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Marek Jaśkiewicz and Milos Poliak

Received: 8 August 2022

Accepted: 12 September 2022

Published: 22 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Measuring Roadway Lane Widths Using Connected Vehicle
Sensor Data
Justin A. Mahlberg , Howell Li , Yi-Ting Cheng , Ayman Habib and Darcy M. Bullock *

Joint Transportation Research Program, Purdue University, West Lafayette, IN 47907, USA
* Correspondence: darcy@purdue.edu

Abstract: The United States has over three trillion vehicle miles of travel annually on over four million
miles of public roadways, which require regular maintenance. To maintain and improve these
facilities, agencies often temporarily close lanes, reconfigure lane geometry, or completely close
the road depending on the scope of the construction project. Lane widths of less than 11 feet in
construction zones can impact highway capacity and crash rates. Crash data can be used to identify
locations where the road geometry could be improved. However, this is a manual process that does
not scale well. This paper describes findings for using data from onboard sensors in production
vehicles for measuring lane widths. Over 200 miles of roadway on US-52, US-41, and I-65 in Indiana
were measured using vehicle sensor data and compared with mobile LiDAR point clouds as ground
truth and had a root mean square error of approximately 0.24 feet. The novelty of these results is that
vehicle sensors can identify when work zones use lane widths substantially narrower than the 11 foot
standard at a network level and can be used to aid in the inspection and verification of construction
specification conformity. This information would contribute to the construction inspection performed
by agencies in a safer, more efficient way.

Keywords: lane width; road maintenance; advanced driver assistance systems; ADAS; connected
and autonomous vehicles; construction; camera detection

1. Introduction

The United States (US) has over three trillion vehicle miles of travel on over four mil-
lion miles of public roadways, which require regular maintenance [1]. To maintain and
improve these facilities, agencies often temporarily close lanes, reconfigure lane geome-
try, or completely close the road depending on the scope of the project. Areas leading
to, through, and after the modified road configuration are all parts of the construction
work zone. In the US, one work zone fatality occurs for every four billion vehicle miles of
travel [2]. One of the largest issues with construction work zones is that it is often difficult
to assess pavement markings, lane geometry and widths, and shoulder widths through
work zones.

2. Background

Previous studies have shown traffic volume, lane width, outside shoulder width, and
pavement condition are contributing factors to crashes and have a direct impact on speed
and capacity along US roads [3–5]. Another study captured geometric features through
a work zone using LiDAR data and compared the impact of the collected features with
vehicle speed; the key finding from that study can be seen in Figure 1 below. The graphic
shows the lane widths through a work zone on I-70 in Indiana, which had a pronounced
impact on the average travel speeds in the 2017 work zone [6]. It can be observed that
when the lane widths are less than 11 feet (callout i), there is a substantial change in vehicle
speeds and the resulting queues can lead to crashes [7].
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Habib, and D. M. Bullock. Application of LiDAR and Connected Vehicle Data to Evaluate the Impact 

of Work Zone Geometry on Freeway Traffic Operations. Transportation Research Record, Vol. 2672, 

No. 16, 2018, pp. 1–13. https://doi.org/10.1177/0361198118758050 (accessed on 10 April 2022) [6]. 

Figure 1a shows linear referenced lane widths from mile marker 18 to mile marker 6 

in the right lane of I-70 in the westbound direction. The work zone section is the area be-

tween the two dotted orange lines. There is a section on the roadway where the lane width 

decreases to 10 feet at mile marker 11.6 (callout i), while the INDOT minimum lane width 

allowed for this project is 11 feet. Additionally, near this location, the distance from the 

pavement markings to the barrier is less than 1 foot [6]. 

Figure 1b shows a spatiotemporal heat map of speed differences, or speed deltas, 

using probe vehicle speed data on I-70 westbound. The narrow section is indicated with 
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average speeds. Due to noise in smaller changes in speed, deltas greater than 15 mph were 

used. The color of the heatmaps shows the duration for which a given speed delta oc-

curred. For example, a green speed delta indicates that a difference in speeds with adja-

cent segments greater than 15 mph occurred for less than one hour at that location and 

time. At mile marker 14 on April 19, the duration of the speed delta greater than 15 mph 

is more than 6 h [6]. 

