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Abstract: Adaptive systems and Augmented Reality are among the most promising technologies in
teaching and learning processes, as they can be an effective tool for training engineering students’
spatial skills. Prior work has investigated the integration of AR technology in engineering education,
and more specifically, in spatial ability training. However, the modeling of user knowledge in order
to personalize the training has been neither sufficiently explored nor exploited in this task. There is a
lot of space for research in this area. In this work, we introduce a novel personalization of the learning
path within an AR spatial ability training application. The aim of the research is the integration of
Augmented Reality, specifically in engineering evaluation and fuzzy logic technology. During one
academic semester, three engineering undergraduate courses related to the domain of spatial skills
were supported by a developed adaptive training system named PARSAT. Using the technology of
fuzzy weights in a rule-based decision-making module and the learning theory of the Structure of
the Observed Learning Outcomes for the design of the learning material, PARSAT offers adaptive
learning activities for the students’ cognitive skills. Students’ data were gathered at the end of the
academic semester, and a thorough analysis was delivered. The findings demonstrated that the
proposed training method outperformed the traditional method that lacked adaptability, in terms of
domain expertise and learning theories, considerably enhancing student learning outcomes.

Keywords: adaptive learning; spatial ability; augmented reality; personalized system; fuzzy weights

1. Introduction

Extended Reality (XR) is an all-encompassing term that combines the experiences
of augmented reality (AR), virtual reality (VR), and mixed reality (MR), meaning all the
technologically enhanced realities fall under the umbrella term of XR. AR uses the existing
real-world environment and puts virtual information on top of it to enhance the experience.
On the contrary, VR immerses users into an entirely different environment, typically a
virtual one created and rendered by computers. Finally, MR is a user environment in which
physical reality and digital content are combined in a way that enables interaction with
and among real-world and virtual objects.

AR technology superimposes a computer-generated 3D image on a user’s view of
the real world [1]. AR is an enhanced version of the real physical world that is achieved
through the use of digital stimuli, such as visual and/or sound elements, and delivered via
technology. AR applications are user-friendly, providing a straightforward and pleasant
method of human–computer interaction. AR has been integrated in many fields, gaining
much potential in educational settings, and more specifically, in engineering training [2].

The improvement of students’ visualization skills is crucial in engineering education
for the growth of their design abilities [3]. Numerous studies have examined the benefits
of AR technology for enhancing students’ engineering drawing efficiency, as well as for
improving their spatial skills, which are crucial for their studies and future careers [4–7].
Although the integration of AR in spatial ability training has been explored by many
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researchers, there is no research specifically designed as a personalized AR spatial ability
training system that considers the student profile [8].

Personalized training offers great pedagogical affordances, as it provides an enhanced
learning experience, improves student engagement, and promotes knowledge acquisi-
tion [9]. The adaptive systems integrate built-in components in order to offer knowledge
domain adaptivity and deliver different learning activities, tailored to the student’s profile.
The learning material’s pedagogical potential increases with how adaptable it is to the
cognitive needs and capabilities of the students. For instance, in the case of a student who
studies a specific domain concept, having a high knowledge level, and has been given
many learning activities that are not appropriate for that level, then the learning process
may not go as expected and the student would feel frustrated [10].

During the last years there has been a trend in combining mobile technologies with
AR to achieve the implementation of AR applications that benefit from the portability
features and immediate access to information that are achieved with mobile devices [11].
However, the combination of AR and its application in educational settings remains an
open area research. There are not specific guidelines for the description of educational
content based on AR techniques or methodologies for the design and creation of highly
interactive material so that it can provide personalized learning in any place and at any time.
The integration of such applications in an adaptive and accessible learning process would
allow students to present highly interactive content, personalized to their characteristics
and needs, and as such, can interpret the contents and relate them to the real world.

The main contributions of the paper can be identified as follows:

• The use of fuzzy logic in an AR system in engineering education.
• The use of the Structure of the Observed Learning Outcomes (SOLO) for the instruc-

tional design of learning content.
• The delivery of the learning activities taught to students in an AR system.

