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Abstract: Solar irradiance forecasting is fundamental and essential for commercializing solar energy
generation by overcoming output variability. Accurate forecasting depends on historical solar irradi-
ance data, correlations between various meteorological variables (e.g., wind speed, humidity, and
cloudiness), and influences between the weather contexts of spatially adjacent regions. However,
existing studies have been limited to spatiotemporal analysis of a few variables, which have clear cor-
relations with solar irradiance (e.g., sunshine duration), and do not attempt to establish atmospheric
contextual information from a variety of meteorological variables. Therefore, this study proposes
a novel solar irradiance forecasting model that represents atmospheric parameters observed from
multiple stations as an attributed dynamic network and analyzes temporal changes in the network by
extending existing spatio-temporal graph convolutional network (ST-GCN) models. By comparing
the proposed model with existing models, we also investigated the contributions of (i) the spatial
adjacency of the stations, (ii) temporal changes in the meteorological variables, and (iii) the variety of
variables to the forecasting performance. We evaluated the performance of the proposed and existing
models by predicting the hourly solar irradiance at observation stations in the Korean Peninsula. The
experimental results showed that the three features are synergistic and have correlations that are
difficult to establish using single-aspect analysis.

Keywords: solar irradiance forecasting; graph neural network; spatio-temporal graph convolutional
network; multivariate spatio-temporal analysis; weather forecasting

1. Introduction

Extensive growth in the global population has led to an increase in the use of fossil
fuels and greenhouse gas emissions, leading to worsening environmental pollution and
global warming problems [1]. In 2015, the United States and China pledged to achieve 100%
reliance on renewable energy to tackle climate change [2]. In addition, the European Union
has decided to reduce greenhouse gas emissions and transition to renewable energy entirely
by 2050 [3]. Among renewable energy sources, solar (photovoltaic) energy is estimated to
meet a quarter of the electricity demand by 2050 [4]. However, because various factors,
such as solar position, time, geographical location, and meteorological conditions, affect
solar power generation, the efficiency of solar power plants is highly volatile [5,6]. Volatility
also causes problems such as output instability of solar power plants and overloads of
power grids, which should be addressed for commercializing solar energy [7–10]. Therefore,
methods for accurately forecasting solar energy production in a specific region have become
essential [11,12]. Various solar irradiance prediction models, from statistical to neural
network-empowered, have been proposed for providing a scientific basis for managing
solar power generation and power grid overloads [13–16].

Conventional solar irradiance forecasting models can be classified as physical, empiri-
cal, and statistical models. The physical approach represents meteorological conditions in a
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region with three-dimensional grids and model correlations between meteorological vari-
ables with nonlinear functions based on atmospheric physics [17,18]. However, physical
models have extremely high computational and space complexity, and their performance is
significantly affected by initial conditions, grid resolution, and data uncertainty [19–21].
The empirical approach, which is the most widely used, applies regression models for
analyzing the correlations between various meteorological variables, such as sunshine
duration, cloudiness, and temperature [22]. Empirical models are simple and intuitive,
but their accuracy is insufficient for practical use [23–25]. The statistical approach predicts
solar irradiance based on temporal correlations between historical meteorological variables
using statistical models, such as the autoregressive moving average model (ARMA) [26]
and autoregressive integrated moving average model (ARIMA) [27]. Although the statisti-
cal approach shows a higher performance than the empirical approach, it is challenging
for both approaches to represent and explain non-linear correlations between the meteoro-
logical variables considering model interpretability [28]. In addition, both the empirical
and statistical approaches have far lower computational and space complexities than the
physical approach. However, their performance is simultaneously insufficient for replacing
the physical approach based on atmospheric knowledge.

To improve the performance of the empirical and statistical approaches, machine
learning (ML) models such as support vector machines (SVM) and artificial neural networks
(ANN) have been highlighted as effective tools for representing complicated correlations
between meteorological variables [29,30]. Lyra et al. [31] and Chen et al. [32] applied ANN
and SVM to predict daily solar irradiance, respectively. In addition, Sun et al. [33] estimated
daily solar irradiance in China using the random forest model. ML models follow an
approach similar to that of statistical models but have greater expressive power and higher
accuracy [34]. However, existing ML models remain insufficient for analyzing correlations
between multiple meteorological variables collected from multiple observation stations
and for providing solar irradiance forecasting with high time resolution [35].

Thus, recent studies have focused on deep-learning-based models that stack multiple
neural network layers for improving the expressive power of forecasting models. Venu-
gopal et al. [36] predicted the power output of a solar panel after 15 min by analyzing the
power output for the past 15 min and the ground sky image using a convolutional neural
network (CNN) model. Aslam et al. [37] conducted a comparative study of the annual solar
irradiance forecasting performance of gated recurrent unit (GRU), long short-term memory
(LSTM), multilayer perceptron (MLP), SVM, and random forest models. Heo et al. [38]
applied a CNN model to a digital elevation map to extract topographic features that
can be used as a reference for locating solar panels. Topographical features are effective
in predicting the annual solar irradiance. The European Center for Intermediate-Range
Weather Forecasting (ECMWF), a well-known organization with global weather forecasting
capabilities, is also conducting research for improving forecasting performance by using
deep learning-based models [39,40]. However, most of existing deep learning-empowered
models depend on a single feature (i.e., temporal [36,37] or spatial feature [38]). Merely
applying CNN to geospatial data fitted into grids and recurrent neural network (RNN)
to time-sequential observations could not improve the model interpretability, not only
underperforming atmospheric knowledge-based models.

As a sufficient number of spatiotemporal meteorological datasets have become avail-
able, hybrid neural network models, which aim to combine spatial and temporal features,
have been highlighted for improving the practicality and accuracy of forecasting mod-
els [41]. Wang et al. [42] proposed a novel model that combines LSTM with a CNN for
predicting solar power production. This model extracts the temporal features of each mete-
orological variable using LSTM layers and applies CNN layers to the temporal features to
conduct spatial analysis. However, the observation stations were not located in square grids.
In addition, the spatial adjacency of the stations does not always correspond to the spatial
influences between the weather contexts of the stations. Thus, graphs and graph neural
network (GNN) models are more effective in representing the nonuniform spatial adjacency
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and analyzing the influences than grids and CNN models, respectively. Jiao et al. [43]
composed a graph with observation stations and their adjacencies. Adjacency was defined
based on Pearson correlation coefficients (PCC) between the historical solar irradiance at
each station and the minimum threshold. They then predicted future solar irradiance by
analyzing the spatial influences of the GNN layers and applying LSTM layers to the spatial
features extracted by the GNN layers. Khodayar and Wang [44] applied a similar approach
to wind-speed forecasting. They defined spatial adjacency using the mutual information
between historical wind speeds and directions. In contrast to Jiao et al. [43], Khodayar and
Wang first extracted temporal features from each station using LSTM and then used the
GNN for analyzing the spatial correlations between the temporal features. Dong et al. [45]
used dilated CNN layers instead of RNN layers for analyzing the temporal characteristics
of wind power production. Because CNN layers are more effective in parallelizing its
computation than recurrent models, this approach could reduce the time consumption
for both model training and forecasting services. However, CNN layers have limitations
in explicitly considering the time-sequential characteristics of the meteorological data.
Muthukumar et al. [46] predicted PM 2.5 concentration by combining graph convolutional
network (GCN) and ConvLSTM and constructed a graph using the distance between
fine dust sensors and interpolated data from unobserved locations using the GCN layer.
The output of the GCN for spatial interpolation was converted into an image and input into
ConvLSTM. Spatiotemporal models performed better than models without fusing spatial
and temporal information [47,48]. However, these models cannot utilize a variety of mete-
orological data (e.g., humidity, temperature, air pressure, and cloudiness) observed with
prediction targets. This makes the conventional models far from understanding the weather
conditions of observation stations and their spatiotemporal correlations. Cheng et al. [49]
used GNN to analyze correlations between atmospheric variables, and Huang et al. [50]
extracted the temporal features of each variable and analyzed feature correlations using
MLP. However, these studies omitted the spatial influences between observation stations.

The weather conditions of spatially adjacent observation stations influence each other;
for example, clouds move with wind. The influences occur with non-uniform time lags,
and weather conditions have temporal patterns. Sunrise and sunset create daily patterns,
and yearly patterns are correlated with the regional climate. Prediction targets and a
few meteorological variables related to the targets (e.g., wind speed and direction) are
insufficient in providing contextual information on the weather in a region. Thus, analyzing
spatiotemporal correlations between various meteorological variables with an end-to-
end network will improve the performance of weather forecasting models. In addition,
as discussed above, models that are not based on atmospheric knowledge have limited
model interpretability. Although several existing studies have attempted to combine
multiple features, they did not closely examine the effects of combining the three features
on weather forecasting with a case study of solar irradiance.

Therefore, we first developed a novel solar irradiance forecasting model that con-
siders (i) temporal patterns of meteorological variables, (ii) spatial influences between
observation stations, and (iii) correlations among a variety of meteorological variables.
The weather data were represented as a graph, with the observation stations as nodes,
the spatial adjacency of the stations as edges, and meteorological variables as attributes.
Thus, the graph exhibits static structures and dynamic attributes. Then, we extended the
attribute-augmented spatiotemporal GCN (AST-GCN) model [51], which considers both
static and dynamic attributes, to analyze spatiotemporal correlations between multiple
meteorological variables. The AST-GCN model consists of graph convolution layers and
recurrent layers, which extract the spatial and temporal features of the dynamic networks,
respectively. However, the graph convolution layers also analyze the temporal changes in
the dynamic attributes using a fixed-length window. We call the proposed model for multi-
variate spatiotemporal analysis of meteorological data “Multi-attributed Spatio-Temporal
GCN (MST-GCN).”
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To examine the effects of the feature combination, we compared the performance of the
proposed model with baseline models, which are based on each part of the three features,
by adjusting the prediction sequence lengths, seasons, weather conditions, etc. Based on
this comparison, we attempted to validate the following research questions:

• RQ1. Weather conditions of spatially adjacent observation stations influence each
other, and the influence is significant in predicting solar irradiance.

• RQ2. Temporal changes in historical weather data are effective in solar irradiance
forecasting.

• RQ3. Meteorological variables observed at a station have correlations with future solar
irradiance of the station.