In Figure 1a,b, callout i indicates the location where lane widths fall below 10 feet. In 

Figure 1b, callout ii corresponds to the congestion in the work zone shown. The heatmap 

Figure 1. I-70 Westbound lane width and traffic speed changes; (a) longitudinal plot of lane width
on I-70 in the westbound direction; and (b) frequency of speed changes greater than 15 miles per
hour. Image source: Mekker, M. M., Y. J. Lin, M. K. I. Elbahnasawy, T. S. A. Shamseldin, H. Li, A.F.
Habib, and D. M. Bullock. Application of LiDAR and Connected Vehicle Data to Evaluate the Impact
of Work Zone Geometry on Freeway Traffic Operations. Transportation Research Record, Vol. 2672, No.
16, 2018, pp. 1–13. https://doi.org/10.1177/0361198118758050 (accessed on 10 April 2022) [6].

Figure 1a shows linear referenced lane widths from mile marker 18 to mile marker
6 in the right lane of I-70 in the westbound direction. The work zone section is the area
between the two dotted orange lines. There is a section on the roadway where the lane
width decreases to 10 feet at mile marker 11.6 (callout i), while the INDOT minimum lane
width allowed for this project is 11 feet. Additionally, near this location, the distance from
the pavement markings to the barrier is less than 1 foot [6].

Figure 1b shows a spatiotemporal heat map of speed differences, or speed deltas, using
probe vehicle speed data on I-70 westbound. The narrow section is indicated with the black
dotted line. The speed delta between two adjacent segments is the difference in average
speeds. Due to noise in smaller changes in speed, deltas greater than 15 mph were used.
The color of the heatmaps shows the duration for which a given speed delta occurred. For
example, a green speed delta indicates that a difference in speeds with adjacent segments
greater than 15 mph occurred for less than one hour at that location and time. At mile marker
14 on April 19, the duration of the speed delta greater than 15 mph is more than 6 h [6].

In Figure 1a,b, callout i indicates the location where lane widths fall below 10 feet. In
Figure 1b, callout ii corresponds to the congestion in the work zone shown. The heatmap
shows recurring speed deltas as traffic approaches the narrow lane width. On 19 April 2017,
(callout iii), there is a lane closure having a greater impact on traffic. Although the narrow
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section is short, this shows the lasting impact it has on traffic. Traffic queues extend beyond
the work zone warning area. This is crucial as a previous study found that non-recurring
mile-hours of congestion have a great influence on the crash rate. The congested crash rate
on all Indiana interstates in 2014 was found to be 24 times greater than the uncongested
crash rate [8].

3. Measuring Lane Widths with Connected Vehicle Data

The recent emergence of high-fidelity cameras equipped in modern production ve-
hicles can detect the width of the vehicle driving lane using computer vision, machine
learning, and measurement algorithms [9]. Conventionally, these computer vision and
machine learning applications are used for Advanced Driver Assistance Systems (ADAS)
to support level two autonomous driving, such as lane assist features. An opportunity
has emerged to make use of this data to provide insight into geometric conditions on all
roadways, but especially work zones where lane widths are often reduced. A drawback to
the use of these sensors is the performance of the sensors in various weather conditions,
including snow, fog, rain, and various geometric designs [10,11]. Although these conditions
were not experienced during this study, the lack of readings can be eliminated in a crowd-
sourced data set, the benefit of using production vehicle data is that it can be crowdsourced
and provide ubiquitous coverage across the state without resource-intensive deployments
and field data collection efforts. This study explores the use of vehicle sensor data on rural
and urban road networks for assessing the geometry of the driving lane, while camera and
speed data are used for validation.

4. Motivation

Studies have shown the importance of adequate lane widths for work zone safety [6,12].
Figure 2 shows a location on I-65 that experienced an increased crash rate during construc-
tion. Mobile LiDAR data was collected to capture lane widths and lateral clearance between
the edge of the driving surface and the construction barrier. Figure 2 shows the southbound
direction of I-65 at this location, and callout i shows a scuff mark on the construction barrier
due to tire rubbing.
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traveling through the work zone in the southbound lanes and the black semi (callout ii) 

is traveling over the left edge line close to the construction concrete barrier. 

