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Abstract: In IoT-based environments, smart services can be provided to users under various envi-
ronments, such as smart homes, smart factories, smart cities, smart transportation, and healthcare,
by utilizing sensing devices. Nevertheless, a series of security problems may arise because of the
nature of the wireless channel in the Wireless Sensor Network (WSN) for utilizing IoT services.
Authentication and key agreements are essential elements for providing secure services in WSNs.
Accordingly, two-factor and three-factor-based authentication protocol research is being actively
conducted. However, IoT service users can be vulnerable to ID/password pair guessing attacks by
setting easy-to-remember identities and passwords. In addition, sensors and sensing devices de-
ployed in IoT environments are vulnerable to capture attacks. To address this issue, in this paper, we
analyze the protocols of Chunka et al., Amintoosi et al., and Hajian et al. and describe their security
vulnerabilities. Moreover, this paper introduces PUF and honey list techniques with three-factor
authentication to design protocols resistant to ID/password pair guessing, brute-force, and capture
attacks. Accordingly, we introduce PUFTAP-IoT, which can provide secure services in the IoT envi-
ronment. To prove the security of PUFTAP-IoT, we perform formal analyses through Burrows Abadi
Needham (BAN) logic, Real-Or-Random (ROR) model, and scyther simulation tools. In addition, we
demonstrate the efficiency of the protocol compared with other authentication protocols in terms of
security, computational cost, and communication cost, showing that it can provide secure services in
IoT environments.

Keywords: IoT; WSN; PUF; biometrics; honey list; authentication; BAN logic; ROR model; scyther

1. Introduction

The rapid development of wireless networks and the Internet of Things (IoT) has
created opportunities to communicate with things over the Internet. Wireless sensor
networks (WSN), a combination of wireless networks and IoT sensors, are garnering
increasing attention worldwide as an exciting new paradigm of IoT in various fields, such
as smart home, smart city, smart transportation, and smart agriculture [1–3]. In this IoT-
based environment, data are collected through various sensors and sensing devices, and
users can access them through a gateway node. Through WSN, users can use convenient
services in real-time through IoT devices in an IoT-based environment. For example, with
their IoT devices, users can remotely operate the lights in their house or sprinklers in
their garden.

However, because this convenient service is provided through a wireless network, it is
vulnerable to illegal access by malicious attackers [4,5]. This can harm the convenience of
IoT, such as invasions of user privacy and eavesdropping on privacy. Malicious attackers
can also be insiders or outsiders seeking to breach network security and falsify data integrity.
Moreover, problems of node and link failures (i.e., cascading failures) can occur due to the
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limitations of resources and energy of IoT equipment [6,7]. To this end, the development
of lightweight protocols that provide secure communication between nodes and that can
overcome resource and energy limitations is ongoing.

Key agreement and authentication protocols are an integral part of addressing security
vulnerabilities in WSN and IoT environments and are being studied continuously. Two-
factor-based authentication protocols consisting of passwords and smart cards have been
proposed for secure communication in IoT-based environments [8–18]. However, these
two-factor-based authentication protocols are also vulnerable to smart card theft and
guessing attacks, among other attacks. In addition, some researchers have argued that,
in two-factor authentication protocols, an attacker can guess an ID/password pair as
users create easy-to-remember ID/password pair for convenience [19–21]. Therefore, the
researchers argued that attackers can guess an ID/password pair within polynomial time.
Accordingly, to respond to various attacks, including ID/password pair guessing attacks,
three-factor-based authentication protocols have been proposed, involving user’s biometric
information [22–28].

Although the three-factor-based authentication protocol is more secure than the two-
factor-based authentication protocol, some researchers have found that the three-factor
authentication protocols proposed in WSN and IoT environments are also not secure
against multiple attacks. Although three-factor-based authentication protocols can defend
against ID/password pair guessing attacks, they are still vulnerable to attacks that can
be performed with values obtained through device capture attacks. Additionally, the
three-factor authentication protocol is still vulnerable to replay, impersonation, and session
key disclosure attacks.

In this paper, we analyze the security of two-factor-based and three-factor-based
authentication protocols to discover their vulnerabilities. Chunka et al.’s protocol [16] is
vulnerable to known session-specific temporary information, ID/password pair guessing,
and impersonation attacks. The protocol of Amintoosi et al. [18] is also vulnerable to
ID/password pair guessing attacks, thus allowing impersonation attacks. The protocol of
Hajian et al. [27] is vulnerable to device physical capture attacks, and through these attacks,
device impersonation and session key disclosure attacks are possible.

This paper introduces the Physical Unclonable Function (PUF) [29], which can
strengthen security against device capture attacks, and honeylist [30,31], which can prevent
off-line guessing and brute-force attacks from solving the vulnerabilities of three-factor-
based authentication protocols. With honey_list, the authentication protocol can be secure,
even if two of three factors of the authentication protocol are leaked. In addition, we config-
ure the authentication protocol with XOR and hash functions for real-time communication
of sensing devices and prevention of system down.

Therefore, this study aims to solve the security vulnerabilities of the two-factor and
three-factor-based WSN authentication protocols [16,18,27]. In addition, we propose
PUFTAP-IoT, a secure protocol for IoT-based environments using the three factors that are
safe against various attacks in the IoT environment.

We adopt two technologies for a secure protocol for sensing devices in the IoT en-
vironment. We also invoke honey_list technology to defend against online-guessing and
brute-force attacks and consider PUF to be safe against takeover attacks of sensors and
sensing devices. The contributions of this paper are as follows:

• We prove the vulnerabilities of protocols by Chunka et al. [16] and Amintoosi et al. [18],
which are two-factor authentication protocols, and Hajian et al. [27], which is a
three-factor authentication protocol.

• PUFTAP-IoT adopts PUF [29] and honey_list [30,31] technology to be safe against
various attacks. In addition, to solve the resource problem of sensors and sensing
devices, only XOR and hash functions excluding elliptic curve cryptography (ECC)
functions are used to lighten the protocol.

• Informal (non-mathematical) analysis and formal analysis are performed to prove
the security of the proposed PUFTAP-IoT. Formal analysis uses the widely adopted
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Burrows Abadi Needham (BAN) logic [32] and Real-Or-Random (ROR) model [33].
We also use the scyther simulation tool [34] to show that PUFTAP-IoT is secure in
networks over public channels.

• We compare PUFTAP-IoT with other authentication protocols in terms of computation
cost, communication cost, and security to analyze its efficiency.

The remainder of this paper is organized as follows: Section 2 reviews two-factor
and three-factor-based authentication protocols in IoT and WSN environments. Section 3
outlines the proposed system model, attacker model, PUF, fuzzy extraction, and honey list.
We analyze the protocols of Zou et al., Amintoosi et al., and Hajian et al. to demonstrate
security vulnerabilities. Section 5 describes PUFTAP-IoT, and the safety of PUFTAP-IoT is
analyzed in Section 6. We also analyze the efficiency of the protocol in Section 7. Finally,
Section 8 concludes the paper.