The performance of the proposed and existing models demonstrated the contribution
of each feature to the aspects of weather forecasting. The performance comparison between
the models showed that the spatial, temporal, and multivariate features complemented
each other and were synergistic. The main contributions of this study can be summarized
as follows:

• We propose MST-GCN, which allows for spatiotemporal analysis of dynamic multi-
attributed networks to conduct day-ahead hourly solar irradiance forecasting for
multiple stations. Our proposed model consists of GCN layers for spatial features,
GRU layers for temporal features, and multi-attribute fusion modules for multivariate
features to fuse the three features of meteorological data.

• We demonstrated the superiority of MST-GCN in terms of forecasting performance and
stability over the baseline models, including T-GCN (spatiotemporal), GRU (temporal),
GCN (spatial), and MLP (multivariate) with intensive experiments. Furthermore, we
verified the above research questions, RQ1, RQ2, and RQ3, by comparing T-GCN with
GRU, T-GCN with GCN, and MST-GCN with T-GCN, respectively.

The remainder of this paper is organized as follows: Section 2 describes the acquisition
and pre-processing of the meteorological data used in this study. Section 3 presents the pro-
posed solar irradiance forecasting model. Section 4 details the experimental procedures and
results used to evaluate the performance and practicality of the proposed model. Section 5
presents the concluding remarks and discusses the limitations and future directions of
this study.

2. Data Acquisition and Preprocessing

This section describes the procedures for acquiring meteorological data used to evalu-
ate the proposed model and validate the research questions.

2.1. Resource Data

There are two methods for measuring solar irradiance. The first method uses a py-
rometer, and the other indirectly estimates solar irradiance by analyzing satellite images.
Although the pyrometer can accurately measure the amount of insolation per hour, it has
disadvantages in terms of the high cost of the measurement system and the limited measur-
able range [30,52,53]. Satellite image analysis has advantages in observing solar irradiance
over a wide area. However, this method also has difficulties in real-time estimation, owing
to the characteristics of satellite imaging [54,55]. In addition, because satellite images are
taken over clouds, cloudiness can cause images to be much less accurate than images from
ground observations. Owing to this inherent limitation, satellite image analysis showed a
relatively lower accuracy than the pyrometer. Uncertainties in the observation data also
affect the performance of solar irradiance forecasting models using measurements. Most
of the existing forecasting models based on satellite images have lower and less stable
accuracies than pyrometer-based models [56,57]. Thus, we acquired meteorological data
collected by automated surface observing systems (ASOS), which are based on a pyrom-
eter and more accurate than satellite image analysis, to reduce uncertainties caused by
input variables.
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The ASOS Programme is a joint effort of the National Weather Service (NWS), Federal
Aviation Administration (FAA), and Department of Defense (DOD). The ASOS serves as the
nation’s primary weather-observing surface network. This system was designed to support
weather forecasting and aviation operations. Simultaneously, the ASOS supports the needs
of meteorological, hydrological, and climatological research communities [58,59]. The
ASOS conducts time-synchronized ground observations at every participating observatory
for obtaining time-sequential data for atmospheric conditions. In addition, the system
automatically measured meteorological variables using synoptic meteorological obser-
vation equipment. The observational data were accessible through a public repository
(https://data.kma.go.kr/cmmn/main.do (accessed on 15 August 2022)). Among the ASOS
observation stations, we selected 42 stations measuring solar irradiance since 2017 and
located in the Korean Peninsula, as shown in Figure 1.

Station ID Latitude (◦) Longitude (◦) Height (m)

93 127.7544 37.9474 95.78
100 128.7183 37.6771 772.43
101 127.7357 37.9026 75.82
104 128.8554 37.8046 75.24
105 128.8910 37.7515 27.12
108 126.9658 37.5714 85.67
112 126.6249 37.4777 68.99
114 127.9466 37.3375 150.11
115 130.8986 37.4813 221.14
119 126.9830 37.2575 39.81
129 126.4939 36.7766 25.25
131 127.4407 36.6392 58.70
133 127.3721 36.3720 70.22
135 127.9946 36.2203 244.98
136 128.7073 36.5729 141.26
138 129.3800 36.0320 3.94
143 128.6530 35.8780 54.27
146 127.1172 35.8409 60.44
155 128.5728 35.1702 34.97
156 126.8916 35.1729 70.28
159 129.0320 35.1047 69.56
165 126.3815 34.8173 44.70
168 127.7406 34.7393 65.93
169 125.4511 34.6872 75.12
172 126.5990 35.3482 52.42
177 126.6877 36.6576 27.74
184 126.5297 33.5141 20.79
185 126.1628 33.2938 71.39
192 128.0400 35.1638 29.35
251 126.6970 35.4266 58.84
252 126.4778 35.2837 37.20
253 128.8908 35.2298 54.59
254 127.1286 35.3713 129.38
255 128.6726 35.2266 50.95
257 129.0201 35.3074 6.29
258 127.2123 34.7634 1.41
259 126.7841 34.6446 16.00
263 128.2881 35.3226 14.10
264 127.7454 35.5114 152.07
266 127.6914 34.9434 88.21
276 129.0401 36.4351 208.65
283 129.2009 35.8174 40.13

(a) Locations of ASOS stations

(b) Meteorological network at N = 2

(c) Meteorological network at θR = 0.95

Figure 1. Information of automated surface observing systems (ASOS) stations and examples of
meteorological networks. (a) presents geographic coordinates of ASOS stations. (b,c) show meteoro-
logical networks composed based on geographical distances between the ASOS stations and based on
correlations between historical solar irradiance of the stations, respectively. N indicates the number of
neighboring stations, and θR denotes the threshold of correlations between solar irradiance histories.

2.2. Meteorological Variables

Solar irradiance (Sr) is closely related to the geographical factors of observatories,
the date and time of observations, and other meteorological variables (e.g., cloudiness and

https://data.kma.go.kr/cmmn/main.do
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precipitation). From a geographical perspective, solar irradiance varies with latitude and
longitude. As discussed in Section 1, the spatial adjacency between observatories indicates
that weather contexts can influence each other. In addition, time-sequential analysis can
establish daily and seasonal patterns of solar irradiance. Therefore, utilizing these spatial
and temporal features can improve the performance of solar irradiance forecasting mod-
els [60,61]. From an atmospheric standpoint, weather contextual information, which can be
inferred from meteorological variables, is significant for predicting solar irradiance [30].
For example, if it is a cloudy day, the sun is blocked and the amount of insolation reaching
the ground decreases. Therefore, to consider weather contexts with high variability, we
gathered meteorological parameters correlated with solar irradiance, and spatiotemporal
parameters. Among the variables in the ASOS data, we selected 17 variables in the three
categories as input parameters for the proposed model, as listed in Table 1.

Table 1. Meteorological variables associated with ASOS data for solar irradiance prediction. The
fourth column presents absolute values of Pearson correlation coefficients of historical solar irradiance
(01/2017–12/2019) with other meteorological variables.

Type Variables Notation Units Corr.

Geographical Parameter Latitude La
◦ -

Longitude Lo
◦ -

Calendar Parameter

The year YOY - 0.00
The day of the year DOY - 0.00

The month of the year MOY - 0.05
The hour of the day HOD - 0.16

Meteorological Parameter

Sunshine duration S h 0.82
Air temperature Ta

◦C 0.31
Relative humidity RH % 0.48

Local pressure PL hPa 0.04
Sea level pressure Ps hPa 0.09

Precipitation Pt mm 0.07
Cloud cover CC - 0.23
Wind speed Ws ms−1 0.20

Wind direction Wd - 0.14
Visibility VIS m 0.18

Forecasting Target Solar irradiance Sr MJm−2 1.00

2.3. Data Preprocessing

The ASOS data have a significant number of missing values, and interpolating the
omitted observations can cause uncertainties and affect the performance of the forecasting
models. Thus, for fair evaluation and validation, we removed the variables and adjusted
the observation period for avoiding missing values. However, a few values are significantly
correlated with solar irradiance and are not difficult to reliably substitute for omitted values.
For precipitation, we checked records from the Korea Meteorological Administration for
regions where observation stations with missing precipitation values were located. If
there was no precipitation when missing values occurred, we replaced them with zero.
We examined sunrise and sunset times in cases of missing sunshine duration and solar
irradiance. Because insolation cannot exist between sunset and sunrise (e.g., 21:00 KST to
05:00 KST), we replaced the missing sunshine duration and solar irradiance values in the
period with zero. As a result, we gathered hourly observation data for four years (from
1 January 2017 to 31 December 2020), including the 17 meteorological variables observed
at the 42 observatories. The first three years of data were used to train the proposed and
baseline models, and the remaining year was used for model evaluation.
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3. Methods

We propose a novel solar irradiation forecasting model that considers (i) spatial
features, (ii) temporal features, and (iii) correlations between meteorological variables. First,
we represented the ASOS data as undirected networks with multiple dynamic attributes.
We then modified and extended the existing spatiotemporal GCN models [51,62] to analyze
the spatial and temporal correlations between these dynamic attributes.

3.1. Meteorological Networks

The proposed model conducts solar irradiance forecasting by analyzing (i) spatial
correlations between ASOS stations, (ii) historical patterns of meteorological variables,
and (iii) correlations of solar irradiance with the variables. These three viewpoints will
enable the proposed model to establish weather contexts at each ASOS station and to predict
future weather by understanding the spatiotemporal influences between the stations.
First, we represented the spatial correlations as an undirected network and historical
meteorological variables observed at each ASOS station as the dynamic node attributes of
the network.

Most of the existing studies defined correlations between meteorological observation
sites by using mutual information [49,63] and the PCC [43,45]. However, the influence
between the two observation sites will have inconsistent time lags according to distances,
landforms, weather contexts, and so on. Moreover, mutual information and correlation
coefficients are not proper metrics for detecting the influence of dynamic time lags. There-
fore, we defined the correlations between ASOS stations using geographical distances.
Then, the relative correlations among the adjacent stations can be learned by the GCN
layers in the proposed model. For the same reason, although existing studies [43,45,49,63]
defined the adjacency between stations by using minimum thresholds for correlations, we
searched for N-nearest neighborhoods of the stations according to the distances. We call
the network representing dynamic weather data ’meteorological network’, and it can be
defined as follows:

Definition 1 (Meteorological Network). The geographical adjacency of the ASOS stations is
described as N = (V , E), where V = {v1, · · · , vV} is the set of stations and V is the number of
stations. E 3 ei,j is the set of edges, where vj is one of the N-nearest neighbors of vi. In addition,
each node had meteorological variables (listed in Table 1) collected by the corresponding ASOS
stations as dynamic attributes. Thus, the structure of the static meteorological network can be
represented as an adjacency matrix A ∈ RV×V . Then, the dynamic attributes can be represented
as a sequence of matrices, X = 〈X1, · · · ,XT〉, where T denotes the number of time points and
Xt ∈ RK×V refers to node attributes at time t when K is the number of meteorological variables.

