
Citation: Celaschi, S.; Grégoire, N.;

Messaddeq, Y.; Biazoli, C.R.;

Malheiros-Silveira, G.N. Coaxial

Mach–Zehnder Digital Strain Sensor

Made from a Tapered Depressed

Cladding Fiber. Sensors 2022, 22, 7145.

https://doi.org/10.3390/s22197145

Academic Editors: Flavio Esposito,

Stefania Campopiano and

Agostino Iadicicco

Received: 6 July 2022

Accepted: 3 August 2022

Published: 21 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Communication

Coaxial Mach–Zehnder Digital Strain Sensor Made from a
Tapered Depressed Cladding Fiber
Sergio Celaschi 1,* , Nicolas Grégoire 2, Younès Messaddeq 2, Claudecir R. Biazoli 1

and Gilliard N. Malheiros-Silveira 3

1 Centro de Tecnologia da Informação Renato Archer, Campinas 13069-901, Brazil
2 Centre d’Optique, Photonique et Laser, Université Laval, Quebec City, QC G1V 0A6, Canada
3 Department of Communications, School of Electrical and Computer Engineering, University of

Campinas (UNICAMP), Campinas 13083-852, Brazil
* Correspondence: sergio.celaschi@cti.gov.br; Tel.: +55-19-3746-6197

Abstract: An in-line digital optical sensor was proposed. It was built from a tapered depressed-
cladding single-mode fiber and modeled as a coaxial Mach–Zehnder interferometer. The principle of
operation of the optical digital sensor is based on the computation of the number of optical power
transfer turning points (PTTP) from the transmission data of the component. Biconic tapers with high
values of PTTP, high spectral resolution, high extinction ratio, and low insertion loss were modeled,
fabricated, and characterized. As a proof of concept, an in-line digital strain sensor was fabricated
and characterized. It presents a free spectral range of 1.3 nm, and produced 96 PTTP, at λ0 = 1.55 µm,
under stretch of ∆L = 707 µm, therefore producing a digital resolution of 7.4 µm/PTTP. The sensor
also produced a quasi-symmetric response to stretch and compression.

Keywords: digital optical sensors; strain sensor; fiber optics components; Mach–Zehnder interferom-
eter; fiber optics

1. Introduction

Optical devices based on fiber tapers (FT) encounter diversified practical uses in a
broad range of applications [1,2]. In optical communication, they can be used as passive
notch filters [3,4], acousto-optic tunable filters [5], super-continuum light generation [6],
tunable fiber lasers [7], to name a few. In sensing, they can be used to probe a myriad of
measurands: physical (strain [8–10], stress [11,12], force [13], pressure [14], angle [15,16]
and temperature [17–19]), chemical [20,21], bio [22], etc. Those FTs may be fabricated by
different processes, most frequent, stretching a heated length of commercial single-mode
fiber is the preferable one because of the cost and simplicity of fabrication.

Fiber Optic Analog Sensors (FOAS) are crucial to several applications as mentioned
above. The intrinsic bandwidth of such sensors offers distinct advantages in their ability
to probe and transport the resultant signal, in addition to being lightweight and small
size. The FOAS may be modeled by assuming different mechanisms of operation, and
modal interferometry, may produce the most sensitive devices, but they have a drawback:
they present a very low linear dynamic range due to their intrinsic sine square transfer
function. As well-known, tapering a communication single mode fiber may allow a
spectral transmission exhibiting a sine square spectral oscillatory behavior, which can be
characterized by a free spectral range (FSR). As previously reported in the literature [4], the
tapering of a single-mode depressed-cladding fiber (DCF), or W-type fiber, with adiabatic
fiber prolife [4,23,24], may result in only two super-modes HE11 and HE12 propagating
along it. In contrast to using a commercial fiber such as SMF-28 under the same tapering
conditions, the DCF may produce low-loss transmission, large modulation depth, and
very short FSR [4]. In general lines, the HE11 and HE12 creation-annihilation at the phase
matching regions and their transmission at the taper waist length behave like a coaxial
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Mach–Zehnder interferometer (CMZI) [4,9,12,17]. The principle of operation of this optical
component as a sensor can occur in two ways widely explored in literature: by sensing
its optical length, or probing its external refractive index [2]. However, when properly
designed, the FT can be seen as an all-optical intrinsic digital sensor enabled to probe
external force fields. To the best of our knowledge, such an approach has not been reported
in the literature up to now.