2. Related Works

Lamport [35] first proposed a password-based authentication protocol in 1981. Since
then, many related studies on password-based, two-factor authentication protocols have
been proposed in various network environments to protect users’ privacy. In 2009, Das [8]
proposed a two-factor authentication concept using a smart card with password in an
IoT-based WSN environment. Das argued that the proposed scheme has a security ad-
vantage in that it uses only a hash function to reduce communication overhead and resist
various attacks. However, He et al. [9] proved [8]’s authentication protocol is vulnerable to
insider attacks along with impersonation attacks in 2010. In addition, He et al. presented
an improved protocol as a countermeasure against these attacks. Unfortunately, it was
found by Kumar and Lee [10] that He et al.’s protocol also does not guarantee mutual
authentication and cannot generate a session key. Turkanović et al. proposed a new authen-
tication and key agreement method in the WSN environment, focusing on heterogeneous
IoT. The proposed scheme allows users to negotiate session keys securely with sensor nodes
using the authentication protocol. However, Amin and Biswas [12] demonstrated that the
protocol of Turkanović et al. is not secure against impersonation, identity guessing, and
password guessing attacks. Moreover, they showed that their scheme has an inefficient
authentication phase. Amin and Biswas proposed a protocol that compensated for these
problems. However, Wu et al. [13] found that the protocol of Amin and Biswas are also
vulnerable to sensor capture and guessing and spoofing attacks. Shuai et al. [14] suggested
an authentication protocol for smart homes in 2019. In their protocol, they use Elliptic
Curve Cryptography (ECC) for efficient and anonymous authentication. They demonstrate
that their protocol is secure against a variety of attacks, including desynchronization and
verification table stolen attacks. However, Zou et al. [15] proved Shuai et al.’s protocol is
insecure against perfect forward secrecy, node capture attack, and impersonation attacks.
Moreover, they proposed more secure user authentication schemes for smart homes. In
2021, Chunka et al. [16] point out the problems with the authentication protocol for WSN
environment proposed by Kalra and Sood [17]. They pointed out that the protocol pro-
posed by Kalra and Sood is vulnerable to sensor node capture attacks and cannot provide
perfect forward secrecy. In 2022, Amintoosi et al. [18] proposed a two-authentication-based
authentication and key agreement protocol to ensure the privacy and security of patients’
health-related data. They claim that their protocol is safe from various attacks and is a
lightweight protocol using only hash and XOR functions.

According to [19,20], people tend to choose ID/password pairs that are easy to re-
member. As a result, ID and password pairs are chosen from a small dictionary space.
This allows an attacker to guess a user’s ID and password in polynomial time [21]. Many
researchers have proposed a secure three-factor authentication scheme to prevent simulta-
neous ID and password pair guessing attacks.

In 2016, Amin et al. [22] proposed a three-factor authentication protocol for WSN.
They designed an anonymity-preserving authentication scheme for WSN and proved
that their proposed protocol is secure against multiple attacks and is more efficient than
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other protocols. However, Jiang et al. [23] showed that the protocol of Amin et al. is
insecure against replay attacks and does not provide complete forward secrecy. To solve
this security flaw, Jiang et al. presented an authentication protocol based on the Rabin
cryptosystem for WSN. However, Ostad-Sharif et al. [24] demonstrate that the Jiang
et al. protocol also does not provide perfect forward secrecy. In 2019, Mo et al. [25]
proposed a secure three-factor-based key agreement and user authentication protocol for
WSN. They presented a protocol based on ECC. They demonstrated that their protocol
is able to provide security against untraceability and user anonymity. However, Yu and
Park [26] pointed out that the protocol of Mo et al. is not safe for impersonation, replay,
and session key disclosure attacks. Unfortunately, Hajian et al. [27] proved that the
protocol proposed by Ostad-Sharif et al. [24] and Yu et al. [26] is also vulnerable to some
attacks. To prevent security problems, Hajian et al. proposed a lightweight authentication
protocol for IoT environments. They argued that the proposed protocol can defend against
multiple attacks. In 2022, Amintoosi et al. [18] pointed out the security vulnerabilities of
the authentication protocol for e-health proposed by Aghili et al. [28]. They proposed a
lightweight authentication protocol for smart healthcare services that solves the security
vulnerabilities of Aghili et al.’s protocol.

However, we prove that some schemes [16,18,27] are vulnerable to security attacks.
We found that Chunka et al. [16] protocol is vulnerable to known session-specific temporary
information, ID/password pair guessing, and impersonation attacks. Additionally, we
prove that Amintoosi et al.’s protocol [18] cannot withstand identity and password guessing
attacks and smart card stolen attacks. Finally, Hajian et al.’s protocol [27] is vulnerable to
device capture and session key disclosure attacks.

3. Preliminaries

This section introduces the PUFTAP-IoT system model and an adversary model for
security analysis of authentication protocols. In addition, we briefly describe PUF, fuzzy
extraction, and honey_list, which are the security technologies adopted in the proposed
IoT-TFBAP.

3.1. The Proposed System Model

The system model of PUFTAP-IoT is shown in Figure 1. PUFTAP-IoT consists of
following three entities:

• User: The user requests communication to the gateway to use the sensing device. Only
registered users can use IoT services by requesting communication to the gateway.

• Sensing device: Sensing devices are smart devices deployed in various IoT envi-
ronments. Examples in Figure 1 include smart agriculture, vehicles, smart doors,
and smart watches. They collect data and provide it to users, and users can use
the data to execute any commands they want. Sensing devices also have limited
computational power.

• Gateway: All service users and sensing devices must be registered with the gate-
way. A gateway is a trusted entity that is responsible for the process and regulates
authentication requests between users and sensing devices.

Figure 1. PUFTAP-IoT’s system model.

Users must first register with the gateway when they want to communicate with a
sensing device. The gateway stores relevant data from users and sensing devices, and
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controls communication between users and sensing devices. PUFTAP-IoT consists of a
registration phase, login and authentication phase, and password and biometrics update
phase. In the registration phase, users and sensing devices are registered with the gateway
through secure channels. During the login and authentication phase, the user, gateway,
and sensing device authenticate each other and generate a session key for communication.
In the future, the user can safely communicate with the sensing device using this session
key. In the password and biometrics update phase, users can update their passwords and
biometrics if desired. To defend against malicious adversaries’ ID/password guessing
attacks and brute-force attacks, the gateway creates and stores honey_list. In addition, the
sensing devices have built-in PUF technology to protect them from physical capture attacks.

3.2. The Adversary Model

We adopt the “Dolev-Yao (DY) adversary model” [36] to analyze the proposed proto-
cols [15,18,27] and the IoT-TFBAP. The DY adversary model is a widely adopted model to
analyze the security of wireless networks and assumes the following:

• The adversary can learn messages by intercepting messages delivered over insecure,
public wireless channels. Through the learned message, the adversary can create a
valid message and insert and modify it.

• The adversary can obtain stored values by stealing a valid user’s smart card and
sensing device [37].

• The adversary can guess the user’s ID/password pair in polynomial time [21].
• The adversary can perform guessing, impersonation, known session-specific tempo-

rary information, and session key disclosure attacks using the acquired values.

3.3. Physical Unclonable Function

We adopt PUF technology to securely store secret parameters in the sensing device.
PUF can be described as “the representation of the unique, non-replicable, instance-specific
functionality of a physical entity” [29]. The randomness and uncertainty in integrated
circuit fabrication is less likely to create duplicates, making PUFs increasingly visible in
the security realm. PUF receives the challenge C and obtains its response R through the
physical properties of C and the integrated chip (IC). Since both the accepted C and the
generated R are strings of bits, PUF is expressed as R = PUF(C) and can be considered
as a one-way function. In an ideal situation, a one-to-one correspondence exists between
a challenge–response pair and a PUF, where if a challenge is assigned to the same PUF
multiple times, the generated response is the same, and when the same challenge is given to
different PUFs, the response obtained is different. PUF also has the following characteristics:

• It is impossible to clone PUF to create the same device [38].
• Any attempt to change the device containing the PUF will change the PUF’s behavior

and destroy the PUF [39].
• In real-world manufacturing circuits, the difference between mapping input and

output functions is fixed and unpredictable. In this respect, the hardware is equivalent
to a one-way function [40].

However, due to environmental and circuit noise, PUFs always output varying re-
sponses with some margin of error in Cs. To solve this problem, PUF is being applied with
fuzzy extractor technology [41].

