in MATLAB in developing the learning models and the real-time
learning system.

4.4. Experiments on Deep Neural Networks

Different deep neural networks, distinguished by their data types, are also experi-
mented on with the same datasets to efficiently classify and learn the correlating sensor
values and user activities. For instance, the datasets are processed to train CNN learning
models as image data. Similarly, the datasets are also formatted as sequential data to ob-
serve the subsequent changes in the incoming inputs by sequence-based neural networks.
Thus, sequential data are applied to train LSTM and Bi-LSTM neural networks to observe
the difference between various neural networks that process different data types, which
are explored in creating an efficient real-time learning system.

4.4.1. Pretraining Deep Neural Networks

Initial datasets with 1012-by-2, 1012-by-4, and 312-by-6 inputs are prepared, discretely,
as 1-by-2-by-1, 1-by-4-by-1, or 1-by-6-by-1 image data for CNN layers. The same datasets
are prepared in cellular arrays of either 2-, 4-, or 6-by-n sequential data to be trained for
sequence layers such as LSTM and Bi-LSTM neural networks. The datasets are divided
into the sectors of 50%, 30%, and 20% of all data and arranged as training, validation, and
test datasets, respectively. All neural networks were generated without any pretraining
experiment at first, and the performance results of these neural networks are presented
in Table 8 without any error regularization and correction. The neural networks were
optimized, later, with an error regularization algorithm, which is applied for the ceiling
analyses, and their training results are presented in Table 8.

Table 8. Results of deep learning models. (a) Initial results. (b) Performance of the neural networks
after error regularization and data optimization.

Data
Type

Learning
Model

Learn
Rate

Num. of
Hidden Units

Num.
of Iter.

4 Cases 10 Categories

1012-by-2 Inputs 1012-by-4 Inputs 312-by-6 Inputs

Validation (Valid.)
Accuracy (Acc.)

Test
Acc.

Train
Time (s)

Valid.
Acc.

Test
Acc.

Train
Time (s)

Valid.
Acc.

Test
Acc.

Train
Time (s)

(a)

Image CNN

1 × 10−3

256
1000 79.1 86.3 18 99.3 95.6 23 92.6 93.8 18

30,000 98.0 92.2 472 100 97.6 632 92.6 96.9 462

Seq.

LSTM

32 200

100 97.6 14 100 100 14 100 90 21
Bi-LSTM 100 94.1 17 100 100 17 100 80 27

Bi-LSTM +
Btc.N. 100 75 18 100 100 18 100 90 31

(b)

Image CNN

1 × 10−3 144

5000 100 * 100 76 * 100 100 81 100 100 67

Seq.

LSTM
1000

100 100 37 100 100 23 100 100 20
Bi-LSTM 100 100 61 100 100 32 100 100 25

Bi-LSTM +
Btc.N. - - - - - - 100 100 57

*: 100% validation accuracy is achieved at 7500 iterations in 145 s with 16 hidden units.
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4.4.2. Error Regularization and Data Optimization

The outcomes of machine learning and deep learning models with minor errors are
evaluated to develop an error regularization algorithm to swap the erroneous training and
validation data of the earlier classifications in the datasets with new incoming inputs, in
real-time, that are predicted with higher scores (Algorithm 1). Thus, false negatives and
errors with the lowest prediction scores are excluded from the dataset by getting help from
earlier machine learning tasks (Figures 7 and 8). Predictions with lower scores, confused
with other labels, are also indexed with their prediction scores; they are gated through
functions of score thresholds to be swapped with training or validation data that have
considerably higher scores (Algorithm 1). While excluding the erroneous data from the
datasets that are swapped with new ones, the predicted classification results and true cate-
gorical classes are compared to prevent the replacement with any other unfitting prediction
label (Algorithm 1). A similar algorithm is also applied for optimizing the existing data of
the system by excluding the inputs with lower prediction scores.

