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Abstract: Object detection is an important factor in the autonomous driving industry. Object detection
for autonomous vehicles requires robust results, because various situations and environments must
be considered. A sensor fusion method is used to implement robust object detection. A sensor
fusion method using a network should effectively meld two features, otherwise, there is concern
that the performance is substantially degraded. To effectively use sensors in autonomous vehicles,
data analysis is required. We investigated papers in which the camera and LiDAR data change for
effective fusion. We propose a feature switch layer for a sensor fusion network for object detection in
cameras and LiDAR. Object detection performance was improved by designing a feature switch layer
that can consider its environment during network feature fusion. The feature switch layer extracts
and fuses features while considering the environment in which the sensor data changes less than
during the learning network. We conducted an evaluation experiment using the Dense Dataset and
confirmed that the proposed method improves the object detection performance.

Keywords: deep learning; sensor fusion; object detection

1. Introduction

Autonomous vehicles perform convenience functions by judging whether the vehicle
recognizes the surrounding environment in situations that may occur while driving. In
many cases, two or more sensors are fused in order to implement convenient functions.
These convenient functions are called ADAS and are implemented using the camera,
LiDAR, and radar. ADAS include LKAS (lane-keeping assist system), BSCW (blind-spot
collision warning), and SCC (smart cruise control). To implement these, object recognition
and distance estimation functions are essential. In general, the object detection of ADAS
is implemented using range-measured LiDAR, radar, and a camera with a lot of data for
recognition [1]. Object recognition and distance estimation are possible through sensor
fusion [2]. This sensor fusion can realize robust detection results [3]. Sensor fusion is used
for various ADAS functions as well as object detection. Object detection is being studied
on a network basis, and it is necessary to study a sensor fusion method for network fusion.

Sensor fusion in an autonomous vehicle aims to realize robust functioning by supple-
menting the weakness of a single sensor with another sensor using multiple data. Sensor
fusion can be divided into cases where different modals and the same physical quantity
must be connected. The same physical quantity can solve the malfunction in one sensor,
reducing uncertainty and realizing robust performance. The fusion of different modals
leads to different types of results using different data types [4]. Research on cameras
and LiDAR is being actively conducted for use as a sensor for object detection, and it is
necessary to think about how to fuse different data [5–8].

Network-based sensor fusion can be divided into early, intermediate, and late fusion.
The advantages of each sensor fusion method are as follows. According to the existing deep-
learning network structure, early fusion of the sensor fusion method is easy to implement.
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Intermediate fusion improves performance by structurally connecting the networks of each
sensor [8] and sharing sensor features or separating roles [5–7]. The late fusion method
uses data from one sensor to suggest a region, and another sensor classifies it [9]. Sensor
fusion based on deep learning rather than object detection focuses on different expressions
from a modal rather than a structural point of view. We considered a reasonable method
for sensor fusion among early, intermediate, and late fusion. For this purpose, it has been
found that sensor fusion in different fields mainly uses intermediate methods and focuses
on different expressions in the same situation [10,11]. Therefore, we chose an intermediate
structure that can fuse different modals.

Previous research has focused on effectively fusing data representations from different
sensors when the network learns [12,13]. We investigated the situation in which the camera
and LiDAR data change for effective fusion. This paper analyzed the effect of humidity
on the point cloud using two types of LiDAR [14]. Heinzer [15] proposed a method to
solve this problem by filtering the point cloud based on CNN as a follow-up study. This
paper can predict the change in LiDAR data under high humidity conditions. Likewise, the
camera will have difficulty recognizing objects in high humidity conditions. For example,
the camera tries to learn in a foggy situation by converting it into a clear image through
dehazing [16–18]. However, it is not easy to apply because the expression methods of the
two sensors are different. Methods of fusing various expressions have mainly been studied
in fields such as VQA (visual question answering). This paper presented a method to fuse
multiple modals effectively [19]. This paper proved that the performance of two or more
datasets could be effectively improved with a module with a small amount of computation.
Inspired by that study, we designed the network layer for effective data fusion.

The above studies [14–18] confirmed that each sensor responds differently in specific
situations. Therefore, if the fusion is performed without considering the sensor’s specific
situations, the noise will be reflected and adversely affect network learning. We thought that
to solve this problem, the camera–LiDAR sensor fusion method of should differentiate the
situation and influence network learning differently. Our research focuses on configuring
the module so that when learning by fusion of different data from camera–LiDAR, the
sensor’s influence can be given differently considering the surrounding environment. That
is, creating a network structure with different dominance.

In this paper, the Feature Switch Layer (FSL) switch module selects important features
by applying channel attention to the camera and LiDAR sensor convolution features [20].
When applying channel attention, the channel size was adjusted considering the increase
in noise of each sensor. Next, a multimodal transfer module (MMTM) was added to fuse
the features for each channel based on the work of Joze et al. [19]. After applying MMTM,
spatial attention was applied. Finally, concatenation with the existing feature map generates
a recalibrated feature map. The Both module is added considering the case where two
sensors are robust. Through this, a layer that can learn by reflecting the sensor’s noise was
constructed. Each module is written as Camera or LiDAR dominance module, and if both
sensors are robust or weak, use Both dominance modules. The network learns features by
dominance module. After testing the FSL, a comparative experiment was conducted to
contrast the module configuration and improve the performance of the learning method by
extracting features for each situation.