3.4. Fuzzy Extraction

To solve the problem of noisy PUF, we introduce fuzzy extraction technology [41].
Moreover, we can use fuzzy extraction to solve the noise that can occur in the biometric
input. The fuzzy extractor consists of the GEN function and the REP function.

The GEN function is for generating key information corresponding to the entered
value. Entering the data Di into the GEN function outputs the secret key data Ri, which
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is a uniform random string. The GEN function also outputs the string Pi, which helps to
remove the noise and recover the key value.

The REP function restores the secret key Ri. Enter the data Di and the helper string Pi
into the REP function. At this time, Di may generate noise. For this, Pi helps to output the
correct Ri. To recover the same Ri, the metric space distance between Di and D

′
i must be

within the specified tolerance.

3.5. Honey List

Assume that attackers attempt to obtain useful data by performing brute-force and
online-guessing attacks. In this case, honey_list prevents the algorithm “Honey Encryption
(HE)” [30,31] from attempting to obtain data by guessing the password. If an adversary
attempts attacks with the wrong password, HE uses an algorithm to generate fake valid
messages, “Honey words”. [42] has more details on the honey word generation algorithm.

Various methods have been used to resist brute-force or online-guessing attacks using
honey_list at the login and authentication phase. Out of all of them, PUFTAP-IoT calls
honey_list by adopting the following method. If an attacker tries to login using the guessing
password, the login proceeds as usual, but the gateway monitors the attacker’s login source
for intrusion detection. The gateway also kills the session “when the number of entries in
honey_list exceeds a predefined threshold” and notifies the user to update their password.

4. Cryptanalysis of Authentication Protocols

This section shows the analysis of various authentication protocols using sensor or
sensing devices in an IoT environment. A review of each protocol is omitted, and for
convenience of explanation, S (sensor) of Chunka et al. and Amintoosi et al. and S (sensing
device) of Hajian et al. are all denoted as SD (sensing device). The rest of the notation is the
same as that of each authentication protocol. Table 1 shows the notations used in this paper.

Table 1. Notation.

Notations Meanings

Ui i-th user
SDj j-th sensing device
GW Gateway node
SC Smartcard
IDi Identity of Ui

SIDj Identity of SDj
PWi Password of Ui

HPWi The hidden password of i-th user
Bi Biometrics of Ui

PUF The Physical Unclonable Function
Cj, Rj The challenge/response pair

GEN, REP Generation and reproduction algorithm of fuzzy extractor
Kgw Secret key of GW

Rx, Nx Random nonces
Tx Timestamps

HIDi, PSIDj Pseudo-identity of Ui and SDj
THIDi Temporary user identity Ui

Skey Session key
|| Data concatenation operator
⊕ Bitwise exclusive-or operator

h(∗) Collision-resistant one-way hash function

4.1. Cryptanalysis of Chunka et al.’s Protocol

We prove that Chunka et al.’s protocol [16] is not safe against known session-specific
temporary information attacks and does not provide perfect forward secrecy.
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4.1.1. Known Session-Specific Temporary Information Attacks

Suppose that the adversary Adv obtains a session-specific temporary information r1.
Then, Adv is able to compute the legitimate session key. The detailed steps are as follows:

Step 1: Adv computes h(αi ⊕ k) = r1 ⊕MIDi, since MIDi is public parameter. Then,
Adv can obtain Pi, where Pi is obtained through an insecure channel.

Step 2: Adv computes h(Pi||h(αi ⊕ k)||r1) = Ej ⊕ h(r1 ⊕ r2 ⊕ r3) via Ej, which is
transmitted to the public channel.

Step 3: Finally, Adv can compute the legitimate session key SK = h(r1 ⊕ r2 ⊕
r3)||h(Pi||h(αi ⊕ k)||r1).

4.1.2. Off-Line Guessing Attacks

According to the adversary model in Section 3.2, the adversary Adv can guess the
ID/PW pair in polynomial time. The detailed steps are as follows:

Step 1: Adv is able to obtain values {Xi, Zi, Qi, Ri, h(·)} stored on the smart card via
smart card stolen attacks. Then, Adv picks IDa/PWa and computes ra = Xi ⊕ h(IDa||PWa).

Step 2: Adv calculates Zia = h(IDa||PWa||ra) and checks if Zia = Zi.
Step 3: If they are the same, Adv has successfully guessed the correct ID/password

pair for the user. Otherwise, Adv repeats Steps 1 and 2.

4.1.3. Impersonation Attacks

After off-line guessing attacks, Adv can impersonate the valid user. The detailed steps
are as follows.

Step 1: Through guessing attacks, Adv computes h(IDi||r). Then, Adv can compute
h(αi) = Qi ⊕ h(IDi||r) and h(αi ⊕ k) = Ri ⊕ h(IDi||r) because Ri and Qi are values stored
in the smart card.

Step 2: Then, Adv generates a random nonce r1a and computes Mida = h(αi ⊕ k)⊕ ra,
Na = h(h(αi ⊕ k)||h(αi)||ra).

Step 3: Finally, Adv sends the message {Pi, MIDi, Ni}. Thus, Adv can impersonate
the legitimate user.

4.2. Cryptanalysis of Amintoosi et al.’s Protocol

This section shows that Amintoosi et al.’s protocol [18] is not secure to smart card
stolen, off-line guessing, and impersonation attacks.

4.2.1. Off-line Guessing Attacks

The adversary Adv can obtain the sensitive information stored in the smart card. Then,
Adv can guess the ID/password pair in polynomial time. The detailed steps are as follows:

Step 1: Adv can obtain values {bi, Ai, Bi, ai} stored on the smart card. Then, Adv picks
IDa/PWa and computes pa = h(IDa||PWa||ai), Na = Aa ⊕ pa, and bIDa = h(bi||IDa).

Step 2: Adv calculates Ma = h(bi||IDa||bIDa) and Ba = h(Ma||IDa||bIDa). Then,
Adv checks if Ba = Bi.

Step 3: If they are the same, Adv has successfully guessed the correct ID/password
pair for the user. Otherwise, Adv repeats Steps 1 and 2.

4.2.2. Impersonation Attacks

After guessing the legitimate user’s ID/password pair, the Adv computes {M1i, M2i,
T1, bi, M2i} can be masquerading. The detailed steps are as following.

Step 1: After off-line guessing attacks, Adv obtains valid values Mi and Ni. Then,
Adv can compute di = M1i ⊕ h(Mi||Ni||T1) to obtain di, where M1i is transmitted to the
public channel.

Step 2: Then, Adv also can compute M2i = h(Mi||Ni||di).
Step 3: Therefore, Adv can compute M1i, T1, bi, and M2i. This means that Adv can

impersonate the valid user. So, we can say that Amintoosi et al.’s protocol is not secure
against impersonation attacks.
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4.3. Cryptanalysis of Hajian et al.’s Protocol

In this section, we show that Hajian et al.’s protocol [27] is vulnerable to device capture
attacks, device impersonation attacks, and session key disclosure attacks.

4.3.1. Device Impersonation Attacks

The adversary Adv can obtain the {SIDj, xj, f j} stored in SD through a device capture
attack. After that, Adv can impersonate as a valid SD by generating a message using the
obtained values. After the device capture attacks, the detailed steps of the Adv’s device
impersonation attack are as follows:

Step 1: Adv obtains the values {M2, T1} via the message sent to the public channel.
Then, Adv can obtain Kj through computing Kj = h(xj|| f j||T1)⊕M2.

Step 2: Adv can compute the legitimate V2 = h(SIDj||(xj|| ⊕ f j)||Kj||T1). Finally, Adv
can compute the valid response message {M2, V2}. Thus, we can say that Adv can conduct
device impersonation attacks.