Figure 1b presents an example of a meteorological network when the number of
neighborhoods (N) is two. The proposed approach assigns at least N candidate stations
that can be correlated with the target station, assuming that we do not know the degree of
correlation at this moment. Figure 1c shows the case with the minimum threshold (θR) for
the PCC (Figure A1). This approach allows stations to have a flexible-size neighborhood,
but there can be isolated stations; models cannot learn the spatial correlations of those
stations. Similarly, when N is too large or θR is too small, we can miss the spatial correlations
between stations. In the opposite case, the model is confused by overabundant information.
In Section 4.4.2, we discuss the advantages and disadvantages of the two approaches by
evaluating the proposed model based on N and θR.

The node attributes at time point t (Xt) consist of solar irradiance, which is the fore-
casting target, and other meteorological variables related to solar irradiance. The solar
irradiance is defined as follows:
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Definition 2 (Solar Irradiance). Solar irradiance at a station at time t is viewed as one of the node
attributes of a meteorological network. Thus, Xt,Sr ∈ RV is a row vector of Xt that represents the
solar irradiance of all stations at time t. In addition, the ith component of Xt,Sr (Sr(t, i)) corresponds
to the solar irradiance degree at the ith station at time t.

The proposed model predicts future solar irradiance by analyzing previous solar
irradiance and meteorological variables. The spatiotemporal correlations of meteorological
variables with solar irradiance will enable the proposed model to understand weather
contexts that can affect solar irradiance. Although we acquired the 16 variables listed in
Table 1 from the ASOS data, the last column of the table says that not all the variables
have explicit correlations with solar irradiance. Similar to the adjacency of observation
stations, the PCC will be insufficient for establishing the spatiotemporal correlations of solar
irradiance with meteorological variables. However, omitting highly correlated variables can
hinder the proposed model from recognizing weather contexts, and appending extraneous
variables can confuse the model. Thus, the meteorological variables can be defined based
on the threshold for their PCC with solar irradiance (θV) as follows:

Definition 3 (Meteorological Variables). The remaining node attributes are multiple variables
that correlate with solar irradiance and reflect the weather context. When K = {k1, · · · , kK} is
the set of all available meteorological variables and r(·, ·) indicates the PCC between two variables,
the node attributes can be formulated as K∗ = {k j|k j ∈ K, r(k j, Sr) ≥ θV}. In addition, similar to
solar irradiance (Sr), when k j(t, i) refers to the value of k j at the ith station at time t, Xt,kj

indicates
a vector representing the values of k j at time t at every observation station. By concatenating
Xt,kj

, ∀k j ∈ K∗, we can compose an attribute matrix at time t, Xt.

In Section 4.4.1, we evaluate the proposed method to compose a set of meteorological
variables by adjusting θV . Therefore, solar irradiance forecasting, which models temporal
and spatial dependencies between solar irradiance and meteorological variables, can be
defined as learning a mapping function f based on the meteorological networkN = 〈A,X 〉
that consists of the static adjacency matrix A and the dynamic node attributes X . When Lp
and Lo are the prediction and observation sequence lengths, respectively, the forecasting
procedure can be formulated as:

〈Xt+1,Sr , · · · ,Xt+Lp ,Sr 〉 = f (A, 〈Xt−Lo+1, · · · ,Xt〉). (1)

3.2. Multi-Attributed Spatio-Temporal Graph Convolutional Network

The proposed model aims to discover the spatio-temporal correlations of solar irra-
diance with multiple meteorological variables. The existing spatio-temporal GCN mod-
els [51,62,64–66] have barely paid attention to dynamic changes in node attributes. Thus,
we propose a novel spatio-temporal GCN model that can consider multiple dynamic node
attributes by extending the AST-GCN [51], which considers deals with both static and
dynamic attributes. The proposed model mainly consists of GCN layers and GRU layers.
The GCN layers focused on extracting spatial features from snapshots of the meteorological
network at each time point. Then, the GRU layers then analyze temporal changes in the
spatial features for predicting to predict future solar irradiance. We call the proposed model
‘MST-GCN (Multi-attributed Spatio-Temporal Graph Convolutional Network)’, and the
structure of the model are illustrated in Figure 2.
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Figure 2. An overview of the proposed model. Spectral graph convolution layers extract structural
features of meteorological networks and spatial correlations of meteorological variables with adjacent
ASOS stations at each time point. GRU layers learn temporal correlations of solar irradiance with other
meteorological variables by analyzing feature vectors that come from the graph convolution layers.

3.2.1. Multi-Attribute Fusion

This study represents multiple meteorological variables observed at each station as
attributes of corresponding nodes to infer micro- and macro-weather conditions and their
spatiotemporal correlations. Thus, the adjacency matrix A is static and represents only the
geographical adjacency of the stations. The node attributes X = 〈X1, · · · ,XT〉 are dynamic
and expressed as a sequence of attribute matrices at each time point. The simplest approach
for feeding N = 〈A,X 〉 into spatiotemporal GCN models is using Nt = 〈A,Xt〉 as inputs
to GCN layers and learn temporal changes in feature vectors for Nt−Lo to Nt on the GRU
layers. However, this approach overlooks the spatial influences of weather conditions
on observation stations, which are not immediate. To analyze the spatial influences with
agnostic and unfixed time lags, we let the GCN layers observe multiple time points using
a fixed-length sliding window. In addition, the GRU layers compress the input features
at multiple time points into fixed-length vectors, which causes information loss. This
approach can reduce the risk of information loss by sharing the burden of temporal analysis
with the GCN layers. When the length of the sliding window is l, the input network of the
GCN layer at time t can be formulated as:

Nt = 〈A,X t
t−l+1〉 = 〈A, 〈Xt−l+1, · · · ,Xt〉〉, (2)

where X t
t−l+1 ∈ RlK×V indicates the concatenation of attribute matrices within the window.

Although Zhu et al. [51] suggested this approach, they did not evaluate its effectiveness in
analyzing multiple dynamic attributes. Section 4.2 focuses on verifying the effectiveness
of enabling the GCN layers to conduct a spatiotemporal analysis by comparing it with
T-GCN [62]. We heuristically set the window size l as six. The proposed model aims for
day-ahead hourly forecasting, and the 42 ASOS stations used in this study are densely
located in the southern part of the Korean Peninsula. Thus, we assumed that l = 6 is
a sufficient time period for establishing the inter-station spatial influences required for
predicting the weather tomorrow.
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3.2.2. Spatial Dependency Modeling

Discovering the spatial influences between the weather contexts of observation stations
is significant for predicting future weather contexts and forecasting solar irradiance. Graph
convolutional network (GCN) models, which are the generalization of convolutional neural
network (CNN) models to graph-structured data, have been shown to be effective for
analyzing the propagation of node features between adjacent nodes. The proposed model
employs the spectral graph convolution method proposed by Kipf and Welling [67], which
improves the computational complexity of the existing spectral GCN models. This method
updates node features to smooth (and denoise) the features of neighboring nodes by
conducting convolution operations in the spectral domains. Thus, convolution filters extract
spatial features between nodes by analyzing them and their first-order neighborhoods.
By stacking multiple GCN layers, we can obtain the representation of each node while
considering the influence of adjacent nodes. This study initially sets the node features as
meteorological variables, including solar irradiance, from t− l + 1 to t. Then, the GCN
layers generate representations of weather contexts at each station at time t based on
spatial influences between the weather contexts of adjacent stations during the time period
[t− l + 1, t]. The GCN layer in the proposed model can be formulated as:

H(n)
t = σ

(
ÂH(n−1)

t θ(n)
)

, H(0)
t = X t

t−l+1, (3)

Â = D̃−
1
2 ÃD̃−

1
2 ,

where Ã = A+ I denotes an adjacent matrix with self-connection structures. I ∈ RV×V is
an identity matrix D̃ denotes the degree matrix of Ã (D̃i,i = ∑∀j Ãi,j). H(n)

t is the feature

matrix generated by the nth GCN layer at time t. H(0)
t represents the initial node feature at

time t. θ(n) refers to the convolution filter of the nth layer. Finally, σ(·) denotes the activation
function used for nonlinear modeling. Therefore, each GCN layer linearly transforms the
feature matrix (H(n−1)

t ) using θ(n) where each column of H(n−1)
t represents the weather

context of a station, and aggregates these features to compose the feature matrix for the next
layer (H(n)

t ) according to Â. Although we provide the meteorological variables during the

time windows (H(0)
t = X t

t−l+1) to the GCN layers, it cannot allow the model to determine
the temporal order of the variables. However, the model can learn the spatial correlations
among variables at each time point in the windows. The GRU layers then discover more
distinctive spatiotemporal correlations from temporal changes in the sequence of feature
matrices (〈H(n)

1 , · · · , H(n)
T 〉).

As discussed in the previous section, the meteorological network had 42 nodes (sta-
tions), and the out-degrees of the nodes were at least N. The edge density of the meteorolog-
ical network is far higher than that of conventional networked data such as bibliographic
networks. Because aggregating information of a few hops will reach across the network (or
its sub-networks), simply stacking a few GCN layers can cause an over-smoothing problem.
Thus, we heuristically set the number of GCN layers to 2. In addition, we used a rectified
linear unit (ReLU) as the activation function.