The contributions of this paper are as follows.

1. This paper proposes a learning method by selecting a feature to be learned by consid-
ering the sensor character. Object detection performance was improved by selecting
different features to learn from cameras and LiDAR networks according to these con-
ditions. The experimental results confirmed that the camera supplements the LiDAR
sensor in the daytime and foggy conditions, while the LiDAR sensor supplements the
camera’s object detection at night.

2. The paper proposes an FSL that selects major features by applying the channel at-
tention of features extracted from the backbones of different networks in the object
detection network. Through this layer, the object detection performance is improved
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without being biased by the situation. Moreover, a method for fusing both features
rather than using only one was suggested by combining different ratios.

The rest of the paper is organized as follows. Section 2 explores related studies
about object detection, sensor fusion methods, and detection in adverse weather condi-
tions. Section 3 describes the FSL, the overall network structure, and the learning strategy.
Section 4 outlines the experiments conducted using the Dense Dataset [21] to evaluate the
FSL, including comparing the developed module to the attention module and MMTM [19].
Section 5 concludes the study.

2. Related Work

This paper analyzed the effect of dust on LiDAR data [22]. This paper implemented
dust and rain conditions in an indoor environment. The distance accuracy and intensity of
the objects measured using LiDAR were analyzed by adverse weather conditions. Another
paper analyzed the noise of LiDAR data measured in dust clouds [23]. Autonomous driving
requires examining how data changes when measuring vehicles and people in adverse
weather. Recently, a published study further analyzed the changes to data measured in
fog and rain conditions (that is, when the humidity in the air is high) in terms of subjects
such as people and cars [14]. Heinzer et al.’s studies show that LiDAR’s intensity for cars
and people or LiDAR’s point-cloud density decreases in fog and rain situations. In adverse
weather, the point-cloud-based recognition study was solved by changing the network
structure or input expression by analyzing data characteristics [15,24–26].

In the past, object detection has been performed by changing the strategy during the
day and in nighttime to solve problems in object detection. Typically, vehicle detection at
night is different from daytime detection, as it detects taillights or headlights and performs
vehicle detection using robust feature extraction [27]. Image enhancement has been studied
in the image processing field, and the detection performance has been improved [28]. As
an image enhancement technology, the GAN-based dehaze method was studied to remove
the noise of the camera image in fog conditions [16–18]. Previous studies show that the
camera is greatly affected by changes in light, and the direction of problem-solving changes
depending on conditions such as day, night, and fog.

Attention is described as seeing an essential element in an image rather than the
whole, as with human perception [29]. Recently, an attention mechanism has been applied
to network learning and attempted to improve the performance of CNNs, and there are
techniques for viewing essential features [30]. Seeing an essential feature of learning means
that the network becomes robust to noise and performance. An essential feature in the
network is the core of the attention mechanism, and it is also used as a tool to understand
why learning is successful [31].

The fusion of camera–LiDAR for object detection focuses on decoupling the sensor’s
role [5–7]. The multi-stage process used in existing camera–LiDAR fusion it is divided into
a method of proposing a 2D candidate region [4,5,32] and a method of proposing a 3D
candidate region [6,8]. Network-based sensor fusion includes the VQA and audio-visual
speech enhancement (AVSE) fields. The network for sensor fusion in VQA and AVSE
is multi-modal. This paper considers how to fuse the extracted features by inputting
the network. When different data types such as camera, text, and sound are extracted
using a network, it is necessary to learn by adjusting the features when the network is
learning [33,34]. The network for sensor fusion must control the reflection of each piece
of data.

A squeeze and excitation network (SENet) [35] interprets the network as a channel
relationship. SENet inspired MMTM, and MMTM fuses different features. SENet also
influenced CBAM [20], which proposed channel attention. Channel attention and spatial
attention were proposed by Woo, S et al. [20] and make learning more efficient by allowing
us to see important areas according to tasks. Our study designed a module using MMTM
and CBAM. Using this, the features are fused in the intermediate. Through this, we tried to
achieve fusion between robust networks and features.
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3. Feature Switch Layer

In this paper, we propose a feature switch layer to teach the dominance of the camera–
LiDAR sensor differently. The feature switch layer includes a switch module designed to
learn by selecting a feature during learning. First, the network architecture is explained.

3.1. Network Architecture

The network architecture consists of a camera and LiDAR backbones. The LiDAR
network backbone generally uses a grid method that implements a point cloud based on
PointNet [36] or VoxelNet [37]. In this paper, LiDAR data are expressed and fused in the
same coordinate system as the camera. When LiDAR point cloud, which is unstructured
data, is fused using voxels or raw point cloud, early fusion cannot be performed because
the coordinate system is different. In intermediate fusion, it is not easy to match the feature
coordinates of two sensors in object detection. Therefore, three-channel data were created
by projecting the point cloud to the camera coordinate system. Depth, height, and intensity
were used to compose each channel’s data and a three-channel image [38].