4.3.2. Session Key Disclosure Attacks

After Adv conducts device impersonation attacks, Adv obtains xj, f j, and Kj. Adv can
calculate the session key using these values. Therefore, an attacker can perform session key
disclosure attacks, and the detailed steps are as follows:

Step 1: Adv can learn values M1 and M5 through the message sent over the open
channel. Then, Adv can compute M5 ⊕ h(T1|| f j ⊕ xj)⊕M1 = (K

′
i ||TIDnew

i ).
Step 2: Then, Adv can obtain K

′
i and TIDnew

i .
Step 3: Therefore, Adv can compute the session key SKij = h(K

′
i ⊕ Kj||SIDj||TIDnew

i ).
Thus, we can say that Hajian et al.’s protocol is not secure against session key
disclosure attacks.

5. The Proposed PUFTAP-IoT

In this section, we describe the proposed PUFTAP-IoT. In the proposed protocol, we
adopt PUF technology to withstand device capture attacks. Additionally, we also apply
the user’s biometrics and honey_list to prevent online-guessing and brute-force attacks.
Accordingly, our protocol is observed to be secure against various attacks. Finally, we
propose a lightweight protocol using XOR and hash functions to consider the resource
limitations of sensing devices and to prevent system down.

5.1. Registration Phase

In order for a service user to use IoT services through a sensing device in an IoT
environment, first, he/she must register his/her information in the gateway. Moreover,
the sensing device also registers its information in the gateway. The registration phase for
service users and sensing devices is shown in Figure 2, and the detailed registration phase
is described below.
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Figure 2. Registration phase.

5.1.1. Service User Registration Phase

Service users create their own information through ID, password, and biometric
information and register it with the gateway, and the gateway issues a smart card. Here are
the detailed steps:

Step 1: The service user Ui inputs his/her identity ID, password PWi, and imprints
his/her biometrics Bi. Then, Ui generates α and Ru and computes Gen(Bi) = (Ri, Pi),
HIDi = h(IDi||Ri), and HPWi = h(IDi||PWi||Ru||Ri). Ui sends 〈HIDi, HPWi ⊕ α〉 to the
gateway GW through a secure channel.

Step 2: After receiving the registration request message, GW checks the uniqueness of
HIDi. If it has the uniqueness, GW generates a random nonce Rgw and GW computes Ai =
h(HIDi||Kgw||Rgw), Bi = Ai ⊕ (HPWi ⊕ α), and Ci = h(Ai||HIDi). Then, GW generates
the temporary service user’s identity THIDi and stores {(HIDi, THIDi), Rgw, honey_list =
null} in its secure database. GW issues the smart card SC = 〈Bi, Ci, THIDi〉 to Ui via a
secure channel.

Step 3: Ui computes Li = h(IDi||PWi||Ri) ⊕ Ru, B
′
i = Bi ⊕ α = Ai ⊕ HPWi, and

C
′
i = h(Ci||HPWi). Then, Ui deletes Bi and Ci in SC and stores Li, B

′
i , and C

′
i in SC.

5.1.2. Sensing Device Registration Phase

The sensing device SDj utilizes the PUF function for registration and registers its own
information with GW. The detailed registration steps are as follows:

Step 1: SDj picks its identity SIDj and PUF’s challenge Cj. SDj generates a random
nonce Rsd and computes Reqj = SIDj ⊕ h(Rsd), Rj = PUF(Cj), Gen(Rj) = 〈SDRj, SDPj〉,
and HSIDj = h(SIDj||SDRj). After that, SDj transmits 〈Reqj, Rsd, HSIDj, Cj〉 to GW
through a closed channel.



Sensors 2022, 22, 7075 10 of 24

Step 2: GW computes SIDj = Reqj ⊕ h(Rsd) and GW generates a random secret
key RKj. GW also computes PSIDj = h(HSIDj||RKj) and SIj = h(PSIDj||h(Kgw||RKj).
Finally, GW stores {(HSIDj, PSIDj), RKj, Cj} in its database and transmits 〈PSIDj, SIj〉 to
SDj through a closed channels.

Step 3: After receiving the message, SDj stores {SIDj, PSIDj, SIj, SDPj}.

5.2. Login and Authentication Phase

Ui sends an authentication request message to GW after login through his/her smart
card and credential information. After confirming this, GW sends an authentication mes-
sage to the corresponding SDj, and each entity authenticates the response message. When
authentication is completed, Ui, GW, and SDj agree on a session key Skey, and secure
communication can be guaranteed later through Skey. In addition, Ui and GW update
THIDi to THIDinew when authentication and key agreement are successful. The detailed
formula is as follows, and the entire steps are summarized in Figure 3:

Figure 3. Login and authentication phase.

Step 1: The service user Ui inserts SC and inputs IDi, PWi, and Bi. Then, SC computes
Rep(Bi, Pi) = Ri, HIDi = h(IDi||Ri), Ru = Li ⊕ h(IDi||PWi||Ri), HPWi = h(IDi||PWi||
Ru|| Ri), Ai = B

′
i ⊕ HPWi, and C∗i = h(h(Ai||HIDi||HPWi). SC checks Ci = C∗i . If it is

correct, SC generates a random nonce Nu and timestamp T1. After that, SC computes
Msg1 = h(h(Nu||Ai)||Ai||HIDi||PSIDj), V1 = h(Nu||Ai)⊕ h(HIDi||Ai||T1). Ui sends the
message 〈Msg1, V1, T1, THIDi, PSIDj〉 through an open channel.

Step 2: When GW receives the request message, GW checks |T1 − T∗1 | < ∆T. GW
retrieves HIDi corresponding to THIDi and GW computes Ai = h(HIDi||Kgw||Rgw),
h(Nu||Ai) = h(HIDi||Ai||T1)⊕ V1, Msg∗1 = h(h(Nu||Ai)||Ai||HIDi||PSIDj). Then, GW
checks if Msg2 = Msg∗2 . If it is not same, GW inserts A∗i into honey_list. Otherwise,
GW retrieves (Cj, RKj) corresponding to PSIDj. GW generates a random nonce Ng and
timestamp T2 and computes SIj = h(PSIDj||h(Kgw||RKj)), V2 = Cj ⊕ h(PSIDj||SIj), V3 =
h(h(Nu||Ai)||h(Ng||SIj)) ⊕ h(HSIDj||Cj||SIj), and Msg2 = h(h(h(Nu||Ai)||h(Ng||SIj))
||T2|| HSIDj||Cj||SIj). After computing, GW sends 〈Msg2, V2, V3, T2)〉 to SDj via an open
wireless channel.

Step 3: SDj checks |T2 − T∗2 | < ∆T. Then, SDj computes Cj = V2 ⊕ h(PSIDj||SIj),
PUF(Cj) = Rj, Rep(Rj, SDPj) = SDRj, HSIDj = h(SIDj||SDRj), Kgs(= h(h(Nu||Ai)||
h(Ng ||SIj))) = V3 ⊕ h(HSIDj||Cj||SIj), andMsg∗2 = h(KGS||T2||HSIDj||Cj||SIj). Then,
SDj checks Msg2 = Msg∗2 . If it is the same, SDj generates a random nonce Nsd and
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timestamp T3 and SDj computes a session key Skey = h(Nsd||Kgs). SDj also computes
V4 = Skey⊕ h(HSIDj||SIj||Cj||T3) and Msg3 = h(Cj||HSIDj||Skey). After that, SDj sends
the response message 〈Msg3, V4, T3〉 to GW.

Step 4: GW computes the session key Skey = V4 ⊕ (HSIDj||SIj||Cj||T3), and com-
putes Msg∗3 = h(Cj||HSIDj||Skey). Then, GW checks if Msg3 = Msg∗3 . If it verifies,
GW computes THIDinew = h(h(Nu||Ai)||Ng||THIDi), V5 = Skey⊕ h(h(Nu||Ai)||HIDi),
V6 = THIDinew ⊕ h(HIDi||THIDi||h(Nu||Ai)), and Msg4 = h(Skey||THIDinew). After
computing, GW transmits 〈Msg4, V5, V6〉 to Ui through an insecure channel.