Algorithm 1 Pseudo-code for error regularization and data optimization

[YPred, score] = classify(DeepNNx, ValidationX)
[Index, val] = find (YPred ~= ValidationY)
for n = [index]

if max(score(n) < 0.5)
ValidationX(n) = [];
ValidationY(n) = [];

elseif max(score(n) > 0.5)
ValXSwap(n) = ValidationX(n);

for val(n)~=ValidationY(n)
find(TrainingX(n)==ValidationY(n))

end
TraXSwap(n) = TrainingX(n);
ValidationX(n) = TraXSwap(n);
TrainingX(n) = ValXSwap(n);

else
. . . , fitcknn(ValidationX(n), ValidationY(n), . . . ), . . .

end
end

4.5. Experimental Analyses and Outcomes of the Real-Time Learning and Monitoring System

The ceiling analyses of the neural networks are achieved by running the data optimiza-
tion algorithm within each training session and repeating it until reaching optimal results
in Table 8. After the ceiling analyses, the optimized neural networks are configured in the
real-time updating learning system, based on their data types (Figure 9) and their perfor-
mance results, regarding the duration of training sessions, practicality, and precision in
prediction (Table 8). Then, the trained sequential neural networks are sequentially ordered
in a multilayered-tandem configuration with their defined option and layers to increase the
real-time efficiency in saving the IoT data. Overall, the updating neural network system is
designed to classify and predict real-time data and exert the ones with higher prediction
precisions into the training and validation datasets, as in the similar operations in the error
regularization algorithm, though by setting higher prediction score thresholds (Figure 9).

For each new input, real-time data prediction for image and sequential learning layers
are processed to have data updates (Table 9). For this processing, the predicted data is gated
through conditional operations (Figure 9), and the threshold values are defined to evaluate
each prediction score. Thus, thresholds indicate the prediction performance of the trained
neural networks for each label in the ten categorized activities (Table 9). Accordingly,
threshold values higher than 0.1, such as 0.89 or 0.8, are found appropriate in predicting
the ten labeled categories precisely.

The initial prediction performance of the system is also evaluated by setting the
deciding threshold at different values in filtering the prediction scores of learning models,
which are summarized in Figure 10. After conditional operations, the real-time data
are either registered for updating the training and validation data, exchanged with the
existing ones, or saved as distinct data when pooling for further analyses (Figure 9).
The multilayered-tandem configuration in this real-time learning system is applied to
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save the transferred incoming real-time IoT inputs, which the previous layer could not
predict. Thus, the special organization of neural networks in the system increases the
number of data updates by backing up the first system layer to determine an update
(Figures 9 and 10 and Table 9). A certain amount of change in the value of data updates
is balanced by applying the data optimization algorithm to remove the data with lower
prediction scores and to re-train the developed learning models with these evolving training
and validation datasets.
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Figure 9. Model structure of real-time updating learning system, with deep neural networks ordered
in the multilayered-tandem configuration.

Table 9. Exemplar results of the Real-Time Learning System.

Prediction Score Threshold: 0.89 Prediction Score Threshold: 0.8

Training
Time (s) 67 20 25 57 169 The system’s overall performance in five consecutive days

Classification
Labels CNN LSTM Bi-

LSTM
Bi-LSTM
+ Btc.N.

Total
Update

8 June
2021

9 June
2021

10 June
2021

11 June
2021

12 June
2021

11 1 1 - - 2 0 0 0 0 0
12 1 1 - - 2 0 0 0 0 0
13 1 1 - - 2 0 0 0 0 0
14 1 1 - - 2 0 0 0 0 0
15 1 - - 1 2 134 705 644 709 685
16 1 1 - - 2 0 0 0 0 0
17 1 - - 1 2 61 201 203 203 214
18 1 - - - 1 270 485 495 528 527
19 1 1 - - 2 0 0 0 0 0
20 1 - 1 - 2 0 0 0 0 14

Total Update 10 6 1 2 19 465 1391 1342 1440 1440
Total Input 10 10 4 3 20 465 1392 1343 1440 1440

Accuracy (%) 100 - - - 95 100 99.93 99.93 100 100

As illustrated in Figure 10 and Table 9, the efficiency of the proposed system increases
with multilayered neural networks by backing up the previous deep learning models.
Further analyses reveal the most significant advantage of the multilayered-tandem config-
uration of the neural networks: With data and system updates, the system maintains its
accuracy without the need for further error regularization (Table 9). Particular experiments
were conducted with users quarantined for infection transmission control, for five consecu-
tive days, from 8–12 June 2021. The experiments reveal that the learning system achieves



Sensors 2022, 22, 7001 21 of 29

99.97% prediction accuracy, on average, for a total of 6080 unknown real-time data with
the assistance of the updated and evolved multilayered-tandem configuration of neural
networks (Table 9). On 11 June 2021, for instance, a fully-developed CNN was operated by
the system with a threshold value of 0.80, and the outcomes reveal that all the 1440 inputs
were accurately predicted (Table 9).
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Figure 10. (a) Data Update Number in developing the Real-time Learning System (b) Data Updates
in total for System Updates. *: Not needed/used.