3.2.3. Temporal Dependency Modeling

The node representations extracted by the GCN layers reflect the spatiotemporal
correlations between the meteorological variables. However, extending the window size
(l) as long as the observation period (Lo) provides overabundant information that exceeds
the learning capabilities of the GCN layers. Thus, time-varying representations with short-
term spatiotemporal features are fed into GRU layers to establish temporal dependencies
between meteorological contexts in the long term. The GRU layers can be regarded as the
compositions of the reset and update gates. When rt and ut are the reset gate and update
gate at time t, respectively, rt is used to control the amount of information of the previous
time points (i.e., the output at the previous time point, ht−1) that will be remembered
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or forgotten. Likewise, ut controls how much past information should be reserved. rt
combines the input feature vector on t with ht−1 to compose the current cell state, ct. The
final output on t (ht) is then derived by combining ct and ht−1 using ut. This procedure can
be formulated as follows:

ut = σ(θu[H
(N)
t , ht−1]), (4)

rt = σ(θr[H
(N)
t , ht−1]), (5)

ct = φ(θc[H
(N)
t , (rt ∗ ht−1)]), (6)

ht = ut ∗ ht−1 + (1− ut) ∗ ct, (7)

where σ(·) denotes a sigmoid function. φ(·) denotes the hyperbolic tangent function.
∗ refers to the Hadamard product. H(N)

t is a spatial feature matrix extracted from Nt using
the last GCN layer. θu, θr, and θc are learnable weight matrices. We stacked two GRU layers
above the GCN layers, and one fully connected layer was used to predict the future solar
irradiance from ht with linear activation.

The goal of solar irradiance forecasting is to make the prediction result approximate
the actual weather conditions as closely as possible. Thus, the objective of the proposed
model was to minimize the prediction error. The error was measured by the L2 loss, and the
objective function can be formulated as:

L = ∑
τ∈[t+1,t+Lp ]

∥∥Xτ,Sr − X̂τ,Sr

∥∥2
2 + λ‖θ‖2

2, (8)

where Xτ,Sr and X̂τ,Sr are the actual and predicted solar irradiances at time τ, respectively,
and λ is a hyperparameter that controls the regularization rate.

4. Evaluation

This section presents the experimental procedures and results for evaluating the
prediction performance of the proposed model and validating the research questions
underlying the proposed approaches. First, we compared the performance of the proposed
model with baseline models, including both conventional regression models (e.g., HA,
ARIMA, VAR, and SVR) and neural network models (e.g., MLP, GCN, GRU, and T-GCN).
We also examined the performance of the proposed and existing models in terms of long-
term predictions. This experiment demonstrates the practicality of the proposed model
and shows whether the models understand the dynamic changes in weather contexts.
Subsequently, we examined the stability of the forecasting models by comparing their
performance variations according to cloudiness and months. Finally, the proposed model
has several hyperparameters that determine the meteorological variables and neighboring
stations that were used for forecasting. We evaluated the sensitivity of the proposed model
by assessing its performance according to the hyperparameters.

4.1. Experimental Settings

This section describes the experimental settings, including the datasets, accuracy met-
rics, hyperparameter settings, and the comparison groups. We acquired meteorological
observation data from 42 ASOS stations for four years (1 January 2017 to 31 December 2020),
as described in Section 2.1. We collected hourly solar irradiance data during the observation
period and the 16 meteorological variables correlated with solar irradiance, as listed in
Table 1. The observation data of the first three years (1 January 2017 to 31 December 2019)
were used as the training dataset. We then evaluated the proposed model using the
remaining years (1 January 2020 to 31 December 2020). For the experiments, every meteo-
rological variable was normalized to [0, 1]. We predicted the solar irradiance of the next
Lp ∈ {1, 2, 3, 4, 5, 6, 12, 24} h at each ASOS station by analyzing the solar irradiance and
meteorological variables during the previous Lo ∈ {12, 24} h.
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In this study, we used six accuracy metrics to evaluate the performance of solar
irradiance forecasting models: root mean square error (E2), mean absolute error (E1),
normalized mean square error (NE2), accuracy (A), R-squared (R2), and variance (σ). These
metrics can be measured as follows:

E2 =

[
1
T ∑
∀t

(
Yt − Ŷt

)2
] 1

2

, E1 =
1
T ∑
∀t

∣∣Yt − Ŷt
∣∣, NE2 =

E2

Ȳ
,

A = 1−
∥∥Y− Ŷ

∥∥
F

‖Y‖F
= 1− E2

‖Y‖F
, R2 = 1− ∑∀t

(
Yt − Ŷt

)2

∑∀t(Yt − Ȳ)2 , σ = 1−
σ
(
Y− Ŷ

)
σ(Y)

(9)

where Yt and Ŷt indicate the observed and predicted solar irradiances at time t, respectively.
T denotes the total number of time-points. ‖·‖F refers to the Frobenius norm; Y denotes
the average Yt for ∀t ∈ [0, T]; and σ(·) indicates variance. E2 and E1 show the average
errors of the forecasting models, and a comparison of E2 and E1 presents the variation in
the errors. NE2, A, and R2 are normalized errors. NE2 normalizes E2 based on average
observed solar irradiance. A considers the deviation of both the observed and predicted
values by comparing E2 with the root square mean of the observed values. R2 normalizes
the mean squared error based on the variance of the observation. Finally, σ compares the
variance of the errors with that of the observation.

We compared the performance of the proposed model with that of the following
baseline models:

• HA (history average) [68] uses the average solar irradiance in the historical periods as
the prediction.

• ARIMA (autoregressive integrated moving average) [27] fits the observed solar irradi-
ance into a parametric model to predict future solar irradiance.

• VAR (vector autoregression) [69] fits the observed solar irradiance and other multiple
meteorological variables into a parametric model to predict future solar irradiance.

• SVR (support vector regression) [70] searches an optimal linear function of meteoro-
logical variables for solar irradiance with hinge loss. We use the linear kernel and the
penalty term is 0.001.

• MLP (multi-layer perceptron) [71] is a typical neural network model, which consists of
five fully-connected layers. The hidden layers included 256, 128, 64, 32, and 16 nodes,
respectively. We used ReLu activation function and RMSProp optimizer.

• GCN [67] is a graph neural network, which extracts spatial features from networked
data by transforming and aggregating feature vectors of nodes and their neighbor-
hoods. We applied a two-layered GCN model to predict 〈Xt+1,Sr , · · · ,Xt+Lp ,Sr 〉 by
analyzing A and 〈Xt−Lo+1,Sr , · · · ,Xt,Sr 〉 without considering the temporal order.

• GRU [72] is a RNN model that improves the long-term dependency problem of the
conventional RNN and reduces parameters of LSTM. We used a three-layered GRU
model with 64 hidden units to predict 〈Sr(t + 1, i), · · · , Sr(t + Lp, i)〉 at each station vi
by analyzing only temporal changes in 〈Sr(t− Lo + 1, i), · · · , Sr(t, i)〉.

• T-GCN [62] is a spatio-temporal graph neural network, which is a combination of GCN
and GRU, in order to analyze networks with static structures and dynamic attributes.
This model uses a GCN layer to extract spatial features (H(N)

τ ) from A and Xτ,Sr on
each time point τ ∈ [t− Lo + 1, t] and a GRU layer to predict 〈Xt+1,Sr , · · · ,Xt+Lp ,Sr 〉
by analyzing temporal changes from H(N)

t−Lo+1 to H(N)
t .

The proposed model was implemented using TensorFlow in Python. We used a
hyperbolic tangent function as the activation function of the output layer, ReLu function
for the hidden layers, and Adam optimizer [73]. We conducted a grid search for the
proposed model’s hyperparameters: number of epochs: 500 to 3000 with a step size of
+500, learning rate: 0.0001 to 0.01 with a step size of ×10, batch size of 32 to 512 with a
step size of ×2, number of GRU hidden units: 8 to 128 with a step size of ×2, and number
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of neighboring observation sites: 1 to 9 with a step size of +1. The proposed model
had the best accuracy for the number of epochs = 1000, learning rate = 0.001, batch
size = 128, number of GRU hidden units = 64, and number of neighboring observation
sites = 2. The implementation of the proposed model is available in the GitHub repository
(https://github.com/higd963/MST-GCN (accessed on 15 August 2022)).

4.2. Effectiveness of the Proposed Model

This section evaluates the proposed model by comparing its accuracy with that of
the baseline models. The models were trained to predict the solar irradiance at time t
by analyzing the previous solar irradiance from t − 1 to t − 12. We also compared the
accuracy of the models on multivariate analysis with univariate analysis to demonstrate
that the proposed model is more effective for analyzing correlations between multiple
meteorological variables than existing models. Additionally, HA and ARIMA cannot
deal with multivariate features, and the proposed model and VAR are not designed for
univariate analysis. Thus, we could not assess model accuracy for those cases and remained
as blanks on Table 2, which lists the experimental results.

The proposed method outperformed the existing models in every evaluation metric.
In addition, the existing models exhibited a significant performance decrement in the
multivariate analysis compared to the univariate analysis. This result is unexpected because
T-GCN [62] and the proposed model do not have significant differences in their model
structures. When we modified T-GCN to consider multiple meteorological variables,
the major difference between the two models is that the proposed model observes samples
from time t−m to t with an m + 1-length window on time t, but T-GCN only considers
samples at t. Thus, the graph convolution layers in the proposed model can extract
spatiotemporal features from meteorological data. Otherwise, the graph convolution
layers and recurrent layers in the T-GCN focus only on spatial and temporal features,
respectively. Thus, we can assume that spatiotemporal analysis is more effective for
discovering correlations between meteorological variables than aggregating spatial features
using recurrent layers (RQ1 and RQ2).

The neural network models with temporal features (e.g., T-GCN and GRU) outper-
formed the other models in univariate analysis. However, in the multivariate case, GRU
exhibited a worse performance than GCN. Although the recurrent layers could be effective
for discovering daily patterns of sunshine, stacking the recurrent layers was not sufficient to
establish and utilize the correlations between meteorological variables. This point was also
shown in that T-GCN underperformed GRU in the univariate case, which was the opposite
in the multivariate case. All existing models exhibited significantly worse performance on
multivariate analysis than on univariate analysis. This result might be caused by limitations
in the learning capabilities of the models, the same as with the GRU.

The deep learning-empowered models significantly outperformed the conventional
regression models in both the univariate and multivariate cases, excluding SVR. SVR had
the best performance in univariate analysis considering E2 and NE2. On the other metrics,
SVR showed the second-best performance, with a slight difference. This is an interesting
result in that SVR can comprehend temporal changes in solar irradiance as much as GRU
and T-GCN. However, it exhibited a catastrophic performance decrease in the multivariate
case. Because the models conducted one-hour-ahead prediction by analyzing previous
solar irradiance during 12 h, SVR could be sufficient for applying daily patterns to the
meteorological contexts of each day. Meteorological variables have complicated spatiotem-
poral correlations, requiring forecasting models with highly expressive capabilities, which
conventional models cannot support.

