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Abstract: The addition of incorrect agri-food powders to a production line due to human error is a
large safety concern in food and drink manufacturing, owing to incorporation of allergens in the final
product. This work combines near-infrared spectroscopy with machine-learning models for early
detection of this problem. Specifically, domain adaptation is used to transfer models from spectra
acquired under stationary conditions to moving samples, thereby minimizing the volume of labelled
data required to collect on a production line. Two deep-learning domain-adaptation methodologies
are used: domain-adversarial neural networks and semisupervised generative adversarial neural
networks. Overall, accuracy of up to 96.0% was achieved using no labelled data from the target
domain moving spectra, and up to 99.68% was achieved when incorporating a single labelled data
instance for each material into model training. Using both domain-adaptation methodologies together
achieved the highest prediction accuracies on average, as did combining measurements from two
near-infrared spectroscopy sensors with different wavelength ranges. Ensemble methods were
used to further increase model accuracy and provide quantification of model uncertainty, and a
feature-permutation method was used for global interpretability of the models.

Keywords: near-infrared spectroscopy; domain adaptation; transfer learning; machine learning;
process monitoring; food and drink

1. Introduction

Powdered agri-food materials are widely used in food and drink manufacturing due
to their long shelf life, small volume, and ability to be easily added during processes [1].
Examples of agri-food powders include flour, coffee, dairy powders, nutritional supple-
ments, and flavorings [1–3]. One problem encountered during food production is human
error causing the wrong material to be added to a conveyor line. A 2019 annual report from
the UK Food Standards Agency (FSA) stated that production errors, including formulation
and labelling errors, accounted for 18% of product allergen incidents during the preceding
year [4]. It is estimated that up to 10% of people have a food allergy in Western countries
and the number is increasing [5]. Therefore, these errors can lead to product rework or
waste if the final composition analysis identifies that the food contains the wrong ingredi-
ents. Furthermore, the product may have to be recalled if it has already been transported
from the factory. Early detection of incorrect materials in the production line would reduce
food waste and improve productivity, economics, and sustainability of agri-food systems.

Near-infrared (NIR) spectroscopy measures the absorbance of near-infrared light,
which is dependent on the composition of a material. NIR is now a leading analytical tool
for evaluation of food safety, authenticity, and material properties, owing to its advantages
of not requiring sample preparation, being nondestructive and noninvasive, and producing
real-time measurements [6]. It is also a suitable sensing technique for in-line applications
for flowing solid and liquid samples derived from animal or plant sources [7,8]. NIR has
been widely used to monitor properties of food powders, such as detecting adulteration [9]
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or determining composition [10]. Supervised machine learning (ML) techniques have been
increasingly used to analyze NIR spectra, due to the overlapping peaks and nonlinear
relationships between composition and absorbance intensities [11–13]. Supervised ML
maps inputs to outputs with the aim of accurately predicting the outputs of data that were
not used during training. However, in a production setting where an NIR sensor is in place
to monitor a production line, collecting sufficient spectra from each material category may
cause unacceptable disruption to the manufacturing process due to the time required to
collect the data. ML models could be trained on static samples and directly transferred to
the production line, but these are unlikely to be accurate when tested on moving materials.
Several studies have shown this by focusing on the impact of motion conditions on acquired
NIR spectra, for example, for monitoring minced beef [14,15], olive quality [16], food [17],
and pharmaceutical powders [18,19]. For example, Dixit et al. (2016) [15] noticed increased
spectral noise, and Cama-Moncunill et al. (2016) [17] showed changes to the intensity values
of peaks under moving conditions. Therefore, methodologies are required to overcome the
spectral shift between static and moving samples to enable effective transfer of these models.
This would reduce the barriers to successful implementation of in-line NIR monitoring in
industrial production lines by removing or minimizing the data-collection burden under
moving conditions.