It can be concluded from the results that the rising efficiency of the system enables
to provide instant predictions for each new activity as the system achieved 1391 correct
predictions out of 1392 new inputs on 9 June 2021; 1342 accurate predictions out of 1343 new
inputs on 10 June 2021 returned as feedback to the IoT cloud in monitoring the user
activity (Table 9). The predicted labels of the recent user activity and their prediction
scores in percentages appear on the IoT cloud platform, which can be publicly monitored
(Figure 11a). It is crucial to have instant feedback about perpetually predicted user activities
and precision values as a lifecycle pattern for caregivers with regard to the user occupation
and environmental facts. Following the predicted activities during the experiments, it
can also be concluded that, with the help of the remote monitoring system, the need for
physical observation was reduced except for necessary interactions (Table 9).
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Acquired inputs, when predicted correctly, are further processed to update the training
and validation datasets, which also increase the system’s efficiency. The increased efficiency
of the multilayered learning and monitoring system in predicting user activities has allowed
the recognition of recurring prediction labels, which are evaluated to send instant private
alerts. For instance, two people interacting for more than 120 s or with health state values
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below three throughout a day, three hours-long high or low temperatures, and 30 min-long
high gas sensor values are recognized as critical, and this information is processed to send
private alerts as electronic mail to caregivers (Figure 11b). The system also generates a
considerable amount of ubiquitous big data about the rated health states of the users. For
instance, the average score of five was calculated over 6080 real-time rated health-check
values from 8–12 June 2021, which was followed as the indicator to determine the wellbeing
of users during the infection transmission control. In brief, the system shares ubiquitous
data about the conditions of the participants/patients and the inhabited indoor space.
Such data are considered to be significant for remote monitoring and healthcare during
COVID-19 [4,7,39,40].

Applying this real-time learning and remote monitoring system with microgrids,
including various technologies, sensors, and IoT devices, has enabled lightweight and fast
data generation and processing through quick and efficient prediction tasks. The system
predicts each incoming and unknown 1-by-6 real-time input around 0.0048 s (Table 10).
It thus provides big data about the prediction outcomes on the IoT cloud for remote
monitoring and e-health services.

Table 10. Prediction durations of the real-time learning system.

Number of Inputs

n-by-6 inputs at a time, n: 1 50 100 500 1000
average prediction
duration (seconds) 0.0048 0.1848 0.2874 1.1568 2.5390

duration per 1-by-6
input (seconds) 0.0048 0.0037 0.0029 0.0023 0.0025

5. Discussion and Future Directions

In the selection of participants and the experiment environment, the active participa-
tion of users at the private scale is found to be significant to multiply similar care contexts
with the deployed sensors and technologies for crowdsensing the IoT data from indoor
spaces. It is observed, in the experiments, that distance-based motion sensors provide
data for quarantine conditions by crowdsourcing user interaction and social distancing
among users. Thus, the usages of motion sensors besides gas sensors, temperature, and
humidity sensors are regarded with primary importance in this research in correlating
the critical data about the user activity and the condition of indoor space for healthcare.
Additionally, Bluetooth devices have enabled the usage of microgrids to be controlled
by other mobile and electronic devices that can be recognized in the near territory. The
deployed Bluetooth device enables control of the microgrid by mobile phone applications
that send sound and text commands to Microgrid Z while being controlled by Arduino
IDE software. Accordingly, Microgrid Z is designated as a distinct device for infection
transmission control and tracing risky interactions with people using paired devices with
Bluetooth, using healthcare applications [9], and with similar applications to synchronize
and recognize similar microcontrollers. Moreover, Microgrid Z provides a separate LAN-
based monitoring system that saves data about the measured basic metabolic values, thus
enabling the recorded values to be shared in e-health applications that can also be used in
hospitals (Figure 11c).