As there have been studies on hourly day-ahead forecasting of solar irradiance [74],
we examined the practicality of the proposed model by comparing the accuracy of the
proposed and existing models according to various prediction and observation periods.
Using two observation periods, Lo = 12 and 24, we adjusted the prediction periods (Lp) in
[1, 6] and {1, 3, 6, 12, 24}, respectively. In the above experiment, the conventional regression

https://github.com/higd963/MST-GCN
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models significantly underperformed the deep learning-empowered models, and none
of the existing models properly conducted multivariate analysis. Thus, the following
experiments employed only deep neural networks (e.g., MLP, GCN, GRU, and T-GCN)
trained for univariate analysis as baseline methods. Table 3 and Figure A3 show the results
of this experiment.

The proposed model exhibited the highest accuracy for most cases and metrics. The
performance improvement was more noticeable in the long-term prediction than in the
short-term prediction because the proposed model showed consistently high accuracy
according to Lp in both Lo = 12 and = 24 cases. However, in the short-term prediction,
GRU performed similarly to the proposed model, even higher for Lo = 24 and Lp = {1, 3}.
As discussed in the previous experiment, the GRU can be effective for discovering periodic
patterns of solar irradiance. In short-term prediction (far shorter than a day), observing
the discovered patterns would be more significant than recognizing weather contexts by
understanding spatiotemporal correlations between the meteorological variables (RQ2).
This point would be the opposite in long-term prediction.

Similarly, in both Lo = 12 and = 24 cases, T-GCN performed better than GRU in
long-term prediction and worse than GRU in short-term prediction. In the Lo = 12 case,
reversal occurred at Lp = 3. However, in the Lo = 24 case, the reversal occurred at Lp = 24,
which is much later than in the Lo = 12 case. There are two reasons for this result. First,
the GRU can learn daily solar irradiance patterns more deeply at Lo = 24 than at Lo = 12.
In addition, the T-GCN would not be able to recognize weather context information as
accurately as the proposed model because it is a univariate model and cannot analyze
correlations between the various meteorological variables. Furthermore, a comparison of
the GCN with GRU showed a similar result to the above comparisons only in the Lo = 12
case from Lp = 4. However, GRU had a higher σ than GCN in most cases, excluding
when Lo = 12 and Lp = 5. In addition, the GRU significantly outperformed the GCN
in all cases and metrics in the Lo = 24 case. The GCN and GRU focus only on spatial
correlations and temporal changes in solar irradiance, respectively. The results of the
three comparisons indicate that weather contexts discovered from the spatial features are
effective for long-term prediction (RQ1). Simultaneously, the spatial features could not
show their effectiveness without combining with the temporal features (RQ2), and the
combination of spatiotemporal analysis and multivariate analysis could enhance model
capabilities for understanding weather contexts (RQ3). Additionally, the performance
decrement of the GRU would not come from the long-term dependency problem because
the proposed model and T-GCN also learn temporal changes in spatial features extracted
by GCN layers using GRU layers.

MLP significantly underperformed the other models. Although MLP exhibited con-
sistent performance according to changes in Lp, its prediction results are difficult to be
used for forecasting systems, considering that the observed solar irradiance values were
normalized into [0, 1]. Although MLP analyzes correlations between the meteorologi-
cal variables, the multivariate analysis without spatial and temporal features could not
effectively recognize weather contexts.

From these experimental results, we can discover that (i) spatial correlations between
observation sites are essential for consistent forecasting performance on both long-term
and short-term prediction (RQ1), (ii) in short-term prediction, periodic patterns are more
effective than the other features (RQ2), (iii) spatial correlations show their worth when
used with the periodic patterns (RQ1 and RQ2), and (iv) correlations between multivariate
variables could not show high accuracy solely but exhibited its effectiveness when used
with the others (RQ3).
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Table 2. A performance comparison of the proposed model with the baseline methods. The upper, middle, and lower parts of this table present the accuracy of the
conventional regression models, the deep learning-empowered models, and the proposed model, respectively. Furthermore, the left and right sides exhibit the
model accuracy of the univariate and multivariate analysis, respectively. - indicates cases that we cannot assess the models’ accuracy due to their characteristics.
Additionally, * and ** denote models with the first and second best performance on each case and metric, respectively. The hyper-parameters were set as Lo = 12,
Lp = 1, N = 4, and θV = 0.00.

Univariate Analysis Multivariate Analysis
E2 E1 NE2 A R2 σ E2 E1 NE2 A R2 σ

HA 1.03 0.78 173.02 0.05 −0.29 −0.29 - - - - - -
ARIMA 0.87 0.72 152.16 0.16 −0.01 0.00 - - - - - -

VAR - - - - - - 0.91 0.70 155.81 0.16 −0.01 0.00
SVR 0.27 * 0.17 44.91 * 0.74 ** 0.90 ** 0.91 ** 0.92 0.68 192.08 0.10 0.00 0.00

MLP 0.34 0.22 56.16 0.32 0.86 0.86 0.86 0.67 145.39 0.20 0.09 0.09
GCN 0.33 0.19 55.82 0.69 0.86 0.87 0.43 0.27 72.63 0.60 0.77 0.78
GRU 0.28 ** 0.16 * 47.48 ** 0.74 * 0.90 * 0.91 * 0.45 0.27 75.55 0.58 0.76 0.79

T-GCN 0.30 0.16 ** 53.41 0.72 0.89 0.90 0.33 ** 0.18 ** 53.80 ** 0.70 ** 0.87 ** 0.89 **

Proposed - - - - - - 0.23 * 0.12 * 38.07 * 0.79 * 0.94 * 0.94 *
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Table 3. The performance of the proposed and existing models according to the prediction and
observation sequence lengths. The left and right sides of this table exhibit the model accuracy on
cases that the observation sequence length is 12 and 24, respectively. Subsequently, each column
presents changes in the model accuracy according to the prediction sequence length. Furthermore,
* and ** denote models with the first and second best performance on each case and metric, respec-
tively. The remaining hyper-parameters were set as N = 4 and θV = 0.00.

Observation 12 24

Prediction 1 2 3 4 5 6 1 3 6 12 24

E2

MLP 0.86 0.88 0.90 0.91 0.90 0.91 0.86 0.86 0.86 0.86 0.88
GCN 0.33 0.39 0.44 0.49 0.54 0.56 0.32 0.38 0.50 0.52 0.55
GRU 0.28 ** 0.38 ** 0.44 0.55 0.62 0.65 0.23 * 0.29 * 0.36 ** 0.44 ** 0.49

T-GCN 0.30 0.40 0.39 ** 0.41 ** 0.42 ** 0.45 ** 0.29 0.33 0.38 0.49 0.47 **
Proposed 0.27 * 0.27 * 0.29 * 0.30 * 0.30 * 0.31 * 0.23 ** 0.31 ** 0.30 * 0.33 * 0.36 *

E1

MLP 0.67 0.69 0.71 0.72 0.71 0.72 0.67 0.67 0.66 0.66 0.69
GCN 0.19 0.23 0.27 0.31 0.36 0.38 0.17 0.22 0.31 0.32 0.35
GRU 0.16 ** 0.21 ** 0.26 0.33 0.36 0.41 0.12 * 0.16 * 0.20 ** 0.25 ** 0.29

T-GCN 0.16 0.22 0.24 ** 0.26 ** 0.25 ** 0.27 ** 0.15 0.18 0.21 0.30 0.28 **
Proposed 0.15 * 0.17 * 0.20 * 0.17 * 0.17 * 0.17 * 0.13 ** 0.17 ** 0.17 * 0.20 * 0.24 *

NE2

MLP 145.39 147.29 150.92 152.43 152.19 152.42 144.93 144.90 146.06 151.65 152.49
GCN 54.93 64.55 71.10 76.99 84.67 86.77 51.78 64.90 78.56 86.41 90.33
GRU 47.49 ** 63.29 ** 80.82 93.47 102.16 109.91 36.77 * 47.54 * 60.39 ** 75.26 ** 80.93

T-GCN 51.57 66.56 64.45 ** 64.97 ** 72.08 ** 76.88 ** 47.69 56.90 68.17 77.46 79.65 **
Proposed 43.55 * 44.05 * 48.53 * 49.03 * 49.11 * 50.60 * 39.11 ** 50.74 ** 49.72 * 54.01 * 61.29 *

A

MLP 0.20 0.19 0.17 0.16 0.16 0.16 0.21 0.20 0.21 0.20 0.19
GCN 0.69 0.64 0.60 0.55 0.50 0.48 0.71 0.65 0.54 0.52 0.49
GRU 0.74 ** 0.64 ** 0.59 0.49 0.43 0.40 0.79 * 0.74 * 0.67 ** 0.60 ** 0.55

T-GCN 0.72 0.63 0.64 ** 0.62 ** 0.62 ** 0.59 ** 0.73 0.69 0.65 0.55 0.57 **
Proposed 0.75 * 0.75 * 0.73 * 0.72 * 0.72 * 0.71 * 0.78 ** 0.71 ** 0.72 * 0.70 * 0.66 *

R2

MLP 0.09 0.06 0.01 0.00 0.00 0.00 0.09 0.09 0.10 0.09 0.04
GCN 0.86 0.82 0.77 0.71 0.65 0.62 0.88 0.82 0.70 0.69 0.65
GRU 0.90 ** 0.82 ** 0.77 0.67 0.58 0.55 0.94 * 0.90 * 0.85 ** 0.77 ** 0.71

T-GCN 0.89 0.81 0.82 ** 0.80 ** 0.79 ** 0.76 ** 0.90 0.86 0.82 0.72 0.74 **
Proposed 0.91 * 0.91 * 0.89 * 0.89 * 0.89 * 0.88 * 0.93 ** 0.88 ** 0.89 * 0.87 * 0.84 *

σ

MLP 0.09 0.06 0.02 0.00 0.00 0.00 0.09 0.09 0.11 0.09 0.05
GCN 0.87 0.83 0.78 0.73 0.66 0.63 0.88 0.84 0.73 0.71 0.69
GRU 0.91 ** 0.85 ** 0.81 0.73 0.65 0.64 0.94 * 0.90 * 0.85 ** 0.77 ** 0.72

T-GCN 0.90 0.83 0.84 ** 0.82 ** 0.80 ** 0.77 ** 0.90 0.87 0.82 0.73 0.74 **
Proposed 0.92 * 0.91 * 0.89 * 0.89 * 0.89 * 0.89 * 0.93 ** 0.89 ** 0.89 * 0.87 * 0.84 *

4.3. Stability of the Proposed Model

This section presents the performance stability of the proposed model by comparing
its accuracy fluctuation according to weather conditions with those of the baseline models
(e.g., GCN, GRU, and T-GCN). Solar irradiance is affected by various weather factors,
such as cloudiness, and seasons are correlated with the annual patterns of solar irradiance
and weather. Therefore, we first examined the forecasting models’ performance at every
cloudiness level as a representative factor affecting the solar irradiance. The monthly
performance of the models was then evaluated for determining the seasonal influence on
solar irradiance and the forecasting models.