Figure 1 shows the proposed network and the previous network structure [39]. Each
sensor’s data is input into the backbone network, which uses EfficientNet [40]. The convo-
lution feature output from each layer is expressed in (1).

Fcamera =
{

Fc
1 , Fc

2 , · · · , Fc
i

∣∣camera backbone f eature
}

,
FLiDAR =

{
FL

1 , FL
2 , · · · , FL

i

∣∣LiDAR backbone f eature
} (1)Sensors 2022, 22, x FOR PEER REVIEW 5 of 16 
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Figure 1. EfficientDet-based network structure. (a) EfficientDet [39]; (b) EfficientDet fusion method
intermediate level; (c) EfficientDet with feature switch layer (proposed).

Here, i is 5. By using five-layer features, the features were fused to the switch module
and used as the input of the BiFPN layer.



Sensors 2022, 22, 7163 5 of 15

For each sensor feature, F is the camera and LiDAR. F is F ∈ RW×H×Channel , where
W and H are spatial dimensions, and the Channel is the number of channels extracted
from the backbone. F changes the size of the spatial dimensions and channels through a
convolution operation. The output from the convolution block is represented in (2). Since
the output in the backbone layer is different, declare convolution blocks as applicable.

FC
c =

{
FC

c1, · · · FC
ci

}
,FL

c =
{

FL
c1, · · · FL

ci

}
(2)

C stands for camera, and L stands for LiDAR. c is the channel, and c1 is the first
operation of the c channel convolution block.

3.2. Feature Switch Layer

The feature switch layer (FSL) teaches the network by selecting advantageous sensor
features for learning by filtering the data from the sensor that may contain noise. The
feature map extracted from the previous backbone network and annotation information for
day/night and weather is input as a layer input. The annotation information about day
and night, weather, and the dominance of the feature switch module is selected, and the
final BiFPN layer input is determined. Day is included as day and night, and Weather is
included as snow, fog, clear, and dense fog.

The input of FSL is as Equation (3). FSL is divided by dominance, and this paper
proposes three types: Camera, LiDAR, and Both. The switch module declares the number of
feature maps i for each layer.

FSW_Layer =
{

FC
c , FL

c

}
(3)

The switch module is designed to produce different outputs using the inputs in
Equation (3). The module design aimed to reflect less noise from each sensor and fuse
different features. This will be explained later in the Experimental Section.

Determine the input of the feature switch layer through a rule. The rules are detailed
in the Section 4.2 Experimental Setups. Figure 2 shows the overall structure of the proposed
method. First, a convolution operation is performed on the features extracted from the
backbone. The layer has a switch module for each sensor. Through this structure, it is
possible to create a structure that takes the influence of the sensor differently by extracting
and reinforcing the features of a specific sensor through an attention mechanism. For
example, the feature switch layer, in which the camera has dominance, is designed to pay
more attention to camera features.

3.3. Switch Module

Simply using concatenation is unsuitable as a sensor fusion method when considering
the noise according to the situation, as the network can learn noise as well. Figure 3 shows
the structure of the switch module. First, the switch module gives channel attention to the
input feature map. Next, through MMTM, features are selected by dominance, and finally,
after spatial attention, concatenation with input occurs. A detailed explanation is given
one paragraph at a time below.

Channel attention proceeds with squeeze and excitation after pooling. We determined
the type of pooling method and squeeze and excitation rates differently for each dominance
module. This paper used max pooling and average pooling Equations (4) and (5) for the
channel attention module.
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Figure 3. Structure of network with a feature switch module. CBAM [20] and MMTM [19] are applied
to each input, and the recalibrated features are selected and processed using annotation.
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As a result of channel attention to camera features, CC̃ applies avg-pooling and max-
pooling in the case of the camera dominance module. CL̃, the channel attention result of
LiDAR features, applies only max-pooling to create feature maps with different channel
sizes. In the LiDAR dominance module, the opposite is applied, so that the channel size
CC̃ is smaller than CL̃. By changing the pooling method, features of different sizes can be
created and fused. In addition, using max-pooling, only robust features can be seen when
the sensor is weak.

CC̃ = {
Camera Dominance, Both :

AvgPool
(

FC
ci
)
+ MaxPool

(
FC

ci
)

LiDAR Dominance : MaxPool
(

FC
ci
)

}, f or i

(4)

CL̃ = {
LiDAR Dominance :

AvgPool
(

FL
ci
)
+ MaxPool

(
FL

ci
)

Camera Dominance, Both : MaxPool
(

FL
ci
)

}, f or i

(5)

After pooling for each channel, channel attention proceeds with squeeze and excita-
tion [38]. The paper’s squeeze ratio is called r, and it is taken differently for each camera and
LiDAR dominance module. For this, the ratio of squeeze and excitation must be determined,
which is also determined according to Equations (6)–(8) for each dominance module. We
vary this ratio according to dominance.