In this manuscript, we propose an all-optical all-fiber digital sensor based on a biconic
taper. In comparison to FOAS, it can also be applied to probe the external refractive index
or the variation of the optical length/path, but, in contrast, the way the output signal is
observed is intrinsically digital. As a proof of concept, we demonstrate the sensor operation
as a digital strain sensor using an in-line taper based on DCF. In this case, the principle
of operation is based on sensing the optical length of the component. As an example of
preliminary experimental result, 96 optical power transfer turning points (PTTP) were
produced, at λ0 = 1.55 µm, when the sensor 104 mm long, with FSR = 1.3 nm, was stretched
by ∆L = 707 µm, thus producing a digital resolution of 7.4 µm/PTTP. The results also
demonstrated a quasi-symmetric response to stretch and compression. For comparison’s
sake, the same sensor produced an analog spectral resolution (1/2 FSR = 1 PTTP) of about
0.7 nm, thus demonstrating the advantage of using this special DCF as either digital (our
proposal) or analog (standard approach) in-line all-fiber sensor. Additionally, those results
do not mean the limit of resolution of this sensor was reached, since the sensibility is
increased as the FSR gets smaller [25]. This type of taper, assuming diameters ranging from
0.32 to 0.51 µm, was reported in [26]; those waist dimensions can reach FSR values in the
pm scale, i.e., values one order of magnitude lower than the mentioned in our preliminary
results reported here, revealing that even higher resolutions are possible.

2. Materials and Methods
2.1. Characteristics of the Highly DCF

The initial geometric (layer radius, ρ) and optical (refractive indexes, n) parameters
for each layer (rod, gap, and tube) of the highly DCF are presented, as a schematic, in
Figure 1a, where one of the taper end’s faces highlight its refractive indexes distribution.
The values of these parameters used in this study, before tapering the fiber are: ρrod = 4.5 µm,
ρgap = 22 µm, ρtube = 62.5 µm, nrod = 1.4485, ngap = 1.4428, ntube = 1.4440, nexternal = 1. Figure 1b
shows the refractive index distribution of this fiber measured at λ0 = 633 nm, by the
equipment IFA-100 Fiber Index Profiler Version 10.0, located at COPL/ULAVAL, where the
indexes contrast is evident. In the non-tapered fiber, its core (or rod) is single mode starting
at λ0 = 1.45 µm to longer wavelengths.
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(a) 

Figure 1. (a) 3-D schematics of a biconic FT based on a DCF. L represents the biconic taper elongation
length, ρ and n are the radii and the refractive indexes of each DCF layer (rod, gap, tube), respectively.
The refractive index in each layer is highlighted at the taper end’s face. (b) 2-D experimental data of
the refractive index distribution from the DCF used in this work.

The numerical calculation of the optical properties from the propagating modes
involved during the process was performed by means of the frequency-domain finite
element method [27]. For this simulation, the ratio of the DCF layers along the taper regions
is supposed to remain constant during the tapering. Figure 2a shows the dependence of
the difference between the propagation constants, ∆β = β1 − β2, versus the external radius
variation. β1 and β2 are, in this case, the respective propagation constants of the modes HE11
and HE12. The phase matching between the modes HE11 and HE12 occurs at ρtube ~ 36 µm
as shown in the inset. Additionally, according to our simulations, the HE12 mode cut-off
occurs at ρtube ~ 1 µm. Figure 2b,c shows the normalized modulus of the E-field for the
modes HE11 and HE12, respectively.
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Figure 2. (a) ∆β of the modes HE11 and HE12 during ρtube variation at λ0 = 1.55 µm. Inset outlines
the effective refractive indexes near the phase-matching. (b,c) show the normalized modulus of the
E-field for the modes HE11 and HE12, respectively, at the phase matching condition.