The novelty of our research is the integration of adaptive techniques and learning
theory to provide students with personalized learning activities within the framework of
spatial ability training through AR. Fuzzy weights are specifically used in a rule-based
decision-making engine to provide engineering students with adaptive learning activities,
in terms of their knowledge level. The research question that the manuscript seeks to
answer is how effective fuzzy weights can model the learner’s knowledge level in an AR
training system.

Our paper is structured as follows. In Section 2, the literature review is investigated.
Section 3 presents the system’s instructional design. Section 4 describes the matching
between the learning activities and the normalized fuzzy weights. Section 5 presents the
system’s evaluation, and finally, Section 6 concludes the work and continues with the
limitations and future work.

2. Literature Review

The literature review reveals numerous studies focusing on the integration of AR
technology in fields such as education [12–14], tourism [15–17], industry [18,19], market-
ing [20–22], and medical [23,24].

Many studies have explored the positive effects of AR technology in education, as
compared to the traditional methods of teaching and learning. Previous authors [13]
tested a firefighting training system using AR, which was more cost-effective and safer,
compared to large-scale real-life training. Simulating firefighting scenarios helped the
trainees evaluate their knowledge and deal with risky circumstances.

Another study [16] presented a mobile AR travel guide, supporting personalized
recommendations. The authors explored the relationship between system properties, user
emotions, and adoption behavior. More specifically, the developed AR application built a
user profile, based on users’ preferences, and according to the updated profile, users are
offered extra media features.
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AR is considered one of the most disruptive technologies in the field of marketing [21].
Consumers derive tangible benefits from AR technology and expect it as part of their
purchasing process. AR has been incorporated into store catalog applications, which allow
consumers to visualize what different products would look like in different environments.
With AR technology, marketers are able to carry out successful digital campaigns. AR aids
marketing as it can let the customers try before they buy, augment touring and assistance,
and finally, augment branding materials.

In [23], the authors explored the potential of VR, AR, and MR in both dental education
and clinical dentistry. AR and VR technology can be beneficial not only for dental students,
but also for patients, as AR and VR can reduce dental anxiety and treat dental phobias.
Furthermore, a systematic review [24] investigated the usability of AR in the area of health
sciences on the aspect of the psychopedagogy of students in higher education. The usage
of AR improved many aspects of the learning process, including motivation, satisfaction,
and autonomous learning [25,26].

Based on the analysis of the relevant literature, there are different aspects regarding
the adaptation technique, which are mainly based on (a) the student’s specific learning
style [27,28], (b) the student’s thinking preference [29–31], (c) information processing
capability of the student [32], (d) student motivation [33,34], (e) the learning path [35–37],
and (f) the learning material [38,39]. However, their adaptation focuses primarily on the
manner in which the domain knowledge is presented, rather than the quantity and type
of learning activities that are offered to the students. These studies suggest that students’
knowledge levels are the most important determinant. The field of adaptive domain
knowledge models is poorly explored, and research has not yet focused on maintaining
learner engagement [40,41].

In view of the above, it is concluded that previous research has not focused on the
adaptivity of domain knowledge in terms of the scope and nature of the learning activities
taught to students. Furthermore, past studies related to domain knowledge adaptivity
have not utilized fuzzy weights in decision making to achieve adaptivity and did not
incorporate learning theories to maintain pedagogical affordability. There is scope for
intelligent tutoring techniques in engineering education.

The rest of this work initially describes the instructional design, which is a novelty
in AR spatial ability training systems. Then, we analyze the fuzzy weights membership
functions of the current knowledge level, and how the output determines how many
learning activities will be delivered to the learner, transforming the system into an adaptive
one. This structure makes it easier for the reader to navigate the paper and understand the
material presented.

3. Instructional Design

The domain knowledge included learning activities where students manipulate (move,
rotate, zoom) augmented 3D objects to better understand the object geometry, and finally,
design the technical drawing of their orthographic views. The domain knowledge consists
of fifteen chapters related to the technical drawing course, providing an introduction to
advanced sections on complexity.