Fchannel
dominance = { Camera Domaince : rcamera > rLiDAR, f or i (6)

LiDAR Dominance : rcamera < rLiDAR, f or i (7)

Both : rcamera = rLiDAR, f or i} (8)

As a result of channel attention to Fchannel
dominance ∈ RW×H×Channel , 1 × 1 × CC̃ or CL̃ is mul-

tiplied by each sensor’s feature again to restore the data form as Fchannel
dominance ∈ RW×H×Channel .

However, we used raw data 1× 1× CC̃ or CL̃.
The results of channel attention were merged into a concatenation of the channel

attention results. The process of MMTM is shown in Equations (9) and (10). Here, [·, ·]
represents the concatenation operation.

Z = W[SA, SB] + b, (9)

EA = WAZ + bA , EB = WBZ + bB, (10)

1× 1× CC̃ is calculated with the activation function and the existing feature, and it
is calibrated and output. As a result, 1× 1× C̃C̃ and 1× 1× C̃L̃ are output as 1× 1× CC̃
and 1× 1× CL̃ by the MMTM formula, and the result comes out through the activation
function. Features EA and EB recalibrated by the MMTM are selected for each case. � is the
channel-wise multiplication. The result is expressed as odominance. In the both dominance
module, the number of convolution channels of the camera and LiDAR was the same, so j
was separated. In this paper, j was set to 3. The output of odominance using annotation is as
shown in Equations (11)–(13).

odominance
i =

{
Camera Domaince :

{
W × H × C̃c̃

}
, f or i (11)

LiDAR Dominance :
{

W × H × C̃L̃

}
, f or i (12)

Both :
{

W × H × C̃c̃

}
, f or 0 < j < i ,{

W × H × C̃L̃

}
, f {else} f or i

} (13)
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The output spatial attention of the switch module is called Fspatial
dominance. Fspatial

dominance has
two declared camera and LiDAR domains. Concatenation was carried out by selecting the
opposite of dominance. The result is expressed by Equation (14). For example, for the camera
dominance module, the calibrated camera feature becomes a concatenation W × H × C̃C
and W × H × CL. CSW is the result of combining C̃C and C̃L. In LiDAR dominance module,
calibrated LiDAR feature becomes a concatenation W × H × C̃L and W × H × CC. CSW is
the result of combining C̃L and CC. For a Both module, camera dominance is selected by j,
and LiDAR dominance module is selected for the rest.

FSW
i = W × H × CSW =

{
[Fspatial

dominance, onot_dominance]
}

, f or i (14)

FSW
i is the final output. The output is used as the input of BiFPN, after which the

network configuration is the same as EfficientDet.

4. Experiment

The Dense Dataset [14] was used in these evaluations, and an experiment for each
fusion method was first conducted to prove the network effect and then evaluated. The
metric of the experiment was evaluated using the MS-COCO metrics [41].

4.1. Network Model

Our deep-learning model is shown in Figure 4a. A general Efficiencynet-b3 was used
and the input of the switch module is as shown in the figure. The backbones of the camera
and LiDAR are used, respectively. We performed 2D object detection using input to the
network. Figure 4b: the input of the switch module. Perform 2D convolution on features
extracted as backbones. Since i was set to 5 in the experiment, we used 5 2d convolutions
as shown in Figure 4b. Backbone features come out for each camera and LiDAR, and
FSL input is determined by annotation. The details of the determination of the input are
described in the next section.
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Figure 4. (a) Illustration of the EffecientNet-B3 architecture. We used backbone with EfficientNet-
B3. (b) Input of switch module. C stands for camera backbone operation and L stands for LiDAR
backbone operation, and each conv block of the same size is used.
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4.2. Experimental Setups

We used the Dense Dataset. In the Dense Dataset, there are 12,000 samples of stereo
camera, Velodyne 64ch LiDAR, radar, and infrared camera in bad weather and situation
data. This dataset includes fog, snow, and rain as adverse weather, and includes day and
night, so it can be used as a research dataset for adverse weather. In this dataset, data with
changes in humidity and light are collected. We used it to verify that discriminative learning
can improve object detection performance. The Dense Dataset conducts the training, testing,
and validation classifications in clear weather, while the rest of the weather data are not
separate datasets. Therefore, the training, validation, and testing datasets were separated in
a 7:1:2 ratio, and the experiment was conducted and evaluated. Table 1 shows the number
of data sets.

Table 1. Number of datasets.

Weather
Step

Training Validation Testing

Camera Dominance Daytime, Fog 525 69 140

LiDAR Dominance
Nighttime, Clear 1343 409 877

Nighttime, Snow 1720 240 480

Both Dominance

Daytime, Clear 2183 399 1005

Daytime, Snow 1615 226 452

Nighttime, Fog 525 69 140

Total 8238 1531 3189

A computer with an Intel Core i7 processor and NVIDIA GeForce RTX 3090 graphics
card was used, and the PyTorch library was utilized for training, validation, and testing.
The model’s learning rate was set to 0.001, and the minibatch size was fixed to 2 for the
previous and proposed methods. Both methods ran until the neural network repeated
50 epochs of the entire training dataset.