2.2. Modeling of the Biconic Taper Profiles

The modeling of such taper profiles, as depicted in Figure 1a, can be obtained from two
coupled partial differential equations. The mass conservation is governed by the continuity
Equation (1), and the axial-momentum conservation by the 1-D Equation (2) [4,28]:

∂

∂t
An(z, t) +

∂

∂z
(An(z, t)v(z, t)) = 0, (1)

∂

∂z

(
η(z)An(z, t)

∂

∂z
v(z, t)

)
= 0. (2)

These equations relate the axial velocity, v(z,t), and the normalized cross-section area
of the taper, An(z,t) = ρ2

tube(z,t)/ro
2. The temperature profile of the heating element, T(z),

the total time, tT, the pulling velocity, vo, and the taper elongation length L, determine the
taper profiles. We assumed the axial viscosity, η(z), of the fiber material to be uniform, and
composed of pure SiO2.

Figure 3 shows the graphite heater temperature curve (a cylindrical tube 28 mm
long). The temperature profile (in Celsius) numerical and experimental are represented
respectively in dark-blue dash-dot line and open circle. The axial viscosity η(z) is presented
in the red dash-dot line and solid squares.
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Figure 3. Experimental and modeled temperature curves of the graphite tube (heating element). The
SiO2 glass liquid transition temperature is shown in (dash line). Axial viscosity of the fiber material
is shown in squares (red color). Below 1000 ◦C, extrapolation follows the temperature curve model of
the graphite element.

The temperature profile model from the heating element is obtained by fitting the
experimental profile with the following expressions:

T(z, zo) = To +
Th − To

1 +
(
|z|
zo

)2b , (3)

z = zo

[
Th − Tg

Th − To

] 1
2b

. (4)

where To = 200 ◦C, zo = 10, Th = 1400 ◦C, Tg (glass-liquid transition temperature) = 1285 ◦C,
and b = 2. The axial viscosity curve of the SiO2 fiber material shown in Figure 3 was
obtained by fitting data from [29], down to 1000 ◦C, using the following equation:

(z, zo) = e
c

T(z,zo)1.28 (5)

where c = 2.4 × 105.

2.3. Adiabatic Taper Profile

In slowly varying waveguides, the total E-field can present variations along a distance
equals to the beat length, zb = 2∆/(β1 − β2). Thus, in order to assure the local mode solution,
the non-uniformities of the guide should occur over a distance larger than zb. Thus, this
adiabatic condition is respected when the waveguide radius does not vary, significantly,
along a distance zb [23]:

1

ρtube

(
z, t f inal

) ∂ ρtube

(
z, t f inal

)
∂z

<
1
zb

, (6)
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The shape of the tapered region is determined by the dynamics of the fiber heating-
and-pulling process, and the temperature profile of the heating element. The FT profiles
were measured using an optical microscope, also modeled numerically [4]. Figure 4 shows
that the first term of the relation (6) is below the second one. Therefore, confirming the
taper profile fabricated obeys the adiabatic slowness criterion [24].
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Figure 4. Normalized slope of the taper (blue solid line) and 1/zb (dashed point red line) versus outer
radii, ρtube, for the elongation time, tT = 150 s.