A guiding framework suitable for the development of educational products, namely
the Structure of the Observed Learning Outcomes (SOLO) model [42,43], was used for the
instructional design of the learning activities [44,45].

The SOLO taxonomy describes the levels of students’ understanding in ascending
order of complexity. In particular, the model consists of five levels of understanding,
namely pre-structural (L1), unistructural (L2), multi-structural (L3), relational (L4), and
extended abstract (L5). This model can be used to deliver the most appropriate learning
activity to students with the intention of improving their learning outcomes [46]. Therefore,
our Personalized Augmented Reality Spatial Ability Training application (PARSAT) uses
the SOLO model to offer each student the learning activities that suit them best. Table 1
illustrates the learning goals and the corresponding activities per SOLO level.
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Table 1. Learning goals and activities per SOLO level [47,48].

SOLO Level Learning Goal Learning Activities Description of the Activities

Pre-structural (L1) Students get information on
the subject

1. Define concepts
2. List items
3. Match information
4. Name facts

Introduction to Technical Drawing: A
history and current importance of

drawing are presented.
Students are asked to illustrate the

significance of drawing by presenting
applications and reports of both good and

negative uses of the skill

Unistructural (L2)

Students define, recognize,
name, sketch, reproduce,

recite, follow simple
instructions, calculate,

reproduce, arrange, find

5. Identify content to be
memorized, show examples

6. Provide disciplinary context
7. Mnemonics in groups
8. Repetition of procedures
9. Games
10. Repetitive testing and matching
11. Peer testing (one student asks,

one answers)

Setting up a model space in CAD software
by defining limits, grid,

snap, layers, and object snap.
Video tutorials on standard viwes, views
alignment, completion of activity sheet,

and setting up the model space.
Border creation with a completed title

block to be used for all future drawings,
and drawing templates with all the
settings necessary saved within it

Multi-structural (L3)
Students describe, list, classify,
structure, enumerate, conduct,

complete, illustrate, solve

12. Glossaries of key terms with
definitions, classifications,
examples to build disciplinary
vocabulary

13. Simple laboratory exercises
14. Define terms, compare to

glossary
15. Games modelled on Trivial

Pursuit, Family Feud

Orthographic drawing creation.
Lines, layers.

Isometric object drawing.
Video tutorials on linetype, lineweight and

isometric drawing creation of objects in
the activity.

Relational (L4)

Students relate, analyze,
compare, integrate, plan,

construct, implement,
summarize

16. Case studies, simulations, and
complex lab exercises

17. Concept maps
18. Research projects and

experiential learning cycles
19. Application of theoretical

models
20. Reflective journals
21. Student seminars and debates
22. Syndicate groups (each group is

part of whole)
23. Problem-Based Learning and

Inquiry Learning

Scaling the border and title block to fit the
orthographic drawing.

Dimensioning an orthographic drawing,
Video tutorials on basic dimesioning rules

and parts of dimensions
Filling in a title block, including Name,

Date, Title, Drawing No., and the correct
scale.

Snapping and Text commands.

Extended abstract (L5)

Students generalize,
hypothesize, theorize, predict,

judge, evaluate, assess,
predict, reason, criticize

24. Self-directed projects involving
research, design, application,
argumentation, evaluation

25. Case studies involving
extensive analysis, debate,
reflection, argumentation,
evaluation, forecasting

26. Development of a theory or
model

27. Experiential learning cycles
28. Problem Based Learning and

Inquiry learning

Printing the drawing on 8.5” × 11” paper
(letter size) in

landscape orientation.
Video tutorial on cutting plane, half and

full sections.
Printer/plotter settings.

Export/plot an object that has been drawn
in CAD so it can be exported or printed to

a variety of other applications.
CAD software to create objects that are
more precise and sometimes easier to
draw in CAD than in other software.

4. Adaptation of the Learning Activities
4.1. Fuzzy Weights

The users of PARSAT are learners with a variety of background knowledge in the
domain of technical drawing, and therefore, they have different learning requirements. In
order to provide each learner with the most accurate learning path and material, an AR
system was developed (namely PARSAT), which determines their knowledge level and
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their learning needs. This is accomplished through the student model, which, nowadays, is
present in the majority of most adaptive educational software [49].