The object detection network was trained to detect people and vehicles and exclude
buses, trucks, and bicycles. Detection performance was then evaluated based on the camera
image, which is the area where both sensors were detected, to proceed with the evaluation
of sensor fusion.

EfficientDet is the result of using only the camera image. We determined the domi-
nance of camera data based on day and night. Previous studies have shown that LiDAR
errors occur in foggy situations [20]. The LiDAR dominance module determines based on
fog, and the Both dominance module considers cases where both sensors are usual or weak.
Both sensors are weak during nighttime foggy conditions, and both sensors usually work
during the day and in clear or snowy conditions. Figure 5 shows the rules that set the layer.
Among the various situations, only the daytime fog situation remained. Fog affects the
camera and LiDAR, but considering the daytime point, the daytime and the foggy situation
were categorized into camera dominance module. In the further explanation using Figure 5,
if it is daytime and snowy, both sensors are dominant, so the Both module is selected.

We conducted an experiment by increasing the squeeze ratio of the sensor features
that we consider important. The experiment parameters are rcamera = 16 and rLiDAR = 8
for the camera dominance module. Each parameter is a rate of the squeeze. The LiDAR
dominance module was determined as rcamera = 8, rLiDAR = 16, and Both modules were
set as rcamera = 8, rLiDAR = 8. MMTM also has a squeezing process, with 12 for the Camera
dominance module and 16 for the LiDAR; Both dominance modules are used for the squeeze
ratio in this paper.
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Figure 5. Day and night, weather-dependent sensor dominance. (a) Each sensor represents a robust
situation. (b) Dominance is used in experiments and establishing rules based on the robust sensor.

4.3. Result

Table 2 shows based on the highest mAP in experiments. The proposed method gives
good results in most situations. The performance of object detection in the test dataset
is improved by 0.013 compared to the existing method. It is the same or improved by
0.015 in clear and snowy conditions at night. We found that the proposed method is
effective by analyzing the results covered by the Both dominance module. Achieving
performance improvement in both modules is challenging without effectively merging two
different modals. The proposed method effectively fuses sensors to achieve performance
improvement compared to the existing method in the situation. However, the existing
method was still good in day and fog situations. Object detection results should be the same
even after repeated training multiple times. In order to check whether the performance
of the proposed method is always low, we averaged the results of the top 5 and prepared
Table 3.

Table 2. Performance according to weather and performance comparison with other networks. The
best performance index among the results of five experiments. D: daytime, N: nighttime, C: clear,
F: fog, S: snow.

Network
Camera LiDAR Both Total

mAP@[.5]D, F N, C N, S D, C D, S N, F

EfficientDet 0.398 0.331 0.375 0.382 0.400 0.342 0.367

EfficientDet w/o FSL 0.469 0.402 0.436 0.409 0.444 0.407 0.414

EfficientDet with FSL 0.448 0.417 0.436 0.422 0.448 0.434 0.427

Table 3. Mean and variance of the results of five experiments as average precision, average recall,
and F1 Score.

Network Top5-mAP Top5-Recall F1-Score

EfficientDet 0.347 ± 0.00073 0.253 ± 0.00083 0.293 ± 0.00015

EfficientDet w/o FSL 0.398 ± 0.00018 0.309 ± 0.00013 0.348 ± 0.00082

EfficientDet with FSL 0.406 ± 0.00016 0.317 ± 0.00006 0.356 ± 0.00009
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Table 3 expresses the top 5 results as mAP, average recall, and F1 score. Table 3 shows
the results of evaluating the test set by storing the model weights based on the time when
the evaluation of learning is best in the validation set. Looking at Table 3, the average value
of the proposed method in the top-5 experimental results is high in all metrics. Also, when
the variance values are compared, the variance of the proposed method is the smallest, so
learning can be performed stably. If the variance value is small, it can be predicted that the
training results of the network will be equally good. Our goal was to design a layer for
robust object detection. The experimental results show that the proposed method made the
network fusion of camera–LiDAR more effective.

Table 4 shows the computational amount of the proposed method as the complexity
of the network. When a module is added, the amount of computation is higher than that of
a network using only a single sensor. Through the model complexity evaluation, it can be
confirmed that the performance of the switch module can be improved by a slight increase
in parameters and calculation amount compared to the existing method. The proposed
method effectively improved the performance without a significant increase in complexity.

Table 4. Comparisons of model size and complexity. FLOPs: floating-point operations., PN: parameter
number.