The multiplicity of data from different sensors, merged and sent as unique IoT data,
enables the development of the learning models via experimental analyses that result in a
developed real-time learning and monitoring system. In that regard, the physical installa-
tion of microgrids in the experiment environment influences the outcomes of experiments
and the development of learning models in depth. The fixed angle between the microgrids,
theta (θ), and the angle of the agent according to the microgrids, phi (Φ), are used to derive
the exact algorithms in identifying some common actions and validating the incoming
inputs as correlated with regard to each other. Regression models are applied further in the
validation of motion tracking data and predicting the correlating changes between environ-
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mental data from the indoor space. For instance, the outcomes of regression learning tasks
indicate that GPR learning models produce better RMSE results and are the most suitable
for estimating the changes in the gas sensor values of indoor air quality with respect to
changes in the temperature and humidity values (Table 3). The regression learning tasks
also reveal the priority among the applied microgrids: With lower RMSE results, Microgrid
Y is designated to operate as the predicted (posterior) model when the correlations between
inputs from two microgrids are considered (Table 5). Configuration angle, theta (θ), and
the angle of agents, phi (Φ), also provide ample evidence for classification learning and,
especially, for ECOC models that are used in distinguishing the labeled activities, which
are categorized through correlated inputs and anomalies (Tables 4 and 6).

The classification and regression tasks, applied on 1012-by-2 and 1012-by-4 inputs,
also enable the determination of the composition of the dataset with n-by-6 inputs, as they
also depend on the physical configuration of the microgrids (Tables 4 and 6). The machine
learning models, which are applied for classifying specific behaviors and anomalies, also
provide evidence for the deep learning models to recognize the correlating data from
different sensors and calling attention to critical circumstances, such as two people in the
room or close interaction of the users.

The acquired IoT data, processed through stepwise development of machine learning
and deep learning models, also increase the efficiency of learning models in the system.
Additionally, previous experiments on learning models provide the ground truth and
evidence for error regularization algorithms. These algorithms are applied to process the
exchange between new incoming IoT data, false negatives, and errors in the dataset. The
inputs identified by their lower prediction scores are also swapped, later, with incoming
inputs for optimizing the datasets and the neural networks in the system (Table 8 and
Algorithm 1).

The versatility of the real-time system for monitoring and alarming can be emphasized
by the fact that, even though the multilayered four neural networks are discretely optimized
with similar accuracy results (Table 8), they perform diversely to filter and save the same
real-time data (Table 9). The benefits of the multilayered-tandem configuration of the
sequential neural networks are especially regarded in predicting the categorical activities
that need sequence-based tracking, as in the classification labels 15, 17, and 20 in Table 9.
Thus, the experimental results in developing the real-time learning system have enabled
the improvement in the training and validation data to re-train the developed learning
models in the system by following the responses of four neural networks for each labeled
categorical activity input (Table 9). The improvements have enabled the system to maintain
its accuracy throughout the experiments in real-time (Table 9). Finally, the system has sent
over 110,000 pieces of real-time IoT data, which could be viewed publicly [61], and evolved
by learning and predicting the activity of users at the private scale during the pandemic.

An equivalent number of rated health-check values was also recorded as big data,
which is significant for healthcare systems to be used as an indicator in predicting the
health condition and wellbeing of patients and users. The developed real-time learning and
monitoring system is differentiated from other smart health applications [9,64] because it is
able to record the crowdsourced data from indoor spaces along with ubiquitous health-state
values rated by the participants as in the experiments from 8–12 June 2021. Hence, the
real-time learning and monitoring system generates big data at the private scale that some
crucial information is also registered to the e-healthcare systems and smart healthcare
services about the wellbeing of users [9,12,19,48,64,65] (Figure 10a,c, Figures 11 and 12).
The networking capacity of this centralized learning and monitoring system is designated
to merge data from multiple microgrids, so it can acquire data from different special care
contexts via decentralized and autonomous IoT devices (Figure 3). It is also significant to
regard microcontrollers with sensors as being energy-efficient and affordable technologies
to be applied in smart spaces and infrastructure [8,13–15,39,54,66–68]. Thus, this real-time
learning and monitoring system has the potential to be multiplied at decentralized IoT
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nodes and in the scope of smart healthcare systems, buildings, and facilities, such as
hospitals, to have larger-scale centralized e-health and smart health services (Figure 12).
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The limitations and future work of this study are discussed as follows: The physical
configuration constraints of the experiment environment also restrict the variety of user be-
havior, which repeats in a similar lifecycle. Nevertheless, recurring lifecycles are recognized
as persisting user activities to send private alerts, promising to develop varieties of new
alerting systems. Imaging devices, wearables, Wide Area Network (WAN), and diagnostic
technologies measuring glucose, blood pressure, and heart rate are also explored as other
possible technologies [49,50,60] to log the basic metabolic state values in smart health
systems periodically [9,19,64,65]. Some of these technologies, such as imaging devices and
diagnostic technologies, are tested but not directly applied in the experiments. For instance,
Raspberry Pi 4 computer with a V2 camera (Element14, Leeds, UK) is tested in real-time
via an IoT connection to the learning system. In this test, the system is run with a trained
fast R-CNN model, which is not actively applied in the experiments (Figure 13).
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Figure 13. Fast R-CNN model is deployed for labeling the objects and people in the experiment room
with the installation of Raspberry Pi 4 & V2 Camera. Accuracy results with true labels: Blanket:
99.87%; Coach: 98.61%; Person: 96.83%; Table: 96.77%. The elapsed time for detecting objects and
people in this frame is around 9.48 s.