The student model’s function is to represent the students’ current level of knowledge,
and it is crucial for the system to provide the appropriate personalization for students’
learning needs [50]. There are other methods that can be used to construct the student
model, including neural networks and fuzzy logic networks [51]. The fuzzy weightings
that define students’ present level of knowledge, are the foundation of the PARSAT student
model. Each student’s degree of knowledge is explicitly described by the quintet Novice
(N), Advanced Beginner (AB), Competent (C), Proficient (P), and Expert (E). The five parties
involved reflect on how well each of the subsequent five fuzzy sets represents the learner’s
current level of understanding [52]:

• Novice (N): The student has minimal or textbook knowledge of the educational
material, without connecting it to the practice. He/she needs close supervision or
guidance and has little or no idea of how to deal with complexity.

• Advanced Beginner (AB): The student has basic knowledge of key aspects of the
educational material, while straightforward tasks are likely to be performed to an
acceptable standard. He/she is able to achieve some steps using his/her own judgment
but needs supervision for the overall task.

• Competent (C): The student has good working and background knowledge of the
educational material, and results can be achieved for open tasks, though may lack
refinement. He/she is able to achieve most tasks using own judgment and copes with
complex situations through deliberate analysis and planning.

• Proficient (P): The student has depth of understanding of the educational material,
while results are achieved for open tasks. He/she deals with complex situations
holistically and has become confident in decision-making.

• Expert (E): The student has authoritative knowledge of the educational material and
deep tacit understanding across areas of the domain, while excellence is achieved with
relative ease. He/she is able to move between intuitive and analytical approaches
with ease.

Utilizing the following membership functions, the quintet that describes the student’s
present degree of expertise is calculated. The boundary values for each of the aforemen-
tioned fuzzy weights, which range from 0 to 1, are expressed using a trapezoidal function
(Figure 1).

The degree of membership scales from 0 to 1 before flattening out and dropping to
0 at the end. The flattened portion of the trapezoidal function clearly demonstrates that
the student’s score (x) belongs in the designated group. The fuzzy weights membership
functions are shown in Figure 2.

The student’s level of knowledge is determined by five fuzzy sets (N, AB, C, P, and E),
varying from 0 to 1. According to the membership functions presented in Figure 2, a student’s
score of 41 equals µN(x) = 0, µAB(x) = 0.90, µC(x) = 0.10, µP(x) = 0, and µE(x) = 0, meaning
that the quintet (0, 0.90, 0.10, 0, 0) indicates a student is 90% advanced beginner and 10%
competent. In case the student’s score is 48, the resulting values are µN(x) = 0, µAB(x) = 0.20,
µC(x) = 0.80, µP(x) = 0, and µE(x) = 0, representing a student who is 20% advanced beginner
and 80% competent. The last example of a student’s score of 98 results in µN(x) = 0, µAB(x) = 0,
µC(x) = 0, µP(x) = 0, and µE(x) = 1, therefore the quintet (0, 0, 0, 0, 1) indicates a 100% expert
student. In any case, the equation µN(x) + µAB(x) + µC(x) + µP(x) + µE(x) = 1 stands.

Eight professors from the Department of Informatics and Computer Engineering
utilized the fuzzy weights and the related thresholds at the membership functions. The
faculty members were asked to define, in more detail, the technical drawing knowledge
levels that students gain during the course throughout the course of an entire semester. All
the faculty members have more than 15 years of experience instructing technical drawing
in academic contexts, and they can attest to the accuracy of the depiction of students’
knowledge levels.
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4.2. Decision Making

In this section, the analysis of the rules in combination with the fuzzy weights to adapt
the teaching strategy to the students’ knowledge level is presented [28–30]. The number of
learning activities of each chapter that the student has to learn each time, is dynamically
defined according to the current level of knowledge.

The rules design plays an important role for determining the number and the difficulty
of the learning activities delivered to the students. The rules have been defined by the
aforementioned eight faculty members, who matched each learning activity with the
corresponding SOLO level. The set of rules in total is presented in Table 2.