Architecture Sensor Fusion Method Input Data FLOPs PN

EffcientDet

None 1024 × 1024 × 3 (camera) 46.8 G 13.7 M

Intermediate

1024 × 1024 × 6
(Camera, LiDAR)

180.8 G 33.3 M

Channel 180.8 G 33.3 M

Channel + MMTM 180.8 G 33.4 M

Channel + Spatial 180.8 G 33.3 M

Channel + MMTM + Spatial 180.8 G 33.8 M

Table 5 determines how many switch modules in the feature switch layers are rea-
sonable. There are only two modules: the dominance module of each sensor. Here, the
rule is the determining factor in dominance. As shown in Figure 5a, we created a rule to
determine the dominance using the time of day (day or night). Among the rules of the
two modules, day and night are designed to learn camera dominance during the day and
LiDAR dominance at night. The two modules, fog/not fog, make the camera learn LiDAR
if it is not foggy. Table 5 shows the experimental results according to the division of domi-
nance. The intermediate method performs better if the dominance is divided incorrectly
in the proposed method. Through the experimental results, we confirmed that learning
by dividing the dominance into three types is a robust and improved method for object
detection performance.

Table 5. Object detection performance according to the division of dominance. C is the camera
dominance module, L is the LiDAR dominance module, B is the ‘both’ dominance module. Rule
means distinguish the influence of each sensor. D: Daytime, N: Nighttime, F: Fog, NF: Not fog,
C: Clear, S: Snow.

Backbone
Network Number of Module Rule

Camera LiDAR Both Total
mAP@[.5]D, F N, C N, S D, C D, S N, F

EfficientNet-B3

None None 0.469 0.402 0.436 0.409 0.444 0.407 0.414

Two Module (C, L) D, N 0.382 0.383 0.401 0.371 0.372 0.396 0.371

Two Module (C, L) F, NF 0.391 0.344 0.368 0.367 0.378 0.372 0.362

Three Module (C, L, B) D, N, F, NF 0.448 0.417 0.436 0.422 0.448 0.434 0.427

Table 6 shows the object detection performance according to the module configuration.
Channel refers to the result when applying only channel attention in a convolutional block
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attention module (CBAM). Only channel attention was applied, and three dominance
modules were used for the learning strategy. Learning with three dominances by applying
only channel attention performed better than adding other modules.

Table 6. Object detection performance according to module configuration. Network backbone use
EfficientNet-B3. D: Daytime, N: Nighttime, C: Clear, F: Fog, S: Snow.

Number of Module Module Configuration
Camera LiDAR Both Total

mAP@[.5]D, F N, C N, S D, C D, S N, F

Three Module
(Camera, LiDAR,

Both)

Channel 0.355 0.389 0.303 0.325 0.361 0.393 0.365

Channel + MMTM 0.274 0.377 0.405 0.276 0.295 0.371 0.333

Channel + Spatial 0.385 0.374 0.401 0.331 0.358 0.381 0.362

Channel + MMTM + Spatial
(Propose) 0.448 0.417 0.436 0.422 0.448 0.434 0.427

If the module is not used efficiently, it can only be seen that the complexity increases,
and the object detection performance deteriorates. The experimental results show that
using the channel attention results is crucial. The importance of channel attention was
confirmed, and the value described in Section 4.2 produced the best result because of
several experiments by changing the hyperparameter.

Figure 6 shows each detection result according to Table 2. Figure 6a,d shows the
results of learning using only camera images. Figure 6b shows that if fusion is not effective,
the performance can be degraded. Figure 6c effectively fuses with the proposed method so
that no object learned from the camera is missed. At night, both sensor fusion methods
performed better than the camera.
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Figure 7 shows the results of snow and fog conditions at night. The intermediate
method could not be detected in snowy conditions in some cases. In the case of fog, the
detection without FSL was higher than that of the camera, but the bounding box was
inaccurate. The proposed method showed robust object detection performance through the
experimental results regardless of various situations.
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5. Conclusions and Future Work

This paper proposes a feature switch layer and an effective sensor fusion method in
adverse weather conditions during the daytime and nighttime. The experiments showed
that the feature switch layer’s sensor fusion method is more robust than the simple con-
catenation method. In addition, the effects of different learning methods on performance
improvement in deep learning were discovered by analyzing the sensor characteristics
according to the weather and day/nighttime. However, in the proposed method, learning
is only possible by annotating the weather, and switching by grasping and learning the
dominance by itself was not implemented.

Future studies will be directed toward improvements so that the network can detect
the weather and vary the network weight by changing the switch module. In addition,
we plan to experiment by applying the above network module to 3D object detection.
We are collecting various weather and day and night data to confirm the performance
improvement in the low channel, which we will use in our next study.