2.4. All-Fiber CMZI

Figure 5a shows the first 65 power oscillations recorded at λ0 = 1.55 µm from the fiber
core output during the taper fabrication. The number of times the transmitted power drops,
and returns to its maximum value is named power transfer number (PTN). Additionally,
the PTN of such a device assume higher values as the taper elongation increases. Figure 5b
shows the PTN as a function of the taper external diameter, producing up to roughly
103 PTNs.
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stricted to an axial stress of  ~ 5 × 106 N/m2, i.e., 0.007% of the Young’s Modulus of the 

Figure 5. (a) Transmitted power recorded at λ0 = 1.55 µm during taper fabrication for the first
65 oscillations. (b) PTN versus taper waist diameter. The experimental results are represented in red
open circles, and the model simulation by black dashed line. According to the simulation, longer
tapers (L ~ 85 mm) result in PTN ~ 103, 1.4 < FSR < 1.8 nm, and 4 < ρwaist < 6 µm. (c) Spectral response
obtained from a taper 76 mm long, FSR = 1.7 nm, taper waist diameter ~5.6 µm, and insertion loss
~1.1 dB.

The PTN affects dramatically the spectral response of such tapers, i.e., tapers with
higher PTNs produce higher resolution FSR. For example, a taper 76 mm long showing
PTN = 907, at λ0 = 1.55 µm, produced FSR ~1.7 nm. The measured spectral response of this
taper is shown in Figure 5c, which presents an insertion loss ~1.1 dB.

3. Results and Discussion

As shown in the previous session, the specific refractive index profile and adiabatic
tapering condition of this DCF could produce high PTNs and high-resolution spectral
filters; not easily reproduced or obtained using standard commercial fibers. We use these
characteristics to demonstrate a digital linear strain sensor in this session.

The output power of this FT experiences, at a fixed wavelength, a number of PTTP
when it is under stress, and this PTTP is directly proportional to ∆L/Lc. An intrinsic sine
square transfer function has two PTTP per cycle. We modeled the axial strain, ε = ∆L/Lc,
where Lc is the intra clamps length, on the optical length of the interferometer, by applying
a strain σ = F/π·r2(z,tT) [N/m2] at the FT clamp points. F is the applied external force. For
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approximation’s sake we derived Equation (7) from Hooke’s Law, and assumed a Young’s
Modulus of r = 7 × 1010 N/m2 for SiO2.

∆L =

(
σe

γ

)
∗
∫ +Lc/2

−Lc/2

dz

r(z, tT)
2 (7)

To preserve the sensor integrity, the elastic limit of the SiO2, of the FTs were restricted
to an axial stress of σ ~ 5× 106 N/m2, i.e., 0.007% of the Young’s Modulus of the SiO2. From
the solution of Equations (1) and (2), an unstressed FT ~ 80 mm long has a minimum radius
at the waist 3 < ρwaist < 4 µm, and PTN ~840 at λ0 = 1.55 µm. According to Equation (7),
when this FT is submitted to σe, it will be elongated by ∆L ~700 µm, ∆L/Lc ~ 0.7%, which is
equivalent to an increase ∆PTN ~ 50, or a number of PTTP ~ 100.

Case Study: In-Line All-Fiber Digital Optical Strain Sensor

For this case study, we fabricated a biconic taper using the same DCF, but by using a
different fused and pull process, known as the flame brushing technique [30], in special,
to explore the advantage of this special fiber in producing optical components in an easy
and fast way. The fabrication involves heating a well-defined portion of fiber with a cyclic
moving flame, from 14 to 6.7 mm in amplitude, while applying a tensile force by pulling
the fiber with translation stages, each one having sub micrometer resolution. The fiber has
an initial Lc = 20 mm, 14 mm of it being tapered down to form the fiber transition regions,
and the taper waist. The transition regions can have a controllable shape [30], being linear
in the tapered structure presented here.