Step 5: After receiving the response message, Ui computes a session key Skey = V5 ⊕
h(h(Nu||Ai)||HIDi). Additionally, Ui also computes V6 = THIDinew ⊕ h(HIDi||THIDi||
h(Nu||Ai)) and Msg∗4 = h(Skey||THIDinew). Then, Ui checks if Msg4 = Msg∗4 . If it is
correct, the session key is authentic, and Ui and GW update THIDinew.

5.3. Service User Password and Biometrics Update Phase

Assume that the service user Ui wants to use SC to change to a new password and
biometrics. Specifically, this phase runs locally without any additional connections to GW,
reducing computation and communication overhead. The following steps are the password
and biometrics update process:

Step 1: The service user Ui inputs his/her identity ID and password PWi and im-
prints his/her biometrics Bi. Then, SC computes Rep(Bi, Pi) = Ri, HIDi = h(IDi||Ri),
Ru = Li ⊕ h(IDi||PWi||Ri), HPWi = h(IDi||PWi||Ru|| Ri), Ai = B

′
i ⊕ HPWi,andC∗i =

h(h(Ai||HIDi||HPWi). SC checks Ci = C∗i . If it is valid, SC asks Ui to enter the new
password and biometrics.

Step 2: Ui enters a new password PWinew and new biometrics Binew. SC proceeds to
compute parameters GEN(Binew) = (Rinew, Pinew), HPWinew = h(IDi||PWinew||Ru||Rinew),
Linew = h(IDi||PWinew||Rinew)⊕ Ru, B

′
inew = B

′
i ⊕ HPWi ⊕ HPWinew, and C

′
inew = h(C

′
i ||

HPWi). Then, SC replaces Li, B
′
i , and C

′
i with Linew, B

′
inew, and C

′
inew.

6. Security Analysis

In this section, we analyze the security of PUFTAP-IoT. We first show that the protocol
is safe against various attacks through informal analysis. In addition, we prove that mutual
authentication and session key agreement of the protocol can be safely achieved through
the universally used BAN logic and ROR model. Finally, we demonstrate the security of
PUFTAP-IoT on a wireless network using the scyther simulation tool.

6.1. Informal Security Analysis

Here, we perform an informal (non-mathematical) security analysis to show that
PUFTAP-IoT is safe against various attacks and also provides various security features.

6.1.1. Offline and Online-Guessing Attacks

Assume that the adversary Adv obtains the Ui’s SC and attempts an offline-guessing
attack using parameters {Li, B

′
i , C

′
i , THIDi} in SC. However, since Adv is the value that Ri

should be calculated as, the biometric of Ui, Ru = Li ⊕ h(IDi||PWi||Ri) could not be calcu-
lated. Moreover, Adv tries an online-guessing attack for obtaining Ui’s sensitive information.
Unfortunately, the attacker does not know if the correct ID and password were guessed be-
cause of the honey_list stored on the gateway system. Moreover, PUFTAP-IoT is safe from
online-guessing attacks because the session is terminated when the threshold of honey_list
is exceeded. Therefore, PUFTAP-IoT is safe against offline- and online-guessing attacks.

6.1.2. Service User Anonymity

If Adv steals Ui’s SC and obtains values stored in SC, Adv tries to obtain Ui’s real
identity, pseudo-identity or temporary identity. However, Adv cannot obtain the ID of
Ui and HIDi because HIDi is masked by the hash function and Ri. Although THIDi is
transmitted through the public channel, THIDinew is updated by GW when authentication
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and key agreement are successful. In addition, THIDinew is masked with Nu and Ng,
and these values change every session. Therefore, PUFTAP-IoT can safely guarantee the
anonymity of service users.

6.1.3. Impersonation Attack

In order for Adv to disguise Ui, GW, and SDj, Adv must be able to compute the
messages sent to the public channel. Messages sent from PUFTAP-IoT to public channels
change per session due to random values Nu, Ns, and Nsd and timestamps. In addition,
THIDi is also updated to THIDinew when the authentication is successful, so Adv cannot
calculate the correct message. Therefore, PUFTAP-IoT is resistant to impersonation attacks.

6.1.4. Sensing Device Physical Capture Attack

When Adv performs a physical capture attack on SDj, Adv can obtain {SIDj, PSIDj, SIj,
SDPj} stored in SDj. However, Adv cannot calculate the correct session key through
these parameters. In order for Adv to calculate the session key, Kgs(= h(h(Nu||Ai)||h(Ng
||SIj))) = V3⊕ h(HSIDj||Cj||SIj) must be calculated. However, since Adv cannot obtain Rj,
Adv cannot compute SDRj. Therefore, Adv is not able to compute HSIDj = h(SIDj||SDRj).
This is because Rj is a value created by the PUF function, and the PUF is a function that is
a physically unclonable circuit and cannot be duplicated. Therefore, PUFTAP-IoT is safe
against sensing device physical capture attacks.

6.1.5. Replay and Man-in-the-Middle Attack

We assume that Adv obtains messages transmitted over a public channel and informa-
tion of Ui’s SC and SDj. However, Adv cannot compute Ui’s valid message as mentioned
in Section 6.1.3. Additionally, Adv also cannot generate SDj’s valid messages according to
Section 6.1.4. Additionally, every message changes with Nu, Ng, andNsd and timestamps
every session. Therefore, we can say that PUFTAP-IoT is secure against replay and man-in-
the-middle attacks.

6.1.6. Stolen Verifier Attack

Suppose Adv obtains the GW verification tables {HIDi, THIDi, Rgw, honey_list =
null} and {HSIDj, PSIDj, RKj, Cj} to compute the session key Skey or perform imper-
sonation attacks. However, Adv cannot compute Ai = h(HIDi||Kgw||Rgw) and SIj =
h(PSIDj||h(Kgw||RKj) without GW’s secret key Kgw. Furthermore, due to the nature of the
PUF function, Adv cannot compute Rj = PUF(Cj). Therefore, Adv cannot perform session
key and impersonation attacks. Accordingly, we can say that PUFTAP-IoT is resistant to
stolen verifier attacks.

6.1.7. Perfect Forward Secrecy

Assuming that GW’s secret key Kgw, is leaked to Adv, Adv can try to calculate Skey
through Kgw. However, since Ai and SIj are masked with Kgw as well as Rgw and RKj
which are secret keys generated for each entity, Adv cannot compute Ai and SIj. Therefore,
since Adv cannot calculate valid Skey, PUFTAP-IoT can guarantee perfect forward secrecy.

6.1.8. Session-Specific Random Number Leakage Attack

Assume that Nu, Ng, andNsd, which are random nonces generated in the session, were
leaked to Adv. With these values, Adv will try to compute Skey. However, Adv cannot
compute the session key Skey = h(Nsd||h(h(Nu||Ai)||h(Ng||SIj))). To calculate a valid
Skey, Ai and SIj must be calculated, but as mentioned in the Sections above, Ai and SIj
cannot be calculated by Adv. Therefore, PUFTAP-IoT is safe against session-specific random
number leakage attacks.
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6.1.9. Session Key Disclosure Attack

Adv wants to compute the Skey for obtaining sensitive information. However, as
discussed in Sections 6.1.6–6.1.8, Adv cannot compute the valid Skey because of the compu-
tationally infeasible problem. Thus, PUFTAP-IoT prevents session key disclosure attacks.

6.1.10. Mutual Authentication

In PUFTAP-IoT, all entities authenticate each other by verifying messages containing
Msg1, Msg2, Msg3, and Msg4. Moreover, these messages are changed with random num-
bers and current timestamps. After all entities authenticate each other, they compute the
same Skey. Thus, PUFTAP-IoT guarantees mutual authentication.