Author Contributions: Conceptualization, T.-L.K. and T.-H.P.; methodology, T.-L.K. and T.-H.P.; soft-
ware, T.-L.K.; validation, T.-L.K. and T.-H.P.; formal analysis, T.-L.K. and T.-H.P.; investigation, T.-L.K.
and T.-H.P.; resources, T.-H.P.; data curation, T.-L.K.; writing—original draft preparation, T.-L.K. and
T.-H.P.; writing—review and editing, T.-L.K. and T.-H.P.; visualization, T.-L.K.; supervision, T.-H.P.;
project administration, T.-H.P.; funding acquisition, T.-H.P. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the
Grand Information Technology Research Center support program (IITP-2022-2020-0-01462) super-
vised by the IITP (Institute for Information & Communications Technology Planning & Evaluation).
This work was supported by a funding for the academic research program of Chungbuk National
University in 2022.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2022, 22, 7163 14 of 15

References
1. Wang, Z.; Wu, Y.; Niu, Q. Multi-Sensor Fusion in Automated Driving: A Survey. IEEE Access 2020, 8, 2847–2868. [CrossRef]
2. Wang, X.; Xu, L.; Sun, H.; Xin, J.; Zheng, N. On-Road Vehicle Detection and Tracking Using MMW Radar and Monovision Fusion.

IEEE Trans. Intell. Transpp. Syst. 2016, 17, 2075–2084. [CrossRef]
3. Wulff, F.; Schaufele, B.; Sawade, O.; Becker, D.; Henke, B.; Radusch, I. Early Fusion of Camera and Lidar for robust road detection

based on U-Net FCN. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018;
pp. 1426–1431. [CrossRef]

4. Xu, D.; Anguelov, D.; Jain, A. Pointfusion: Deep sensor fusion for 3d bounding box estimation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 244–253.

5. Liang, M.; Yang, B.; Chen, Y.; Hu, R.; Urtasun, R. Multi-task multi-sensor fusion for 3d object detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 7345–7353.

6. Vora, S.; Lang, A.H.; Helou, B.; Beijbom, O. Pointpainting: Sequential fusion for 3d object detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 4604–4612.

7. Chen, X.; Ma, H.; Wan, J.; Li, B.; Xia, T. Multi-view 3d object detection network for autonomous driving. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1907–1915.

8. Ku, J.; Mozifian, M.; Lee, J.; Harakeh, A.; Waslander, S.L. Joint 3d proposal generation and object detection from view aggregation.
In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5
October 2018; pp. 1–8.

9. Chen, H.; Li, Y. Progressively Complementarity-Aware Fusion Network for RGB-D Salient Object Detection. In Proceedings of
the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018; pp. 3051–3060. [CrossRef]

10. Natarajan, P.; Wu, S.; Vitaladevuni, S.; Zhuang, X.; Tsakalidis, S.; Park, U.; Prasad, R.; Natarajan, P. Multimodal feature fusion for
robust event detection in web videos. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition,
Providence, RI, USA, 16–21 June 2012; pp. 1298–1305.

11. Wang, Y.-P.; Tan, W.; Hu, X.-Q.; Manocha, D.; Hu, S.-M. TZC: Efficient Inter-Process Communication for Robotics Middleware
with Partial Serializatio. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Macau, China, 3–8 November 2019; pp. 7805–7812. [CrossRef]

12. Pérez-Rúa, J.M.; Vielzeuf, V.; Pateux, S.; Baccouche, M.; Jurie, F. Mfas: Multimodal fusion architecture search. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 6966–6975.

13. Hu, D.; Wang, C.; Nie, F.; Li, X. Dense Multimodal Fusion for Hierarchically Joint Representation. In Proceedings of the ICASSP
2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019;
pp. 3941–3945. [CrossRef]

14. Heinzler, R.; Schindler, P.; Seekircher, J.; Ritter, W.; Stork, W. Weather Influence and Classification with Automotive Lidar Sensors.
In Proceedings of the 2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France, 9–12 June 2019; pp. 1527–1534. [CrossRef]

15. Heinzler, R.; Piewak, F.; Schindler, P.; Stork, W. CNN-Based Lidar Point Cloud De-Noising in Adverse Weather. IEEE Robot.
Autom. Lett. 2020, 5, 2514–2521. [CrossRef]

16. Shao, Y.; Li, L.; Ren, W.; Gao, C.; Sang, N. Domain adaptation for image dehazing. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 2808–2817.

17. Cai, B.; Xu, X.; Jia, K.; Qing, C.; Tao, D. DehazeNet: An End-to-End System for Single Image Haze Removal. IEEE Trans. Image
Process. 2016, 25, 5187–5198. [CrossRef] [PubMed]

18. Engin, D.; Genç, A.; Kemal Ekenel, H. Cycle-dehaze: Enhanced cyclegan for single image dehazing. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, UT, USA, 18 June 2018; pp. 825–833.

19. Joze, H.R.V.; Shaban, A.; Iuzzolino, M.L.; Koishida, K. MMTM: Multimodal transfer module for CNN fusion. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 13289–13299.

20. Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference
on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19.