Figure 2. Capture of lane widths through the I-65 work zone at mile marker 179.

Figure 3a shows an aerial view of the work zone and the respective travel directions.
Callout i is the same scuff mark that is observed in Figure 2. In Figure 3a, as the two semis
are traversing the work zone, there is not much tolerance for lateral deviation of the trucks.
An image directly above the work zone can be seen in Figure 3b. Two semis are traveling
through the work zone in the southbound lanes and the black semi (callout ii) is traveling
over the left edge line close to the construction concrete barrier.
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Figure 3. Aerial photos of the I-65 work zone at mile marker 179; (a) aerial view of I-65 work zone at
mile marker 179; and (b) birds-eye view of I-65 work zone at mile 179.

The spatiotemporal heatmap in Figure 4 shows vehicle speeds at this location by linear
referenced 0.1 mile segments. The heatmaps have been extensively used in past research to
visualize congested conditions [13–16]. The horizontal axis on the speed profile heatmaps
represents the time of day while the vertical axis represents mile marker location. I-65 is
shown in the southbound (SB) direction of travel from mile marker 200 to mile marker 172
in Figure 4. Figure 4a shows the heatmap from October 14 to October 15, 2021. Callout i
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corresponds to a semi-rollover. This crash caused the interstate to be shut down for almost
12 h, and the total impact on the southbound direction was almost 20 miles of interstate
shutdown or slow-moving diverted traffic for a total recovery period of 16 h. Subsequent
crashes at this location occurred on October 15 (callout ii) and November 30 (callout iii).
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Figure 4. I-65 speed profile heatmap for three crashes and highway closures; (a) two crashes
on 14–15 October 2021; and (b) one crash over 30 November with traffic impact lasting until
1 December 2021.

5. Objective

The objective of this study is to determine if lane width measurements from sensors
onboard production vehicles can be used to screen public road networks for sections that
have less than prescribed lane widths. Previous studies have found many uses for con-
nected vehicle data, including pavement marking evaluation, traffic signal performance,
and crash mitigation through surrogate safety measures and hard braking [17–21]. The
benefit of using production vehicle data is that it can be crowdsourced and provide ubiqui-
tous coverage across the state without resource-intensive deployments and data collection.
The vehicle sensor data used in this study was validated through field measurements and
mobile LiDAR data on rural and urban roadways.
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5.1. Measuring Lane Widths with Mobile Mapping Units

Using a mobile LiDAR system, the data collection process on a 12 mile section of
roadway took only 20 min once the system was set up and calibrated (Figure 5a). With
the current data processing and reduction methods, the lane width measurements can be
obtained within one day of the data collection. However, it is costly to deploy mobile
LiDAR mapping every time a work zone is reconfigured or to perform studies over a large
geographic area.
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Figure 5. LiDAR and production vehicle data collection equipment; (a) Purdue Mobile Mapping
System for LiDAR data collection; and (b) production vehicle for data collection.

5.2. Measuring Lane Widths with Production Vehicles

Production vehicles instrumented with data loggers are utilized to collect lane width
data for evaluation. The lane width value is a direct output provided from the vehicle
that has been calculated through the ADAS camera located approximately 4 feet from the
driving surface. The vehicle does the on-board edge computing from the camera images
to determine the lane width. As a validation tool, a GoPro camera is mounted within the
vehicle looking ahead to capture the roadway for validation. To validate the lane width
measurements of the production vehicles, the Purdue Mobile Mapping System for LiDAR
data collection is used to verify accuracy (Figure 5a). Production vehicle data is evaluated
through a work zone on I-65 northbound at mile marker 179 (Figure 5b) and compared
with the results from the mobile LiDAR platform.