Figure 6a shows the experimental optical spectral window, from 1.54 to 1.56 µm, of
the taper structure (L = 84 mm, Lc = 104 mm) when, after over 950 PTNs, the DCF diameter
was reduced from the original 125 µm to 3.9 µm (ρwaist ~ 2 µm). The FT optical spectra
exhibits an insertion loss under 1 dB, an FSR = 1.3 nm, and an extinction ratio above 17 dB.
The linear response of this in-line digital strain sensor is presented in Figure 6b, where the
∆PTN is shown as a function of the applied strain (∆ZF/Lc). It can be noticed from this
figure that the in-line digital strain sensor operates by counting the PTTP = 2∆PTN when it
is under traction/compression along the longitudinal direction, with a digital resolution of
7.4 µm/PTTN. A quasi-symmetric response of this sensor under stretch and contraction
up till ∆d = 0.15 mm (along its longitudinal direction) presented in Figure 6c allows us to
visualize the low backlash. It is important to mention that the transmission and detection of
two distinct wavelengths spectrally spaced by an odd multiple of FSR/4 are necessary for
sensing and distinguishing compression from traction. For comparison’s sake, the analog
response of this same sensor shows a resolution of about 0.7 nm; which is a very high
analog resolution for a tapered-based CMZI sensor. Furthermore, this sensor presents a
practical digital dynamic range for a myriad of applications.

Sensors 2022, 22, x FOR PEER REVIEW 8 of 11 
 

 

SiO2. From the solution of Equations (1) and (2), an unstressed FT ~ 80 mm long has a 

minimum radius at the waist 3 < waist < 4 μm, and PTN ~840 at λ0 = 1.55 μm. According to 

Equation (7), when this FT is submitted to e, it will be elongated by L ~700 µm, L/Lc ~ 

0.7%, which is equivalent to an increase PTN ~ 50, or a number of PTTP ~ 100.  

Case Study: In-Line All-Fiber Digital Optical Strain Sensor 

For this case study, we fabricated a biconic taper using the same DCF, but by using a 

different fused and pull process, known as the flame brushing technique [30], in special, 

to explore the advantage of this special fiber in producing optical components in an easy 

and fast way. The fabrication involves heating a well-defined portion of fiber with a cy-

clic moving flame, from 14 to 6.7 mm in amplitude, while applying a tensile force by 

pulling the fiber with translation stages, each one having sub micrometer resolution. The 

fiber has an initial Lc = 20 mm, 14 mm of it being tapered down to form the fiber transition 

regions, and the taper waist. The transition regions can have a controllable shape [30], 

being linear in the tapered structure presented here. 

Figure 6a shows the experimental optical spectral window, from 1.54 to 1.56 μm, of 

the taper structure (L = 84 mm, Lc = 104 mm) when, after over 950 PTNs, the DCF diame-

ter was reduced from the original 125 μm to 3.9 μm (waist ~ 2 μm). The FT optical spectra 

exhibits an insertion loss under 1 dB, an FSR = 1.3 nm, and an extinction ratio above 17 

dB. The linear response of this in-line digital strain sensor is presented in Figure 6b, 

where the PTN is shown as a function of the applied strain (ZF/Lc). It can be noticed 

from this figure that the in-line digital strain sensor operates by counting the PTTP = 

2PTN when it is under traction/compression along the longitudinal direction, with a 

digital resolution of 7.4 m/PTTN. A quasi-symmetric response of this sensor under 

stretch and contraction up till Δd = 0.15 mm (along its longitudinal direction) presented in 

Figure 6c allows us to visualize the low backlash. It is important to mention that the 

transmission and detection of two distinct wavelengths spectrally spaced by an odd 

multiple of FSR/4 are necessary for sensing and distinguishing compression from trac-

tion. For comparison’s sake, the analog response of this same sensor shows a resolution 

of about 0.7 nm; which is a very high analog resolution for a tapered-based CMZI sensor. 

Furthermore, this sensor presents a practical digital dynamic range for a myriad of ap-

plications. 

 

(a) 

Figure 6. Cont.