According to these rules, a proficient student who scored 82 per cent is classified as
the fourth fuzzy set, as the values of µN(82), µAB(82), µC(82), µP(82), and µE(82) are 0, 0, 0,
0.8, and 0.2, respectively. The delivered learning activities will be:

• No learning activity of SOLO-L1.
• No learning activity of SOLO-L2.
• No learning activity of SOLO-L3.
• Three learning activities of SOLO-L4.
• Two learning activities of SOLO-L5.

Table 2. Decision rules for adaptive instruction.

Fuzzy Weights L1 L2 L3 L4 L5 Sum of Las

µN = 1 7 5 0 0 0 12

µN < 1 6 5 0 0 0 11

µAB = 1 4 4 2 0 0 10

µAB < 1 & µC < 1 3 3 3 0 0 9

µC = 1 1 1 3 2 1 8

µC < 1 & µP < 1 0 1 2 3 1 7

µP = 1 0 0 1 4 1 6

µP < 1 & µE < 1 0 0 0 3 2 5

µE = 1 0 0 0 1 3 4

5. Evaluation Results and Discussion
5.1. Research Population

The current study was evaluated over three courses of an entire academic semester,
while students were taking the (a) Computer-Aided-Design, (b) Technical Drawing, and
(c) 3D Monument Modelling courses, at an undergraduate curriculum of a public university,
located in the nation’s capital. The sample consisted of 148 s, third, and fourth-year
undergraduate students, and three educators. All measurements of gender and age were
obtained from a randomly chosen sample and had no impact on the outcomes of our study.
Table 3 presents the analysis of demographics.

The instructors evenly divided the population into two groups of 74 students. The
experimental group (group A) was instructed to run the PARSAT independently, while
utilizing the system’s adaptability. For instance, the modeling of students’ knowledge
levels enabled them to watch video tutorials of various lengths and rotate 3D objects of
various complexity to see and comprehend their structures, and generally engage in various
learning activities adjusted to their unique profiles.

The control group (group B) used the same instructional material and exercises, with-
out any customization based on the students’ individual profiles. The students were given
instructions on how to carry out the learning activities, which included the same content
and approach of the learning activity presented in group A.
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However, the visualization and explanation techniques were different for both groups.
The experimental group with AR application could use PARSAT and actually see the system
in action on their smartphones and/or tablets and leverage the proposed framework to
derive pedagogically meaningful semantics, while group B did not use PARSAT. The
educators were involved in the educational procedure in both groups.

Table 3. Demographics.

Measure Item Frequency Percentage (%)

Sample size 148 100.0

Gender Male 101 68.2
Female 47 31.8

Age (over 18) 18–19 57 38.5
20–21 42 28.4
22–23 36 24.3

Over 23 13 8.8

Level of prior knowledge None 129 87.2
Technical

background 19 12.8

Computer skills Knowledge of computers at a high level
Motivation All students wanted to achieve a high grade at the attended course

5.2. Analysis of the Students’ Feedback

At the end of the semester, after the successful completion of all three courses, the
two groups were delivered a questionnaire and were asked to respond to the following
questions, using a 10-point Likert scale ranging from “Not at all” (0) to “Very much” (10):

• How much did the activities match your level of knowledge? (Q1).
• Was the quantity of the activities used efficient? (Q2).
• Did the activities’ level of complexity enhance your learning? (Q3).

A t-test was used to further assess the statistical significance of our findings and
respond to the research questions. The statistical importance of the questions 1, 2, and 3 is
presented in Tables 4–6.

Table 4. t-test results of Q1.

Group A Group B

Mean 8.236 6.581

Variance 1.053 0.368

Observations 74 74

Hypothesized Mean Difference 0

df 239

t Stat 16.900

P (T ≤ t) one-tail <0.001

t Critical one-tail 1.651

P (T ≤ t) two-tail <0.001

t Critical two-tail 1.970
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Table 5. t-test results of Q2.