6.2. BAN Logic

For proving that PUFTAP-IoT is able to provide secure authentication, we conduct
BAN logic [32]. The notations used in BAN logic are shown in Table 2, and the five rules
used are as follows [43–45]:

1. Jurisdiction rule:
χ |≡ ω | =⇒ ε, χ |≡ ω | ≡ ε

χ
∣∣∣ ≡ ε

2. Message meaning rule:

χ
∣∣∣ ≡ χ

K↔ ω, χ C {ε}K

χ |≡ B | ∼ ε

3. Nonce verification rule:
χ |≡ #(ε), χ | ≡ ω

∣∣∣ ∼ ε

χ |≡ ω | ≡ ε

4. Belief rule:
χ
∣∣∣ ≡ (ε, F)

χ
∣∣∣ ≡ ε

5. Freshness rule:
χ
∣∣∣ ≡ #(ε)

χ
∣∣∣ ≡ #(ε, F)

Table 2. The basic notations of BAN logic.

Notations Description

Skey The session key in PUFTAP-IoT
#ε The statement S is fresh
χ| ≡ ε χ believes the statement ε
χ C ε χ sees the statement ε
χ| ∼ ε χ once said ε
< ε >F ε is combined with formula F
{ε}Key Encrypt ε with Key
χ⇒ ε χ controls ε

χ
Key↔ ω χ and ω shard and use Key for communication

To implement BAN logic, we describe logical rules, goals, assumptions, and ideal
forms, thereby proving that PUFTAP-IoT provides secure mutual authentication.
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6.2.1. Goals

In order to prove that secure mutual authentication is achieved, the following goals
must be achieved:

Goal 1: Ui| ≡ (Ui
Skey←→ GW)

Goal 2: Ui| ≡ GW| ≡ (Ui
Skey←→ GW)

Goal 3: GW| ≡ (Ui
Skey←→ GW)

Goal 4: GW| ≡ Ui| ≡ (Ui
Skey←→ GW)

Goal 5: SDj| ≡ (SDj
Skey←→ GW)

Goal 6: SDj| ≡ GW| ≡ (SDj
Skey←→ GW)

Goal 7: GW| ≡ (SDj
Skey←→ GW)

Goal 8: GW| ≡ SDj| ≡ (SDj
Skey←→ GW)

6.2.2. Idealized Forms

The idealized forms are:

M1: Ui → GW : {h(Nu||Ai)}HIDi

M2: GW → SDj : {h(h(Nu||Ai)||h(Ng||SIj))}SIj

M3: SDj → GW : {h(Nsd||Kgs)}SIj

M4: GW → Ui : {h(Nsd||Kgs)}HIDi

6.2.3. Assumptions

The following assumptions are generated for the initial state of PUFTAP-IoT to achieve
the BAN logic proof:

A1: GW| ≡ Ui
HIDi←→ GW

A2: GW| ≡ #(Nu)

A3: SDj| ≡ GW
SIj←→ SDj

A4: SDj| ≡ #(Ng)

A5: GW| ≡ GW
SIj←→ SDj

A6: GW| ≡ #(Nsd)

A7: Ui| ≡ Ui
HIDi←→ GW

A8: Ui| ≡ #(Ng)

A9: Ui| ≡ GW| ⇒ (Ui
Skey←→ GW)

A10: GW| ≡ Ui| ⇒ (Ui
Skey←→ GW)

A11: SDj| ≡ GW| ⇒ (SDj
Skey←→ GW)

A12: GW| ≡ SDj| ⇒ (SDj
Skey←→ GW)
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6.2.4. Proof

The main proof using the rules and assumptions of BAN logic is:

Step 1: S1 can be obtained from M1.

S1 : GW / {h(Nu||Ai)}HIDi

Step 2: S2 can be obtained by applying the MMR with A1.

S2 : GW| ≡ Ui| ∼ {h(Nu||Ai)}HIDi

Step 3: S3 can be gained from the FR with S2 and A2.

S3 : GW| ≡ #(h(Nu||Ai))

Step 4: S4 can be acquired by applying the NVR with S2 and S3.

S4 : GW| ≡ Ui| ≡ (h(Nu||Ai))

Step 5: S5 can be obtained from M2.

S5 : SDj / {h(h(Nu||Ai)||h(Ng||SIj))}SIj

Step 6: S6 can be gained from MMR with S5 and A3.

S6 : SDj| ≡ GW| ∼ {h(h(Nu||Ai)||h(Ng||SIj))}SIj

Step 7: S7 can be obtained by applying FR with S6 and A4.

S7 : SDj| ≡ #(h(h(Nu||Ai)||h(Ng||SIj)))

Step 8: S8 can be obtained from NVR with S6 and S7.

S8 : SDj| ≡ GW| ≡ (h(h(Nu||Ai)||h(Ng||SIj)))

Step 9: S9 can be obtained from M3.

S9 : GW / {h(Nsd||Kgs)}SIj

Step 10: S10 can be gained from MMR with S9 and A5.

S10 : GW| ≡ SDj| ∼ {h(Nsd||Kgs)}SIj

Step 11: S11 can be obtained by applying FR with S10 and A6.

S11 : GW| ≡ #(h(Nsd||Kgs))

Step 12: S12 can be obtained from NVR with S10 and S11.

S12 : GW| ≡ SDj| ≡ (h(Nsd||Kgs))

Step 13: S13 can be obtained from M4.

S13 : Ui / {h(Nsd||Kgs)}HIDi
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Step 14: S14 can be obtained from MMR with S13 and A7.

S14 : Ui| ≡ GW| ∼ {h(Nsd||Kgs)}HIDi

Step 15: S15 can be obtained from FR with S14 and A8, since Kgs = h(h(Nu||Ai)||h(Ng||SIj)).

S15 : Ui| ≡ #(h(Nsd||Kgs))

Step 16: S16 can be obtained from NVR with S14 and S15.

S16 : Ui| ≡ GW| ≡ (h(Nsd||Kgs))

Step 17: S17 and S18 can be obtained from S8 and S12 since Skey = h(Nsd||Kgs).

S17 : SDj| ≡ GW| ≡ (SDj
Skey←→ GW) (Goal 6)

S18 : GW| ≡ SDj| ≡ (SDj
Skey←→ GW) (Goal 8)

Step 18: S19 and S20 can be obtained by applying JR from S17, S18, A11, and A12.

S19 : SDj| ≡ (SDj
Skey←→ GW) (Goal 5)

S20 : GW| ≡ (SDj
Skey←→ GW) (Goal 7)

Step 19: S21 and S22 can be obtained from S4 and S16 since Skey = h(Nsd||Kgs).

S21 : Ui| ≡ GW| ≡ (Ui
Skey←→ GW) (Goal 2)

S22 : GW| ≡ Ui| ≡ (Ui
Skey←→ GW) (Goal 4)

Step 20: S23 and S24 can be obtained by applying JR from S21, S22, A9, and A10.

S23 : Ui| ≡ (Ui
Skey←→ GW) (Goal 1)

S24 : GW| ≡ (Ui
Skey←→ GW) (Goal 3)

Therefore, we prove that PUFTAP-IoT can satisfy all goals of BAN logic. Accordingly,
it can be said that PUFTAP-IoT can guarantee secure mutual authentication.