4.3.1. Performance Variation according to Cloudiness

Solar irradiance showed relatively consistent patterns on clear days, and sunny days
were more frequent than cloudy days. Therefore, we must evaluate whether the proposed
model can achieve high accuracy regardless of cloudiness for examining the practicality of
the model. We classified cloudiness into 10 degrees, and our data samples were segmented
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according to the degree of cloudiness. Subsequently, we evaluated the performance of
the proposed and existing deep-learning-empowered models within each segment of the
dataset. Table 4 and Figure A4 list the experimental results.

Table 4. Performance of the proposed and existing models according to cloud cover. The first
row indicates the degree of cloud cover from 0 to 10. The second row presents the distribution of
cloudiness levels in the experimental dataset. In the third to thirteenth columns, * and ** indicate
cloudiness levels that each forecasting model had the best and second-best performances, respectively.
Additionally, in the last two columns, * and ** refer to forecasting models that showed the best
and second-best performances on average and the lowest and second-lowest standard deviation,
respectively. The hyper-parameters were set as Lo = 24, Lp = 24, N = 4, and θV = 0.00.

Cloud Cover Statistics
0 1 2 3 4 5 6 7 8 9 10 Avg. S.D.

Ratio (%) 25.14 3.63 3.60 3.91 3.94 4.58 6.29 7.59 8.85 11.01 21.44 - -

E2

GCN 0.53 0.61 0.59 0.58 0.56 0.54 0.56 0.57 0.58 0.53 ** 0.52 * 0.56 0.03
GRU 0.45 * 0.52 0.51 0.50 0.49 0.47 ** 0.48 0.50 0.51 0.48 0.49 0.49 0.02 **

T-GCN 0.40 * 0.48 0.48 0.48 0.47 0.45 ** 0.47 0.49 0.51 0.49 0.51 0.48 ** 0.03
Proposed 0.32 * 0.39 0.39 0.38 0.38 0.37 0.38 0.39 0.40 0.37 0.37 ** 0.38 * 0.02 *

E1

GCN 0.33 0.39 0.38 0.37 0.35 0.33 0.34 0.36 0.36 0.32 * 0.32 ** 0.35 0.02
GRU 0.26 * 0.32 0.31 0.30 0.29 0.27 ** 0.28 0.30 0.30 0.28 0.29 0.29 0.02

T-GCN 0.24 * 0.30 0.30 0.30 0.29 0.27 ** 0.28 0.30 0.31 0.29 0.30 0.29 ** 0.02 **
Proposed 0.21 * 0.26 0.27 0.26 0.26 0.25 0.25 0.26 0.27 0.24 ** 0.25 0.25 * 0.02 *

NE2

GCN 86.60 81.10 * 81.80 ** 84.63 85.99 90.53 90.43 89.27 91.73 101.46 101.35 89.54 6.50 *
GRU 73.37 69.55 * 70.62 ** 73.06 75.27 77.84 78.34 77.98 80.94 92.15 95.66 78.62 7.95

T-GCN 65.64 ** 64.55 * 66.50 70.18 72.33 75.45 75.42 76.02 81.15 95.04 99.80 76.55 ** 10.99
Proposed 51.93 * 51.45 ** 53.76 56.00 58.38 61.75 61.03 60.99 62.98 71.52 71.62 60.13 * 6.59 **

A

GCN 0.52 * 0.51 0.51 ** 0.51 0.51 0.51 0.50 0.50 0.48 0.47 0.47 0.50 0.02 *
GRU 0.60 * 0.58 ** 0.58 0.58 0.57 0.58 0.57 0.56 0.55 0.52 0.50 0.56 0.03

T-GCN 0.64 * 0.61 ** 0.61 0.59 0.59 0.59 0.59 0.57 0.54 0.50 0.48 0.57 ** 0.05
Proposed 0.71 * 0.69 ** 0.68 0.67 0.67 0.66 0.66 0.66 0.65 0.62 0.62 0.66 * 0.03 **

R2

GCN 0.67 * 0.63 0.64 0.63 0.65 0.65 ** 0.65 0.63 0.61 0.61 0.61 0.64 0.02 **
GRU 0.77 * 0.73 0.73 0.73 0.73 0.74 ** 0.73 0.72 0.70 0.68 0.65 0.72 0.03

T-GCN 0.81 * 0.77 ** 0.76 0.75 0.75 0.76 0.75 0.73 0.70 0.66 0.62 0.73 ** 0.05
Proposed 0.88 * 0.85 ** 0.84 0.84 0.84 0.84 0.84 0.83 0.82 0.81 0.81 0.84 * 0.02 *

σ

GCN 0.73 * 0.70 0.70 0.69 0.70 0.70 ** 0.70 0.68 0.66 0.64 0.64 0.69 0.03 **
GRU 0.79 * 0.75 0.75 0.74 0.74 0.75 ** 0.75 0.73 0.71 0.68 0.65 0.73 0.04

T-GCN 0.82 * 0.77 ** 0.77 0.76 0.75 0.76 0.76 0.74 0.70 0.66 0.62 0.74 ** 0.06
Proposed 0.88 * 0.85 ** 0.84 0.84 0.84 0.84 0.84 0.83 0.82 0.81 0.81 0.84 * 0.02 *

The proposed model exhibited the highest accuracy for all cloudiness levels. A per-
formance decrement on cloudy days was commonly observed in all models. However,
the decrease in the proposed model was not as severe as that of T-GCN and GRU. Although
on a few metrics, the GCN had a similar or lower standard deviation compared to the
proposed model, there was a significant difference between the accuracies of the two mod-
els. As discussed, the solar irradiance on clear days follows periodic patterns (e.g., daily
and yearly). Cloudy days were far less frequent than clear days, as shown in Figure A2.
Thus, the high performance of the proposed model supports that the model could predict
cloudiness levels the next day by overcoming data imbalance and not merely applying
periodic patterns to observations.

In the previous experiment, the T-GCN outperformed the GRU for long-term pre-
diction, whereas the opposite was true for short-term prediction. Similar relationships
were observed in this study. Although T-GCN outperformed GRU on clear and slightly
cloudy days, GRU performed better than T-GCN on extremely cloudy days (CC ≥ 8) in
most metrics. Even in the CC = 10 case, the performance of the T-GCN was similar to
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or worse than that of the GCN, which focused only on spatial features. For the previous
results, we assumed that the combination of spatial and temporal features was effective for
understanding meteorological contexts in the long term (RQ1 and RQ2). However, in this
experiment, the same combination hindered the recognition of the overcast days. Com-
pared to the proposed model, we can assume that considering solar irradiance in adjacent
areas could not provide sufficiently deep contexts to the models, which is different from
analyzing spatiotemporal correlations between various meteorological variables (RQ3).
Because T-GCN and the proposed model have almost the same architecture, this result
would not be achieved from model capabilities for handling the imbalanced distribution
of cloudiness. Additionally, the forecasting models commonly showed a rapid perfor-
mance decrement from CC = 7, although they exhibited a relatively stable performance on
2 ≤ CC ≤ 6. Partly cloudy skies may not significantly influence the solar irradiance.

4.3.2. Performance Variation according to Months

The weather on the Korean Peninsula, which is our experimental subject, has four
distinct seasons. According to seasonal changes, the weather in each month might have
distinctive patterns. We can examine whether the yearly patterns affect the solar irradi-
ance prediction by assessing the forecasting monthly model performance. In addition,
the monthly performance can establish the model that can learn yearly patterns or over-
come seasonal differences. As in the previous experiment, we segmented our observation
samples into months, and the proposed and existing forecasting models were evaluated for
each month. Table 5 and Figure A5 list the experimental results.

The proposed model outperformed existing models in most months and metrics. T-
GCN and GRU exhibit lower E1 values than the proposed model in January and October.
The proposed model had a thin lead for the other metrics; we can also see this result from
October to December. Considering the previous experiments, T-GCN and GRU exhibited
significant performance decrement on cloudy days (Section 4.3.1) and long-term predictions
(Section 4.2). Thus, this result could be due to the weather in the Korean Peninsula during
winter. (The climate of the Korean Peninsula can be explained as a humid continental
climate with humid summers and dry winters. The temperature differences between the
hottest part of the summer and the coldest part of the winter are extreme. In addition,
most precipitation falls during the summer monsoon period between June and September.)
Periodic meteorological patterns were more effective for solar irradiance prediction during
winter than the other features. We can also see this point from the result for July, which
occurs in the middle of the ‘humid summer’ on the Korean Peninsula. In July, the proposed
model had a relatively thin lead for E1 but significantly outperformed the other temporal
models for normalized accuracy metrics (e.g., A, R2, and σ). The similar E1 values could
be caused by the fact that rainy days have low solar irradiance. Thus, although T-GCN
and GRU could infer rainy days by analyzing the solar irradiance of adjacent samples,
these models failed to predict the solar irradiance on rainy days. Both spatiotemporal
and temporal analyses of solar irradiance are insufficient in forecasting nonperiodic and
complicated meteorological phenomena. In July, spatiotemporal analysis (T-GCN) un-
derperformed cases in which spatial and temporal features were solely used (GCN and
GRU). As discussed for the experiment on cloudiness, considering spatial correlations of
solar irradiance only could not make the models understand the meteorological contexts
sufficiently deep. However, the proposed model improved this point by analyzing the
correlations between the meteorological variables (RQ3).