Group A Group B

Mean 8.899 6.500

Variance 0.772 0.415

Observations 74 74

Hypothesized Mean Difference 0

df 270

t Stat 26.785

P (T ≤ t) one-tail <0.001

t Critical one-tail 1.651

P (T ≤ t) two-tail <0.001

t Critical two-tail 1.969

Table 6. t-test results of Q3.

Group A Group B

Mean 9.047 6.378

Variance 1.025 0.618

Observations 74 74

Hypothesized Mean Difference 0

df 277

t Stat 25.333

P (T ≤ t) one-tail <0.001

t Critical one-tail 1.650

P (T ≤ t) two-tail <0.001

t Critical two-tail 1.969

First, we have two conditions, an experimental condition in which students receive
the AR-assisted approach and a control condition in which they do not. We compared
performance in the two conditions in order to define whether the difference between the
two conditions was clear enough or not. In these circumstances, the t-test was used to
decide whether the difference between the two conditions was real or whether it was due
merely to chance fluctuations. For the t-test, we were interested in the p-value, and we used
the t-value as an intermediate step to calculate the p-value. We state the two conditions,
namely null and alternative:

• Condition 0 (null hypothesis): µ1 = µ2 (group A and group B means are equal).
• Condition 1: µ1 6= µ2 (group A and group means are not equal).

The 74 participants who used PARSAT (M = 8.2, SD = 1.1) compared to the 74 partici-
pants in the control group (M = 6.6, SD = 0.4) demonstrated significantly better peak flow
scores in the first question, t(239) = 16.9, p < 0.05, as the significance level of the alpha value
is a = 0.05 (Table 4).

The 74 participants of the experimental group (M = 8.9, SD = 0.8) compared to the
participants of group B (M = 6.5, SD = 0.4) also demonstrated significantly better peak flow
scores in the second question, t(270) = 26.8, p < 0.05 (Table 5).

Finally, the participants of group A (M = 9.0, SD = 1.0) compared to the participants of
group B (M = 6.4, SD = 0.6) showed much higher peak flow scores in the third question,
t(277) = 25.3, p < 0.05 (Table 6).
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This means we have sufficient evidence to say that the means of the two groups are,
for all three questions, significantly different, so we reject the null hypothesis.

It is deduced from the analysis of the t-test findings (Tables 4–6) that the means of
the two groups differ statistically significantly regarding the aforementioned questions.
More specifically, the provided system outperforms its traditional equivalent in all three
terms of the volume of the activities, the complexity of the activities, and the reliability of
the activities depending on students’ knowledge levels. These outcomes were anticipated,
given that PARSAT uses intelligent techniques to tailor the learning activities to the needs
of the students. As a result, a learning environment focused on the needs of the students is
provided, and knowledge acquisition and learning outcomes are further enhanced.

5.3. Evaluation of the Learning Outcome

In order to compare the learning outcome between the two groups and assess the
improvement in their knowledge, we used the pre-test–post-test non-equivalent groups
design [53]. In particular, the same pre-test was delivered to each student of group A
and group B to evaluate their prior domain knowledge. Both groups of students took the
same post-test at the end of the semester, and a paired t-test was used to compare the
differences and examine whether the students of the experimental group improve more
than the students in the control group. Table 7 presents the results of the t-test evaluation.

Table 7. t-test results of pre-test and post-test.

Group A Group B

Pre-test Mean 4.973 5.014

Post-test Mean 6.027 5.493

Difference 1.054 0.480

Standard Deviation 0.932 0.837

Pearson Correlation 0.828 0.892

t Stat −13.765 −6.974

p-value <0.001 <0.001

The analysis of the results of group A (presented in Table 8) from the pre-test (M = 4.9,
SD = 0.9) and post-test (M = 6.0, SD = 0.9) indicate that the use of the proposed personalized
AR application resulted in an improvement in students’ spatial skills, t(147) = −13.8,
p < 0.05. Furthermore, the Pearson correlation value of r = 0.828 suggests a very strong
positive correlation between the pre-test and the post-test scores [54].

The analysis of the results of group B (presented in Table 9) from the pre-test (M = 5.0,
SD = 0.8) and post-test (M = 5.5, SD = 0.8) indicate that the traditional educational method
also resulted in an improvement in students’ spatial skills, t(147) = −6.9, p < 0.05. The cor-
relation between the scores of group B is 0.892, suggesting another very strong correlation.