Sensors 2022, 22, 7145 9 of 11Sensors 2022, 22, x FOR PEER REVIEW 9 of 11 
 

 

 

(b) 

 

(c) 

Figure 6. (a) Experimental optical transmission spectra of the tapered structure (L = 84 mm, Lc = 104 

mm) showing FSR = 1.3 nm, insertion loss below 1 dB, and extinction ratio above 17 dB. (b) Linear 

strain sensing response: PTN versus strain ZF/Lc at 1.55 μm ranging from 0 to 0.7%. (c) Symmetric 

response of the sensor under stretch and contraction for length variation of Δd = 0.15 mm. 

The proposed digital and linear optical sensing device, with at least two orders of 

magnitude of dynamic range, operates by counting either PTN or PTTP when submitted 

to an external force field. The transmission and detection of two wavelengths, spaced 

apart by an odd multiple of FSR/2, are required to sense traction and compression in this 

device.  

4. Conclusions 

We demonstrated an all-fiber digital sensor approach with a linear response based 

on biconic taper. The tapers-based CMZI were fabricated from a highly DCF using two 

distinct adiabatic tapering processes, resulting in tapers with a high-quality spectral re-

sponse. As a proof of concept, we fabricated and characterized an optical axial strain 

sensor with FSR = 1.3 nm. The sensor is modeled to probe up to 0.7% of strain, returning 

PTTP = 96, at λ0 = 1.55 μm, when it is under stress. In such a sensor, when an external 

force field acts on the optical path of both modes HE11 and HE12, it produces a linear 

variation of the PTTP which was used as a discrete/digital response in opposition to the 

conventional approach (analog), commonly used in interferometric sensors. Also, the 

axial strain sensor showed a quasi-symmetric response to stretch and compression, thus 

allowing not only the sensing of these forces but also to distinguish compression and 

traction. When this sensor was elongated by ΔL = 707 µm produced a digital resolution of 

7.4 µm/PTTP. Also, the analog response of this same component shows a resolution of 

about 0.7 nm; which is a very high analog resolution for a taper-based CMZI sensor.  

Figure 6. (a) Experimental optical transmission spectra of the tapered structure (L = 84 mm,
Lc = 104 mm) showing FSR = 1.3 nm, insertion loss below 1 dB, and extinction ratio above 17 dB.
(b) Linear strain sensing response: ∆PTN versus strain ∆ZF/Lc at 1.55 µm ranging from 0 to 0.7%.
(c) Symmetric response of the sensor under stretch and contraction for length variation of
∆d = 0.15 mm.

The proposed digital and linear optical sensing device, with at least two orders of
magnitude of dynamic range, operates by counting either PTN or PTTP when submitted to
an external force field. The transmission and detection of two wavelengths, spaced apart
by an odd multiple of FSR/2, are required to sense traction and compression in this device.

4. Conclusions

We demonstrated an all-fiber digital sensor approach with a linear response based on
biconic taper. The tapers-based CMZI were fabricated from a highly DCF using two distinct
adiabatic tapering processes, resulting in tapers with a high-quality spectral response. As
a proof of concept, we fabricated and characterized an optical axial strain sensor with
FSR = 1.3 nm. The sensor is modeled to probe up to 0.7% of strain, returning PTTP = 96, at
λ0 = 1.55 µm, when it is under stress. In such a sensor, when an external force field acts on
the optical path of both modes HE11 and HE12, it produces a linear variation of the PTTP
which was used as a discrete/digital response in opposition to the conventional approach
(analog), commonly used in interferometric sensors. Also, the axial strain sensor showed a
quasi-symmetric response to stretch and compression, thus allowing not only the sensing
of these forces but also to distinguish compression and traction. When this sensor was
elongated by ∆L = 707 µm produced a digital resolution of 7.4 µm/PTTP. Also, the analog
response of this same component shows a resolution of about 0.7 nm; which is a very high
analog resolution for a taper-based CMZI sensor.
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