The T-GCN, GRU, and proposed model exhibited similar tendencies. These models
exhibited high normalized accuracy metrics (e.g., NE2, A, R2, and σ) from February to April
and October to December, and low accuracy from January and July to September. However,
contrary to these models, the performance of the GCN was worse than its average in spring
(March to April). Because the spring climate of Korea is dry and has clear characteristics
(https://web.kma.go.kr/eng/biz/climate_01.jsp (accessed on 15 August 2022)), this differ-

https://web.kma.go.kr/eng/biz/climate_01.jsp
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ence is not due to irregular meteorological phenomena, such as precipitation. This result
indicates that temporal features are effective for discovering yearly climate patterns.

Table 5. Performance of the proposed and existing models according to months. In the third to
fourteenth columns, * and ** indicate months when each forecasting model had the best and second-
best performances, respectively. Additionally, in the last two columns, * and ** denote forecasting
models that showed the best and second-best performances on average and the lowest and second-
lowest standard deviation, respectively. The hyper-parameters were set as Lo = 24, Lp = 24, N = 4,
and θV = 0.00.

Months Statistics
1 2 3 4 5 6 7 8 9 10 11 12 Avg. S.D.

E2

GCN 0.30 ** 0.39 0.58 0.73 0.76 0.76 0.57 0.59 0.50 0.42 0.32 0.26 * 0.52 0.18
GRU 0.29 ** 0.36 0.51 0.59 0.65 0.65 0.56 0.53 0.48 0.38 0.30 0.24 * 0.46 0.14

T-GCN 0.31 ** 0.37 0.45 0.54 0.60 0.63 0.60 0.54 0.48 0.36 0.32 0.25 * 0.45 ** 0.13 **
Proposed 0.25 ** 0.28 0.33 0.37 0.44 0.46 0.45 0.46 0.39 0.33 0.25 0.22 * 0.35 * 0.09 *

E1

GCN 0.18 ** 0.25 0.38 0.51 0.51 0.51 0.35 0.39 0.32 0.28 0.20 0.16 * 0.34 0.13
GRU 0.17 ** 0.21 0.31 0.37 0.41 0.41 0.34 0.33 0.29 0.23 0.17 0.14 * 0.28 ** 0.10

T-GCN 0.17 ** 0.21 0.28 0.35 0.39 0.42 0.37 0.34 0.29 0.22 0.18 0.15 * 0.28 0.09 **
Proposed 0.18 0.19 0.22 0.25 0.30 0.33 0.31 0.32 0.28 0.23 0.16 ** 0.14 * 0.24 * 0.07 *

NE2

GCN 94.69 81.64 85.37 84.08 92.46 91.04 104.82 91.73 88.30 71.97 ** 79.33 69.56 * 85.48 9.49 *
GRU 92.04 74.71 74.77 67.44 79.23 77.41 102.95 82.48 84.15 64.91 ** 73.57 64.76 * 76.94 10.31 **

T-GCN 96.46 75.91 66.93 62.22 72.84 75.61 110.04 84.11 84.51 62.13 * 78.73 67.45 ** 76.41 ** 12.97
Proposed 78.96 57.30 48.71 ** 42.67 * 53.67 55.03 82.55 72.02 68.38 57.19 60.25 58.85 59.69 * 10.58

A

GCN 0.53 0.56 0.52 0.49 0.45 0.45 0.43 0.48 0.51 0.59 ** 0.59 0.64 * 0.52 0.06
GRU 0.54 0.60 0.58 0.59 0.53 0.53 0.44 0.53 0.53 0.63 ** 0.62 0.66 * 0.57 0.06 **

T-GCN 0.52 0.59 0.62 0.62 0.57 0.55 0.40 0.52 0.53 0.65 * 0.59 0.65 ** 0.57 ** 0.07
Proposed 0.61 0.69 0.72 ** 0.74 * 0.68 0.67 0.55 0.59 0.62 0.68 0.69 0.69 0.66 * 0.06 *

R2

GCN 0.70 0.73 0.66 0.60 0.53 0.53 0.53 0.60 0.65 0.76 0.77 ** 0.82 * 0.66 0.10
GRU 0.72 0.78 0.74 0.74 0.66 0.66 0.55 0.68 0.69 0.80 ** 0.80 0.84 * 0.72 0.08 **

T-GCN 0.69 0.77 0.79 0.78 0.71 0.68 0.49 0.66 0.68 0.82 ** 0.77 0.83 * 0.72 ** 0.09
Proposed 0.79 0.87 0.89 ** 0.90 * 0.84 0.83 0.71 0.75 0.79 0.85 0.87 0.87 0.83 * 0.06 *

σ

GCN 0.71 0.75 0.73 0.72 0.64 0.65 0.57 0.66 0.69 0.80 ** 0.77 0.82 * 0.71 0.07 **
GRU 0.72 0.78 0.76 0.77 0.68 0.69 0.55 0.69 0.69 0.82 ** 0.80 0.84 * 0.73 ** 0.08

T-GCN 0.70 0.77 0.79 0.79 0.71 0.68 0.49 0.67 0.68 0.82 ** 0.77 0.83 * 0.72 0.09
Proposed 0.80 0.87 0.89 ** 0.90 * 0.84 0.83 0.71 0.76 0.79 0.85 0.87 0.87 0.83 * 0.06 *

4.4. Parameter Sensitivity Analysis

We assumed that meteorological parameters observed in spatially adjacent areas could
influence each other’s future meteorological parameters. For example, the wind speed
and direction are affected by the atmospheric pressures of adjacent areas. Therefore, we
conducted a temporal analysis of meteorological variables in adjacent areas using the
spatiotemporal GCN model. However, there are problems in determining (i) spatially
adjacent areas and (ii) correlated meteorological parameters. This section evaluates the
effectiveness of the proposed methods for defining spatial adjacency and composing a
set of input variables. In addition, we assessed the sensitivity of the proposed model to
changes in these two factors.

4.4.1. Meteorological Variable Compositions

The proposed model significantly outperformed the T-GCN [62] by analyzing the
spatial correlations between various meteorological variables, and solar irradiance. The
previous experiments used all the variables that we collected (listed in Table 1). However,
variables that are not correlated with the solar irradiance can hinder the forecasting perfor-
mance of the proposed model. In addition, if the proposed model can exhibit similar or
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better performance with fewer input variables than with every variable, the practicality of
the model will be improved.

Table 1 presents the Pearson correlation coefficients of solar irradiance with other
meteorological variables. We composed the input variable group using a threshold for
the correlation coefficient based on the assumption that variables with higher correlations
contribute more to forecasting performance. Subsequently, we validate this assumption by
adjusting the threshold, as shown in Table 6.

Table 6. Performance of the proposed model according to the variable composition. The first
row presents the thresholds of Pearson correlation coefficients of the forecasting target (i.e., solar
irradiance) with the other meteorological variables (θV). The second row shows the number of
variables chosen based on the thresholds. Additionally, * and ** indicate that the proposed model
had the best and second-best performances with the corresponding θV , respectively. The remaining
hyper-parameters were set as Lo = 12, Lp = 1, and N = 4.

Corr. Threshold (θV ) 0.50 0.40 0.30 0.20 0.10 0.08 0.04 0.00
# Variables 2 3 4 6 9 11 13 15

E2 0.33 ** 0.37 0.40 0.40 0.42 0.33 0.37 0.27 *
E1 0.18 ** 0.20 0.22 0.22 0.22 0.19 0.23 0.15 *

NE2 54.62 ** 62.00 67.26 66.66 70.75 54.77 61.53 43.55 *
A 0.70 ** 0.65 0.63 0.63 0.61 0.69 0.66 0.75 *
R2 0.87 ** 0.83 0.80 0.80 0.78 0.87 0.84 0.91 *
σ 0.89 ** 0.86 0.84 0.84 0.82 0.88 0.84 0.92 *

We assume that not all meteorological variables contribute to the forecasting per-
formance of the proposed model. Variables that are less correlated with solar irradiance
provide unnecessary and overabundant information for the forecasting model. In addition,
if we choose variables that are too strict (i.e., small θV), the model cannot obtain enough
information for understanding weather conditions. Therefore, we expect the model perfor-
mance to exhibit a convex shape for θV . Nevertheless, unexpectedly, the proposed model
had the best performance when we used all 15 variables (θV = 0.00), with a significant
gap. After removing year (YOY) and day (DOY) from 15 (θV = 0.04), the model perfor-
mance showed a sharp decrease. Subsequently, when we removed precipitation (Pt) and
local pressure (PL) from the remaining 13 variables (θV = 0.08), the model exhibited the
second highest performance. In addition, this case’s performance was similar to that of the
θV = 0.50 case, which used only sunshine duration (S) and solar irradiance itself (Sr). It is
not easy to expect the proposed model to understand meteorological phenomena and their
spatiotemporal correlations from the two variables. Accordingly, year and day could be key
factors for discovering correlations between the variables, despite their low PCC. There-
fore, we concluded that the meteorological variables might have non-linear correlations
with solar irradiance, and PCC was not sufficient to reflect these correlations. Likewise,
the meteorological variables, excluding sunshine duration, air temperature, and relative
humidity, have very low PCC with solar irradiance, as shown in Table 1. However, it is
difficult to empirically determine the optimal composition of the meteorological variables.
Future research will focus on feature selection methods for meteorological variables by
combining statistical correlations and domain knowledge in meteorology studies.
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4.4.2. The Number of Neighboring Stations

By comparing the ASOS station locations (Figure 1) with the correlation between their
historical solar irradiance (Figure A1), we can see that the stations have higher correlations
with the closer stations, but the clusters of correlated stations have various sizes. In addi-
tion, every observation station had a high PCC (>0.75), and this result indicates that solar
irradiance at the ASOS stations has similar long-term tendencies. However, we assume
that it is difficult to reflect short-term (hourly or daily) changes and differences in the solar
irradiance. Thus, this study employed fixed-size distance-based nearest neighborhoods,
which is different from existing studies [43,63] that used flexible-size correlation-based
neighborhoods. To examine the advantages and disadvantages of both methods, we as-
sessed the performance fluctuations of the proposed model by adjusting the meteorological
networks using both static and dynamic neighborhood sizes, as shown in Table 7.

Table 7. Performance of the proposed model according to the edge density of meteorological networks.
The edge density was adjusted using the number of neighborhood stations (N) and the threshold
for the Pearson correlation coefficient between historical solar irradiance of stations (θR). # Nodes
and # Edges indicate the number of nodes and edges, respectively, in the meteorological networks
constructed according to N and θR. In addition, * and ** denote that the proposed model had the
best and second-best performances with the corresponding N and θR, respectively. The remaining
hyper-parameters were set as Lo = 12, Lp = 1, and θV = 0.00.