However, the control group achieved an improvement to a lesser extent than in the
experimental group, demonstrating the benefits that our proposed approach brought to
students’ learning.

From the analysis of the literature review, it is shown that the current AR applications
in engineering education focused only on hardware, not emphasizing intelligent techniques.
This study shows a new path toward adaptivity through fuzzification. Furthermore, we create
a roadmap to deliver learning activities to students appropriate for their knowledge level.
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Table 8. t-test: Paired two samples for means of group A.

Pre-test Post-test

Mean 4.973 6.027

Variance 2.054 2.748

Observations 74 74

Pearson Correlation 0.828

Hypothesized Mean Difference 0

df 147

t Stat −13.765

P (T ≤ t) one-tail <0.001

t Critical one-tail 1.655

P (T ≤ t) two-tail <0.001

t Critical two-tail 1.976

Table 9. t-test: Paired two samples for means of group B.

Pre-test Post-test

Mean 5.014 5.493

Variance 2.068 3.272

Observations 74 74

Pearson Correlation 0.892

Hypothesized Mean Difference 0

df 147

t Stat −6.974

P (T < = t) one-tail <0.001

t Critical one-tail 1.655

P (T < = t) two-tail <0.001

t Critical two-tail 1.976

6. Conclusions and Future Work
6.1. Conclusions

Our research paper presents a novel instructional strategy by providing students with
adaptive learning activities according to the learning theory of the Structure of the Observed
Learning Outcomes model. This is achieved by using fuzzy weight-based decision making
that defines the students’ knowledge level based on their scores in technical drawing’s
domain concepts. As a result, students receive different learning activities based on their
level of knowledge.

Regarding the evaluation results, they show high levels of student satisfaction and
improvement in their learning outcomes. Specifically, the pre-test and post-test evalua-
tion showed a significant improvement in student outcomes, confirming the pedagogical
affordability of the proposed learning method. Lastly, the comparison of the proposed
system with the traditional method showed that it outperforms the second one in terms of
enhancing the effectiveness of adopted adaptivity and using rule-based training, as well as
confirming the efficacy of the teaching method employed in learning activities.

The goal of the current study is to provide students with relevant learning activities
while primarily determining their adaptability based on their knowledge level. The in-
troduction of additional fuzzy weights indicating other students’ characteristics, such as
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categories of mistakes, etc., for increasing the system adaption with the intention to further
improve the learning results is a future inquiry resulting from this work.

6.2. Theoretical Contributions

This study contributes by exploring fuzzy logic as a tool for assessing students’ knowl-
edge level through AR technology. In our proposed model, we incorporated five fuzzy sets
representing the students’ current level of understanding, providing a meaningful addition
to the standard training method of engineering students’ spatial skills.

In doing so, it expands previous studies that have not researched this field in the past.
Additionally, our approach tested the students’ group performance and showed that our
model is indeed an upgrade in engineering training, helping them to interact better.

6.3. Implications in Educational Practice

The results of our study showed that using a mobile AR application personalized
to the learner’s knowledge level increased the learning motivation of the students. It is
essential for engineers of any field to update their knowledge and train their spatial skills
to stay competitive in their field.

The personalized AR spatial ability training application makes this process more
interesting and exciting, and as such, the educational practice becomes more effective.
Students are more motivated and more engaged in their training, regardless of their
starting level of achievement.

6.4. Limitations

The research population involved undergraduate university engineering students. We
did not extend the study to non-engineering students and/or learners of a higher age or
postgraduate level.

6.5. Future Work

The potential for MR, VR, and AR to transform how we interact with the digital
environment is high. AR applications seem to be heading toward more practical uses,
especially in terms of education. We tested a mobile AR application to train engineering
students’ spatial skills. However, in the future, we could explore the impact of VR in
delivering spatial skills training. Additionally, a future research field could be the use
of MR platforms for practicing the ability to manipulate and interact with an object and
improving visualizations skills.
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