It is observed in the experiments that the frame capturing feature of image acquisition
devices has the potential to be applied to healthcare services by developing a quick real-
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time learning system to categorize the user activity. However, imaging devices are not
directly applied in these experiments to ensure privacy and efficiency, as they use more
computational time and memory and cannot enable to have data about air index and gas
sensor values and rated health states of the user (Figure 13). Nevertheless, this multilayered
real-time system includes CNN that can still be developed or replaced with R-CNN models
and can be trained and used to process larger image inputs from imaging devices to be
shared with national smart healthcare applications and systems that are left as an optional
feature. Therefore, the multifunctional usages of R-CNN models [21,35,69,70] remain as
a future work that can be applied for versatile uses in public healthcare facilities and in
infrastructural development (Figure 12). The advantages of the operating system in this
research can be summarized as follows:

1. The developed real-time learning system is practical and affordable because of the
low-cost microgrids with sensors and IoT devices

2. The microgrids with additional technologies (Table 1) can be multiplied at the resi-
dential scale, as well as for different types of spatial usages and special care contexts,
including public buildings, hospitals, and operation rooms (Figure 12)

3. The acquired inputs from different sensors via the IoT cloud are recorded as lightweight
data for monitoring and healthcare, and the learning system is lightweight, fast, and
efficient in monitoring, processing, and predicting activities

4. The system can be developed for multiple nodes of larger networks and services such
as smart health and e-health systems (Figure 12).

6. Conclusions

In this research, microgrids and IoT devices enable different types of monitoring
and alerting options by generating multiple correlating inputs from various sensors, and
they are operated with the developed real-time learning system. The system has enabled
remote monitoring and communication by IoT-based technologies and platforms, which
are extremely important for monitoring infectious interactions during the pandemic. The
system has provided more than 110,000 IoT-based ubiquitous big data about user activity,
with the facts from the indoor space and user-rated health-state values, which are significant
for wellbeing during the infection transmission control of the SARS-CoV-2 pandemic. More
significantly, it is observed, in the experiments, that the need for physical observation is
minimized with the help of the remote monitoring system. Implementation of sensors
and IoT-based smart technologies with learning models and the real-time updating system
offers greater potential to provide a flexible infrastructure for perpetually monitoring
and predicting activity and ubiquitous crowdsourcing from indoor spaces for healthcare
systems and services.

It is also important to emphasize the increasing efficiency of the real-time learning
models with the fact that the system maintains its accuracy of around 100% in predicting
the activity patterns (Table 9) and updates the training and validation data and all learning
models. With the help of the multilayered-tandem configuration of this real-time learning
and monitoring system, it also becomes possible to follow each acquired data and predic-
tions from each deep learning model about the user activity synchronously [58] (Table 9).
The system utilizes image and sequential datasets, as well as learning models derived from
the correlated actions. Thus, the learning system can also be developed as multi-feature
fusion neural networks to be applied for different usage scenarios in the scope of healthcare
and public facilities. These findings describe the potential of developing smart grids and
intelligent infrastructure with the increasing technological capabilities of real-time learning
and prediction models for smart healthcare services and facilities.
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