6. Evaluation Protocol—Validation of Camera Detection Lane Widths Using LiDAR

Ground-truth data are collected with GoPro cameras and mobile LiDAR on 14 July
2021, and 14 January 2022. The camera images are taken at half-second intervals, con-
taining timestamps and GPS location in the metadata. Purdue’s Mobile Mapping System
collects the LiDAR data for precise width validation by measuring the distance between
the centerlines of the automatically derived lane markings from the acquired point clouds.
The production vehicle provided 8831 measurements and the mobile mapping system
provided 1,378,780 data points on the data collection route. The data collection routes are
the US-52 and the US-41 from West Lafayette to Lowell, Indiana (Figure 6a). Figure 6b,c
are satellite images of US-41/US-52 to provide context of a typical cross section along the
data collection route. These locations correspond to callout i and callout ii, respectively in
Figure 6a.
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Figure 6. Data collection of LiDAR and production vehicle data on US-52 and US-41; (a) US-52 and
US-41 data collection route; (b) US-41 typical cross section; and (c) US-52 typical cross section.

The Purdue Wheel-based Mobile Mapping System (PWMMS) is equipped with four Li-
DAR units: three Velodyne HDL-32Es units seen in the front left and rear of the vehicle,
and one VLP-16 unit at the front right. The vehicle is also equipped with high-definition
RGB cameras in the front left, front right, and rear. The LiDAR and imaging units are
directly georeferenced with a global navigation satellite system/inertial navigation system
(GNSS/INS) unit. Through a system calibration procedure, mounting parameters between
camera/LiDAR units and a GNSS/Inertial Measurement Unit (IMU) navigation system are
estimated, facilitating the reconstruction of georeferenced, well-registered/georeferenced
point clouds from the LiDAR scanners [22]. There are many uses for the registered point
clouds, including pavement marking evaluation, lane widths, pavement distress, and ditch
line mapping [12,23–25]. For lane width estimation, the pavement markings are extracted
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from registered point clouds. The methods used to extract pavement markings follow the
methodology proposed by Cheng et al. [22]. Once the pavement markings are identified,
the marking centerline is derived and clustered to identify areas with ambiguous or missing
lane markings before the lane width can finally be calculated [12].

Lane widths from mobile LiDAR and production vehicle data are compared by linear
referencing each data point to the nearest 0.01 mile marker on the data collection route and
by assigning the direction of travel using the vehicle heading. Once this is done, an average
is taken for each 0.01 mile and plotted as a scatter plot in Figure 7a below. LiDAR lane
widths are plotted in black, and production vehicle widths are plotted in red. The graph
shows the mile marker along the horizontal axis and the lane width value observed on
the vertical axis. There are a few anomalies observed that are caused by lane changes in
the production vehicle and missing pavement markings through towns at mile marker 21.
There is an approximate 6” offset between the lane widths in Figure 7a because the LiDAR
systems measured center to center of lines and the connected vehicle measures inside edge
of line to inside edge of line. Figure 7b shows the same data, but with both measurements
referenced from center of line to center of line.
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To provide a spot check on the data, the team performed field validation using manual
measurement of lane widths on the study route with a tape measure (Figure 8a). The
team measured from the inside edge of pavement marking to the opposite inside edge of
pavement marking, midpoint of pavement marking to the midpoint of pavement marking,
and the outside edge of pavement marking to the outside edge of pavement marking.
An example of the measurements taken can be seen in Figure 8b for the centerline marking
and Figure 8c for the right edge marking.
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The same analysis is performed in the southbound direction of the study route.
Figure 9a shows the raw lane width for LiDAR width in black and production vehicle
data width in red. Similar to the northbound direction, the 6 inch adjustment is needed to
reconcile the difference in the measurement methods. Figure 9b shows the adjusted data.
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The trends in lane width remain consistent except for mile marker 33 (callout i). The GoPro
images confirm that the production vehicle changed lanes at this location from the right
lane to the left lane, while all mobile LiDAR-based lane width values are derived for the
right lane.
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7. Scalability

Crowdsourced data from vehicles equipped with ADAS scales well for locating lane
width challenges at a state level. A dataset of over 1.5 million data points generated from
connected vehicles from 24 November 2021, to 29 March 2022, on limited-access roadways
in the state of Indiana is shown in Figure 10.
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Figure 10. Crowdsourced data across Indiana.