21. Bijelic, M.; Gruber, T.; Mannan, F.; Kraus, F.; Ritter, W.; Dietmayer, K.; Heide, F. Seeing Through Fog Without Seeing Fog: Deep
Multimodal Sensor Fusion in Unseen Adverse Weather. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 11682–11692. [CrossRef]

22. Ryde, J.; Hillier, N. Performance of laser and radar ranging devices in adverse environmental conditions. J. Field Robot. 2009,
26, 712–727. [CrossRef]

23. Phillips, T.G.; Guenther, N.; McAree, P.R. When the Dust Settles: The Four Behaviors of LiDAR in the Presence of Fine Airborne
Particulates. J. Field Robot. 2017, 34, 985–1009. [CrossRef]

24. Sebastian, G.; Vattem, T.; Lukic, L.; Bürgy, C.; Schumann, T. RangeWeatherNet for LiDAR-only weather and road condition
classification. In Proceedings of the 2021 IEEE Intelligent Vehicles Symposium (IV), Nagoya, Japan, 11–17 July 2021; pp. 777–784.

25. Mai, N.A.M.; Duthon, P.; Khoudour, L.; Crouzil, A.; Velastin, S.A. 3D Object Detection with SLS-Fusion Network in Foggy
Weather Conditions. Sensors 2021, 21, 6711. [CrossRef] [PubMed]

26. Linnhoff, C.; Hofrichter, K.; Elster, L.; Rosenberger, P.; Winner, H. Measuring the Influence of Environmental Conditions on
Automotive Lidar Sensors. Sensors 2022, 22, 5266. [CrossRef] [PubMed]

http://doi.org/10.1109/ACCESS.2019.2962554
http://doi.org/10.1109/TITS.2016.2533542
http://doi.org/10.1109/ivs.2018.8500549
http://doi.org/10.1109/cvpr.2018.00322
http://doi.org/10.1109/iros40897.2019.8968462
http://doi.org/10.1109/icassp.2019.8683898
http://doi.org/10.1109/ivs.2019.8814205
http://doi.org/10.1109/LRA.2020.2972865
http://doi.org/10.1109/TIP.2016.2598681
http://www.ncbi.nlm.nih.gov/pubmed/28873058
http://doi.org/10.1109/cvpr42600.2020.01170
http://doi.org/10.1002/rob.20310
http://doi.org/10.1002/rob.21701
http://doi.org/10.3390/s21206711
http://www.ncbi.nlm.nih.gov/pubmed/34695925
http://doi.org/10.3390/s22145266
http://www.ncbi.nlm.nih.gov/pubmed/35890948


Sensors 2022, 22, 7163 15 of 15

27. Kuang, H.; Chen, L.; Chan, L.L.H.; Cheung, R.C.C.; Yan, H. Feature Selection Based on Tensor Decomposition and Object Proposal
for Night-Time Multiclass Vehicle Detection. IEEE Trans. Syst. Man, Cybern. Syst. 2018, 49, 71–80. [CrossRef]

28. Shen, J.; Li, G.; Yan, W.; Tao, W.; Xu, G.; Diao, D.; Green, P. Nighttime Driving Safety Improvement via Image Enhancement for
Driver Face Detection. IEEE Access 2018, 6, 45625–45634. [CrossRef]

29. Itti, L.; Koch, C.; Niebur, E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach.
Intell. 1998, 20, 1254–1259. [CrossRef]

30. Wang, F.; Jiang, M.; Qian, C.; Yang, S.; Li, C.; Zhang, H.; Wang, X.; Tang, X. Residual attention network for image classification.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017;
pp. 3156–3164.

31. Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning deep features for discriminative localization. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2921–2929.

32. Shin, K.; Kwon, Y.P.; Tomizuka, M. RoarNet: A Robust 3D Object Detection based on RegiOn Approximation Refinement. In
Proceedings of the 2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France, 9–12 June 2019; pp. 2510–2515. [CrossRef]

33. Yan, F.; Mikolajczyk, K. Deep correlation for matching images and text. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3441–3450.

34. Ma, L.; Lu, Z.; Shang, L.; Li, H. Multimodal Convolutional Neural Networks for Matching Image and Sentence. In Proceedings
of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 2623–2631.
[CrossRef]

35. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141.

36. Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 652–660.

37. Zhou, Y.; Tuzel, O. Voxelnet: End-to-end learning for point cloud based 3d object detection. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4490–4499.

38. Meyer, G.P.; Laddha, A.; Kee, E.; Vallespi-Gonzalez, C.; Wellington, C.K. Lasernet: An efficient probabilistic 3d object detector for
autonomous driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach,
CA, USA, 15–20 June 2019; pp. 12677–12686.

39. Tan, M.; Pang, R.; Le, Q.V. EfficientDet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10778–10787. [CrossRef]

40. Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the 36th International
Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114.

41. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in
context. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; Springer:
Cham, Switzerland, 2014; pp. 740–755.

http://doi.org/10.1109/TSMC.2018.2872891
http://doi.org/10.1109/ACCESS.2018.2864629
http://doi.org/10.1109/34.730558
http://doi.org/10.1109/ivs.2019.8813895
http://doi.org/10.1109/iccv.2015.301
http://doi.org/10.1109/CVPR42600.2020.01079

	Introduction 
	Related Work 
	Feature Switch Layer 
	Network Architecture 
	Feature Switch Layer 
	Switch Module 

	Experiment 
	Network Model 
	Experimental Setups 
	Result 

	Conclusions and Future Work 
	References