# Neighborhoods (N) Corr. Threshold (θR)
1 2 3 4 5 6 7 8 9 0.93 0.94 0.95

# Nodes 42 42 42 42 42 42 42 42 42 42 42 42
# Edges 27 53 80 104 129 153 181 204 229 137 85 46

E2 0.28 0.23 * 0.26 0.27 0.29 0.24 ** 0.29 0.29 0.30 0.25 ** 0.29 0.24 *
E1 0.18 0.12 * 0.17 0.15 0.18 0.13 ** 0.18 0.16 0.18 0.13 ** 0.18 0.13 *

NE2 45.87 38.07 * 43.06 43.55 48.52 39.65 ** 47.45 48.19 50.79 42.08 ** 49.33 40.79 *
A 0.74 0.79 * 0.76 0.75 0.73 0.78 ** 0.73 0.73 0.72 0.77 ** 0.73 0.78 *
R2 0.90 0.94 * 0.92 0.91 0.90 0.93 ** 0.90 0.90 0.89 0.92 ** 0.90 0.93 *
σ 0.91 0.94 * 0.92 0.92 0.90 0.93 ** 0.90 0.90 0.89 0.93 ** 0.90 0.93 *

When we fixed the number of neighborhoods (N), the proposed model exhibited
the best performance for N = 2. Then, the performance worsened according to the
increment in neighborhood sizes, and suddenly, the model exhibited the second-highest
performance at N = 6. After N = 6, the model performance deteriorated again with
the neighborhood extension. The proposed model assumes that the weather conditions
of neighboring stations influence each other. This result indicates that closer stations do
not always have a greater influence on future weather conditions. Because observation
stations have different geographical features and cannot be located at equal distances, we
should search for the optimal number of neighborhoods according to the compositions
of the observation stations. In addition, the number of influential stations is not fixed.
Thus, we assessed the performance of the proposed model in cases in which we defined
the adjacency of the stations according to correlations of their solar irradiance history.

As shown in Figure A1, the observation stations exhibit high PCC values. This could
mean that the solar irradiance at most stations exhibited similar tendencies. However,
to handle the output instability of solar power plants, regional differences in solar irra-
diance should be accurately forecast. Although the threshold-based approach could not
outperform the nearest neighborhoods, the θR = 0.95 case had the second-highest perfor-
mance among all cases. However, the θR = 0.93 case underperformed at N = 6, and the
θR = 0.94 case exhibited a similar performance to the N = 9, which is the worst. Consid-
ering the values of θR in these cases, the performance of the proposed model is sensitive
to θR. Furthermore, if PCC can reflect the meteorological influence between observation
points, model performance will show consistent tendencies according to θR. When θR is
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lower than a certain value, overabundant information can be provided to the model. In
addition, with too high θR, the model cannot obtain sufficient information to analyze the
spatial correlations of meteorological features. However, unexpectedly, the performance of
the proposed model had an irregular tendency according to θR, and among the three cases
(θR = 0.93, 0.94, and 0.95), θR = 0.94 exhibited a significantly worse performance than the
others. This result contradicts the observations above.

Both the distance-based and correlation-based approaches exhibited irregular tenden-
cies. In addition, although the distance-based approach outperformed the correlation-based
approach, the difference was not significant. In conclusion, neither approach was sufficient
in reflecting the spatial correlations and meteorological influences between the observation
areas. Future research should focus on developing measurements of spatial correlations.

5. Conclusions

This study aims to conduct day-ahead hourly forecasting of solar irradiance by ana-
lyzing the spatio-temporal correlations of solar irradiance with multiple meteorological
variables. We also evaluated the effectiveness of (i) spatial analysis, (ii) temporal analysis,
and (iii) multivariate analysis for solar irradiance forecasting and validated the underlying
research questions presented in Section 1. We collected solar irradiance and other mete-
orological variables (Table 1) from 42 ASOS stations on the Korean Peninsula (Figure 1).
For spatiotemporal analysis of the variables, we modeled the ASOS observation data as a
dynamic attribute network, which has the stations as nodes, variables as attributes, and spa-
tial adjacency between the stations as edges. We then developed a novel solar irradiance
forecasting model that analyzes the dynamic attributed network and predicts hourly solar
irradiance at each station by modifying the AST-GCN model [51].

We evaluated the effectiveness of the proposed model by comparing its prediction
accuracy with those of existing deep learning-empowered models and conventional re-
gression models. Subsequently, to validate the practicality of the proposed model, we
examined its accuracy according to the prediction sequence lengths (from hour-ahead
to day-ahead prediction), cloudiness, months, variable compositions, and edge density
of the network. The proposed model outperformed the existing models, especially in
terms of long-term prediction. Contrarily, most of the existing studies have been limited
in intra-day prediction (1 to 6 h ahead) [18]. The comparison between the performances
of the proposed and existing models indicates that the spatial, temporal, and multivariate
features of atmospheric data are synergistic for predicting solar irradiance. Although a few
previous studies [43,46,50] attempted to combine temporal and spatial features or used
both temporal and multivariate features, there have barely been either forecasting models
integrating the three factors or validations for synergistic effects among the factors. In
addition, the proposed model exhibited higher and more stable performances on most
cloudiness levels and months than the existing models. The proposed model exhibited
performance decrements on overcast days and summer as with the existing ones. However,
more or less, solar irradiance forecasting models are difficult to avoid this problem caused
by frequent thunderstorms in the summer of the Korean Peninsula [75,76]. The experi-
ment for variable compositions showed that the correlation coefficients were insufficient in
reflecting spatiotemporal correlations between meteorological variables. Likewise, both
geographic distances and correlation coefficients were insufficient in establishing spatial
influences between the atmospheric contexts of the observatories. In future research, we
will address the following limitations:
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• Prediction sequence length: We evaluated the forecasting performance of the proposed
and existing models on multiple prediction sequence lengths (from an hour-ahead
to a day-ahead prediction). However, predicting solar irradiance with longer time
intervals (e.g., a week or a month) will be helpful for the practical usage of solar power.
We assume that the long-term dependency problem caused by adopting GRU layers
hindered the long-term prediction performance of the proposed model. In further re-
search, we will improve this problem by applying the attention mechanism to consider
relative importance of time points, adjacent stations, and meteorological variables.

• Low accuracy on high cloud cover: The proposed model showed performance decre-
ment on cloudy days, although the decrement was not as significant as the existing
models. This problem might come from difficulties in predicting solar irradiance on
cloudy days but also due to forecasting cloudiness. Wind speeds and directions at high
altitudes are closely correlated with cloudiness [77], and future research will attempt
to consider these variables in addition to those observed at the ground observatories.

• Multi-modal analysis: Atmospheric observation data are collected through various
devices (e.g., sensors, radars, cameras, etc.) deployed on ground stations, satellites,
observation balloons, aircraft, etc. Despite the variety of observation data, this study
has focused on sensor data from ground observatories. Combining the multi-modal
and multi-aspect observations will enable forecasting models to discover more accu-
rate information for atmospheric contexts. For example, the ground observatories
were not located with a uniform gap, and geographical characteristics in the gaps
were also not homogeneous. Thus, covering the gaps by incorporating geographical
features [38,78], land usages [79], and satellite data [80] will be effective for analyzing
spatial correlations between atmospheric contexts of the observatories.
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Appendix A

Appendix A.1. Data Statistics

This section presents figures and tables that provide the details of our experimen-
tal dataset.

Figure A1. A heat map for Pearson correlation coefficients between historical solar irradiance (January
2017–December 2019) of the ASOS stations. The darker colors indicate that solar irradiance of two
ASOS stations were more correlated with each other.

Figure A2. Monthly distributions of cloud cover in our experimental dataset (January 2017–December
2020). Cloud cover had imbalance distributions within each month. Moreover, the distributions were
different for each month.
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Appendix A.2. Experimental Results

In this section, we visualize our experimental results to enhance readability.

(a) E2 at Lo = 12 and Lp ∈ [1, 6] (b) E1 at Lo = 12 and Lp ∈ [1, 6] (c) NE2 at Lo = 12 and Lp ∈ [1, 6]

(d) A at Lo = 12 and Lp ∈ [1, 6] (e) R2 at Lo = 12 and Lp ∈ [1, 6] (f) σ at Lo = 12 and Lp ∈ [1, 6]

(g) E2 at Lo = 24 and Lp ∈ {1, 3, 6, 12, 24} (h) E1 at Lo = 24 and Lp ∈ {1, 3, 6, 12, 24} (i) NE2 at Lo = 24 and Lp ∈ {1, 3, 6, 12, 24}

(j) A at Lo = 24 and Lp ∈ {1, 3, 6, 12, 24} (k) R2 at Lo = 24 and Lp ∈ {1, 3, 6, 12, 24} (l) σ at Lo = 24 and Lp ∈ {1, 3, 6, 12, 24}

Figure A3. The performance comparison of the proposed model with the existing models according
to changes in the prediction and observation periods. X-axes of the plots indicate the prediction
sequence length, and Y-axes correspond to the evaluation metrics. Lp and Lo denote the prediction
and observation sequence lengths, respectively.
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(a) E2 at Lo = 24 and Lp = 24 (b) E1 at Lo = 24 and Lp = 24 (c) NE2 at Lo = 24 and Lp = 24

(d) A at Lo = 24 and Lp = 24 (e) R2 at Lo = 24 and Lp = 24 (f) σ at Lo = 24 and Lp = 24

Figure A4. A comparison of the performance stability of the proposed model with the existing
models according to the cloud cover. X-axesof the plots indicate the cloudiness level, and Y-axes
correspond to the evaluation metrics. The translucent horizontal lines indicate average performance
of the models.

(a) E2 at Lo = 24 and Lp = 24 (b) E1 at Lo = 24 and Lp = 24 (c) NE2 at Lo = 24 and Lp = 24

(d) A at Lo = 24 and Lp = 24 (e) R2 at Lo = 24 and Lp = 24 (f) σ at Lo = 24 and Lp = 24

Figure A5. A comparison of the performance stability of the proposed model with the existing
models according to the month. X-axes of the plots indicate the month, and Y-axes correspond to the
evaluation metrics. The translucent horizontal lines indicate average performance of the models.
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