This data is then linearly referenced to a corresponding route and mile post. The
vehicle miles traveled for each interstate by direction are summarized in Table 1 below.
For I-65 alone, there are over 160,000 data points traveling 8000 miles, with 581 vehicle
trips taken. Redundancy is important to cover roadway sections with multiple lanes, lane
change activity, environmental variables, and other traffic that may occlude line visibility.
This data source provides an opportunity for agencies to assess their infrastructure quickly
and efficiently.



Sensors 2022, 22, 7187 12 of 15

Table 1. Summary of crowdsourced data on Indiana Interstates.

Interstate
(Total Miles)

Vehicle Miles Traveled (Total Unique Trips)

Northbound Southbound Eastbound Westbound Inner Loop Outer Loop

I-265 (14) 355
(94)

353
(95)

I-465 (106) 2822
(234)

2849
(294)

I-469 (62) 199
(14)

159
(17)

I-64 (146) 862
(59)

854
(59)

I-65
(524)

4194
(291)

3830
(290)

I-69 (716) 3727
(225)

3560
(252)

I-70
(314)

2208
(163)

1860
(144)

I-74 (342) 905
(105)

947
(105)

I-865
(10)

77
(60)

112
(50)

I-94 (92) 1671
(109)

1239
(84)

The crowdsourced production data is also validated with LiDAR-based lane widths.
Figure 11 shows the average crowdsourced lane widths after the 6 inch adjustment and
the average LiDAR widths on I-65 from mile marker 175 to mile marker 200. Figure 11a
shows the lane widths on I-65 northbound and Figure 11b shows the lane widths on I-65
southbound. The lane widths from the crowdsourced data track well with the LiDAR
width. The LiDAR widths are only provided from mile marker 178 to mile marker 188 as
the Mobile Mapping System only collected data on that stretch of roadway, which also
shows the limitation of single-vehicle data collection compared to crowdsourced data.
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Figure 11. Lane width comparison on I-65 of LiDAR and crowdsourced lane width data; (a) north-
bound; and (b) southbound.

8. Identifying Lane Width Outliers with Connected Vehicle Data

Crowdsourced data for 25 miles of interstate using three vehicles is shown in Figure 12.
Figure 12a shows the lane widths in the northbound direction, and Figure 12b shows the
lane widths in the southbound direction for only crowdsourced data. The red box shows
the area of interest where the work zone resides. Callout i show locations through the
work zone where lane widths fall below ten feet in the northbound direction, specifically at
mile markers 178.97, 178.99, and 179.16. Callout ii pinpoints locations in the southbound
direction where lane widths are also below ten feet, specifically at mile marker 179.12, which
corresponds to the location identified in Figure 2. These locations were validated with the
LiDAR widths and are also the places that have seen crashes over the construction period.
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9. Conclusions and Recommendations

Traditional methods for evaluating lane widths by measuring with tapes and/or
survey crews are impractical in many construction zones with limited work areas and high
traffic volumes. The emergence of computer vision and machine learning technologies for
driving ADAS functionality in production vehicles has presented a rich new data set for
agencies to monitor construction zone lane widths. This study investigated whether lane
width data from production vehicle sensors provides a sufficiently accurate and scalable
data source for agencies to identify areas with narrow lane widths state-wide. The Purdue
Wheel-based Mobile Mapping System with LiDAR units was used to evaluate the accuracy
of the production vehicle data. Vehicle sensor data tracked closely with LiDAR-measured
widths (Figures 7, 9 and 11) with a root mean square error of approximately 0.24 feet.

The novelty of these results is that onboard vehicle sensors can identify where work
zones have lane widths substantially narrower than the 11 foot standard at a network level
and can be used to aid in inspecting and validating construction work zones at scale. This
information would contribute to the construction inspection performed by agencies in a safer,
more efficient way. In the long term, it will be important to collect not only lane width but
also lateral offset to obstructions such as barrier walls (Figure 2, callout i) and or guardrails.
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