6.3. ROR

We use the ROR model [33] to describe the semantic security of PUFTAP-IoT. We
demonstrate that session key security can be guaranteed through the ROR model [46–48].
This section briefly describes the ROR model and presents a proof of the protocol’s session
key security in Theorem 1. PUFTAP-IoT in the ROR model has three participants P t,
which are service user P t1

Ui
, gateway mathcalPt2

GW , and sensing device P t3
Sj

. Additionally,
for each participant, tth represents an instance of the running participant. We assume that
an attacker Adv can modify, remove, insert or learn messages sent during communication.
In the ROR model, various queries are defined to simulate real-world attacks, Execute,
CorruptSC, Reveal, Send, and Test queries. A detailed description of the query follows:

• Execute(P t1
Ui

,P t2
GW ,P t3

SDj
): Adv conducts Execute query to obtain messages sent over

insecure channels between Ui, GW, and SDj.
• CorruptSC(P t1

Ui
): CorruptSC indicates that Adv can obtain information stored in the

smart card of Ui.
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• Reveal(P t): Reveal(P t) is that Adv returns the session key Skey between P t1
Ui

, P t2
GW ,

and P t3
SDj

. Skey is safe if Adv reveals Skey using the Reveal(P t) query.

• Send(P t, M): Send query allows Adv to transmit the M message to P t and receive a
response.

• Test(P t): A fair coin f c is tossed before the game starts, and the result is known only
to Adv. Adv uses this result to determine Test query. If Adv conducts this query and
Skey is fresh, P t will return Skey for f c = 1 or a random nonce for f c = 0. Otherwise,
P t returns a null (⊥).

After Adv conducts Test query on participants, Adv has to separate resulting values.
Adv checks the consistency of the random bit f c through the output of the Test query.
For Adv to win the game, the guessed bit f c′ must equal f c. Additionally, the collision-
resistant one-way hash function h(·) is accessible to all participants. Model h(·) is a random
oracle Hash.

Security Proof

Theorem 1. Adv can obtain information by breaking the session key security. Mark the advantage
of Adv running in polynomial time as Advt. Then, we obtain:

Advt ≤
q2

h
|Hash| +

q2
p

|PUF| + 2max{C · qs
s,

qs

2lD
}

Here, qh, qp, and qs are the number of Hash, PUF, and Send queries, respectively. |Hash|
and |PUF| are the range space of the hash function h(·) and PUF function PUF(·), respectively.
In addition, C and s denote Zipf’s parameters, and lD is the number of bits in the biometric Bi of Ui.

Proof. We run four sequence games GMi to prove session key security, where i ∈ [0, 4].
SuccAdv,i represents the event that Adv wins GMi by correctly guessing any bit f c. The
advantage of Adv winning the game GMi is denoted by Pr[SuccAdv,GMi

]. Each game is
described below.

• GM0: Adv can execute a real attack on PUFTAP-IoT through this game. Adv selects
f c at the beginning of GM0. Then, according to this game, we obtain:

Advt = |2Pr[SuccAdv,GM0 ]− 1| (1)

• GM1: Adv conducts the Execute(P t1
Ui

,P t2
GW ,P t3

SDj
) query through this game and eaves-

drops transmitted messages < Msg1, V1, T1, THIDi, PSIDj >, < Msg2, V2, V3, T2 >,
< Msg3, V4 >, and < Msg4, V5, V6 >. Adv then checks whether the derived Skey is
real to execute Reveal and Test queries. In PUFTAP-IoT, the session key consists of
Skey = h(Nsd||Kgs). To derive Skey, Adv must know the ID and random numbers of
Ui, GW, and SDj. As a result, Adv never increases the probability of winning GM1.
Thus, GM0 and GM1 can be considered indistinguishable, and we obtain:

Pr[SuccAdv,GM1 ] = Pr[SuccAdv,GM0 ] (2)

• GM2: To obtain Skey, Adv conducts Hash and Send queries.Adv can modify exchanged
messages to carry out active attacks. However, all exchanged messages are protected
using the one-way hash function h(·) and consist of secret credentials and random
numbers. Moreover, it is difficult for Adv to derive secret credentials and a random
nonce because it is a computationally infeasible problem depending on the properties
of h(·). So, using the birthday paradox, we obtain:

|Pr[SuccAdv,GM2 ]− Pr[SuccAdv,GM1 ]| ≤
q2

h
2|Hash| (3)
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• GM3: It is similar to GM2. Adv conducts Send and PUF queries. As described in
Section 3.3, PUF(·) has security properties. So, we can obtain the following result:

|Pr[SuccAdv,GM3 ]− Pr[SuccAdv,GM2 ]| ≤
q2

p

2|PUF| (4)

• GM4: In GM4, Adv can try to obtain Skey with the CorruptSC query. By the CorruptSC
query, Adv can extract sensitive values {Li, B′i , C′i , THIDi} stored on the smart card
of Ui. Li, B′i , and C′i are expressed as Li = h(IDi||PWi||Ri) ⊕ Ru, B′i = Bi ⊕ α =
Ai ⊕ HPWi, and C′i = h(Ci||HPWi). Since Adv has no knowledge of identity IDi and
password PWi, Adv must guess these parameters from the extracted values. However,
it is computationally infeasible for Adv to guess ID, password, and Bi simultaneously.
Thus, GM3 and GM4 are indistinguishable. By utilizing Zipf’s law, we can obtain:

|Pr[SuccAdv,GM4 ]− Pr[SuccAdv,GM3 ]| ≤ max{C · qs
send,

qs

2lD
} (5)

Now that all the games were run, Adv has to guess the bit to win the game. Thus, we
can obtain following results:

Pr[SuccAdv,GM4 ] =
1
2

(6)

From Equations (1) and (2), we obtain the result as follows:

1
2

Advt = |Pr[SuccAdv,GM0 −
1
2
]| = |Pr[SuccAdv,GM1 −

1
2
]|. (7)

With Equations (5) and (6), we derive the below equation:

1
2

Advt = |Pr[SuccAdv,GM1 ]− Pr[SuccAdv,GM4 ]|. (8)

Using the trigonometric inequality, we can obtain the results of Equations (4), (5),
and (7).

1
2

Advt = |Pr[SuccAdv,GM1 ]− Pr[SuccAdv,GM4 ]|

≤ |Pr[SuccAdv,GM1 ]− Pr[SuccAdv,GM3 ]|
+ |Pr[SuccAdv,GM3 ]− Pr[SuccAdv,GM4 ]|
≤ |Pr[SuccAdv,GM1 ]− Pr[SuccAdv,GM2 ]|
+ |Pr[SuccAdv,GM2 ]− Pr[SuccAdv,GM3 ]|
+ |Pr[SuccAdv,GM3 ]− Pr[SuccAdv,GM4 ]|

≤
q2

h
2|Hash| +

q2
p

2|PUF| + max{C · qs
send,

qs

2lD
} (9)

Finally, multiply both sides of Equation (8) by 2 to obtain the desired result.

Advt ≤
q2

h
|Hash| +

q2
p

|PUF| + 2max{C · qs
send,

qs

2lD
} (10)

Therefore, we prove Theorem 1.

6.4. Scyther Tool Simulation

In this section, we simulate IoT-PUFTAP using the scyther tool [34]. The scyther tool is
a push-button tool to verify and analyze various security protocols. It supports unbounded
model checking and multi-protocol analysis and provides a graphical user interface (GUI)
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to trace security vulnerabilities [49]. We validated the proposed protocol using the scyther
tool according to the specifications below:

• Scyther tool checks security attack classes and possible protocol behaviors of the
proposed protocol based on a pattern refinement algorithm.

• Scyther tool traces the most efficient and optimal security attacks through the “Find
best attacks” setting.

• Scyther tool analyzes the security of the proposed protocol using claim events, includ-
ing “Secret”, “Alive”, “Weakagree”, “Niagree”, and “Nisynch”.

• To support multiple executions of protocols in the scyther tool, the “Maximum number
of run” and “Maximum number of patterns per claim” parameters are set to 5 and 10,
respectively.

To simulate IoT-PUFTAP, we write code in “Security Protocol Description Language
(SPDL)”. After that, the scyther tool simulates the “Secret”, “Alive”, “Weakagree”, “Nia-
gree”, and “Nisynch” claim events under the DY model. Note that the claim event “Secret”
means that the parameter can ensure confidentiality during the authentication phase. The
claim event “Alive” denotes that the participants are alive and running the protocol in
same session. “Weakagree” can be satisfied when participants actually communicate with
a legal participant. “Niagree” can be guaranteed when participants agree on the exchanged
parameters. “Nisynch” is the non-injective synchronization claim event, which means that
messages are exchanged from legal participants in appropriate sequence. We conducted
simulation on a Ubuntu 20.04.2 LTS virtual machine with an Intel Core i3-8100 3.60 GHz
CPU and 16.0 GM of RAM.

6.4.1. Scyther Framework

Figure 4 shows the basic framework of the scyther tool. Firstly, we describe the pro-
posed protocol into the scyther GUI according to the syntax of SPDL. Then, the scyther
command-line tool performs the security validation using claim events. Finally, the
command-line tool outputs the summary reports and trace class graphs. When the pro-
tocol satisfies each claim event, the result window displays the “OK” message and “No
attacks” comment.

Figure 4. Basic framework of the scyther tool.

6.4.2. SPDL Specification

Figure 5 shows the PUFTAP-IoT written in SPDL code. In PUFTAP-IoT, there are three
roles : user UI, gateway GWN, and sensing device SDJ. The user UI sends an authentica-
tion request message {Msg1, V1, T1, THIDi, PSIDj} to the GWN using the send1 function.
Then, GWN receives the message using the recv1 function and sends {Msg2, V2, V3, T2} to
the SDJ. The SDJ computes the session key Skey and returns {Msg3, V4, T3}. The GWN
transmits {Msg4, V5, V6} to the UI.
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Figure 5. PUFTAP-IoT written in SPDL code.

6.4.3. Simulation Result

Figure 6 indicates the simulation result of PUFTAP-IoT. The result shows that each
role is not exposed to security attacks and ensures the “Secret”, “Alive”, “Weakagree”, “Ni-
agree”, and “Nisynch” claim events. Therefore, we can demonstrate that PUFTAP-IoT can
resist security vulnerabilities and ensure mutual authentication between each participant.

Figure 6. Scyther tool simulation result of PUFTAP-IoT.

7. Efficiency Analysis

In this section, we compare computation cost, communication cost, and security
aspects with other relevant papers to prove the efficiency of PUFTAP-IoT.

7.1. Security and Functionality Features Comparison

In this section, we compare PUFTAP-IoT with the related existing protocols in terms
of speculation, replay and man-in-the-middle, spoofing, guessing, known session-specific
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temporary information (KSSTI), device capture, device impersonation, and session key
disclosure attacks and security features such as anonymity, forward secrecy, and secure
mutual authentication. Table 3 indicates that the existing protocols do not meet all security
requirements. On the other hand, PUFTAP-IoT meets all essential security requirements
for communication in IoT environment.

Table 3. Security properties comparison.

Security Properties PUFTAP-IoT Chunka et al. [16] Amintoosi et al. [18] Hajian et al. [27]
Replay attack o o o o
Man-in-the-middle attack o o o o
Guessing attack o x x o
Impersonation attack o x x x
KSSTI attack o x o x
Smart card stolen attack o x x o
Device capture attack o o o x
Anonymity o x x o
Perfect forward secrecy o o o o
Using three factors o x x o
Using PUF o x x x
Using honey_list o x x x
Secure mutual o x x x
authentication

x: insecure against an attack; o: secure against an attack.

7.2. Computation Cost Comparison

We cited [50,51] to compare and analyze computation cost with other authentication
protocols. Accordingly, we hypothesized notations and times for cryptographic functions
and functional functions as follows: Th, Trg, Tpu f , and Tf as the execution time needed for
hash function, random nonce generation, PUF function, and fuzzy extraction, where Th,
Trg, Tpu f , and Tf are 0.23 ms, 53.9 ms, 12ms, and 2.68 ms, respectively. Table 4 briefly shows
the comparison results.

Table 4. Computation cost of login and authentication phase.

Protocol User Gateway/Sever Sensing Device/Sensor Total Cost

Chunka et al. [16] 6Th + 1Trg 5Th + 1Trg 10Th + 1Trg 21Th + 3Trg(166.53 ms)
Amintoosi et al. [18] 8Th + 1Trg 10Th + 1Trg 10Th + 1Trg 23Th + 3Trg(169.06 ms)
Hajian et al. [27] 12Th + 1Trg + 1Tf 10Th 5Th + 1Trg 27Th + 2Trg + 1Tf (116.69 ms)
Ours 11Th + 1Trg + 1Tf 16Th + 1Trg 7Th + 1Trg + 1Tpu f + 1Tf 34Th + 3Trg + 1Tpu f + 2Tf (186.88 ms)

7.3. Communication Cost Comparison

In this section, we compare the cost of communication with other authentication proto-
cols. We assume that each value according to [52]: SHA-1 hash digest, entities’ identity, ran-
dom nonce, and timestamp is 160, 160, 128, and 32 bits, respectively. Based on this assump-
tion, the communication cost of PUFTAP-IoT is analyzed. Messages {Msg1, V1, T1, THIDi,
PSIDj}, {Msg2, V2, V3, T2}, {Msg3, V4, T3}, and {Msg4, V5, V6} require (160 + 160 + 32 + 160
+ 160 = 592), (160 + 160 + 160 + 32 = 512), (160 + 160 + 32 = 352), and (160 + 160 + 160 = 480)
bits, respectively. Thus, the total communication cost requires 592+ 512+ 253+ 480 = 1837
bits. Table 5 is the analysis of the communication cost consumption of different protocols.

Table 5. Communication cost of login and authentication phase.

Protocol Total Communication Costs No. of Messages

Chunka et al. [16] 2560 bits 4
Amintoosi et al. [18] 1664 bits 4
Hajian et al. [27] 2144 bits 5
Ours 1837 bits 4
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7.4. Results of Comparison

The results of the comparative analysis of PUFTAP-IoT and other papers in terms of
security, computation cost, and communication cost are as follows. Although PUFTAP-IoT
has a higher computational cost compared with authentication protocols in other papers,
the communication cost is similar or lower. Moreover, from a security point of view,
PUFTAP-IoT is safe against a variety of attacks and can provide security for guessing,
brute-force, and device capture attacks using three-factor, PUF, honey_list, etc. Therefore,
PUFTAP-IoT can provide very secure services to service users in the IoT environment, even
though the computation cost is higher than other authentication protocols.

8. Conclusions

With the development of WSN and IoT, areas using IoT are gradually expanding.
Therefore, a secure authentication protocol is required to provide secure IoT services. In this
paper, we analyze the security vulnerabilities of two-factor and three-factor authentication
protocols in various IoT-based environments. To compensate for the security vulnerabilities
of these protocols, we proposed PUFTAP-IoT, which applied PUF, honey_list, and three-
element technology. We used BAN logic to prove that PUFTAP-IoT can provide secure
mutual authentication. We also demonstrated that PUFTAP-IoT can achieve Sean key
security through the ROR model. In addition, the scyther simulation tool was used to
show that the proposed protocol is safe against various attacks in a wireless network
environment. In addition, as a result of the performance analysis of the protocol, it was
found that it provides a more secure service in the IoT environment compared with other
authentication protocols. In conclusion, PUFTAP-IoT is safer for real-world applications in
IoT environments than other related technologies. In the future, based on the proposed
protocol, we will analyze the network delay and through put of the protocol through
programming and simulation and apply the developed protocol to the real environment to
develop better protocols.
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