Domain adaptation is a subcategory of ML that alters how a model is trained so that it
accurately predicts data from outside the range on which they were trained [20]. For this
task, domain adaptation can be used to train an ML model on the spectra acquired under
stationary conditions (the source domain), akin to a manufacturer collecting offline data
in a laboratory, and aid transfer of these models to the moving conditions on a conveyor
line (the task domain). Matrix or kernel-based methods have previously been used for
domain adaptation of 1D NIR spectra to find projections between domains [21,22] or to
also extract discriminative features to be used for a main learning task [23–26]. Ensemble
methods that maximize model diversity and prediction similarity in the new domain data
have also been used to increase the probability that transferable correlations are used [27].
However, deep-learning methods based on neural networks are common when using
domain adaptation on visible-light images [28] or 2D NIR images [29,30], particularly
domain-adversarial neural networks [31,32]. In this work, two deep-learning domain-
adaptation approaches are investigated: semisupervised generative adversarial networks
(SGANs) and domain-adversarial neural networks (DANNs). These methods are used
both individually and combined and compared to using transfer learning without domain
adaptation. Using these methods with no labelled data from the target domain is also
compared to using a single labelled instance from each material category collected under
moving conditions. To the authors’ knowledge, this is the first use of deep learning for 1D
NIR spectral domain adaptation and the first use of SGANs with NIR spectra. Two NIR
sensors covering different wavelength ranges and three motion speeds are investigated. The
ML task aims to classify five allergen groups for 19 food-powder materials. The methods
are able to reduce the barrier to successful implementation of NIR and ML combinations in
production environments by minimizing the data-collection burden and enhancing trust in
the models’ predictions.

2. Materials and Methods

The aim of the classification task was to identify the allergen category to which each
food powder material belonged. The five allergen classes were: gluten, gluten-free, peanut,
tree nut, and egg (Table 1). A total of 19 food-powder materials were investigated. The
materials were purchased from stores in Nottingham, UK.
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Table 1. Food powder materials measured using near-infrared spectroscopy. In total, 19 food powder
materials were measured.

Allergen Materials

Gluten Spelt, rye, buckwheat, oat, barley, brown, wheat (three brands), and wheat gluten flours
Gluten-free Gluten-free white (three brands), coconut, tapioca, corn, and rice flours

Peanut Peanut and peanut butter powders
Tree nut Almond flour (three brands)

Egg Whole egg, egg yolk, and egg white powders

2.1. Near-Infrared Spectroscopy Measurement

All materials were measured using two NIR sensors: NIRONE S2.0 (wavelength range:
1550 to 1950 nm, 1 nm resolution) and S2.5 (wavelength range: 2000 to 2450 nm, 1 nm
resolution) (Spectral Engines, Oulu, Finland). Before acquisition of each spectrum, a white
reference spectrum at 90% light intensity and a dark background spectrum at zero light
intensity were collected. The distance between the NIR sensors and the sample surface was
maintained at 2 cm for all measurements. Samples weighing approximately 100 g were
placed in a 12 cm-diameter glass petri dish and compressed to obtain a flat surface (Figure 1).
The samples were measured under static and motion conditions at three speeds: 0.017,
0.036, and 0.068 ms−1 (designated as slow, medium, and fast throughout, respectively). For
the static measurements, between each spectrum acquisition, the petri dish was rotated
so that spectra were collected from all areas of the sample. For the measurements under
motion conditions, the petri dishes were placed on a rotational sample holder that had
variable speed settings. Five samples were measured from each material and ten spectra
were acquired from each sample, producing a total of 50 spectra for each material and
for each sensor. For the materials sourced from three brands (see Table 1), 3 × 50 spectra
for each material and each sensor were collected. Therefore, in total, 1250 spectra were
collected using each sensor at each speed (stationary, slow, medium, and fast).
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Figure 1. A diagram of the experimental setup. Two NIR sensors were used (S2.0 and S2.5). The
distance between the NIR sensors and the sample surface was 2 cm. Samples weighing 100 g were
measured in a 12 cm-diameter petri dish. The samples were measured under stationary conditions and
at three speeds (slow—0.017 ms−1, medium—0.036 ms−1, fast—0.068 ms−1) using the rotating stage.

2.2. Domain Adaptation

ML models correlate inputs with outputs (also called labelled data) during training.
When the distribution of the input data changes, erroneous predictions can be obtained.
Domain adaptation is a category of ML technique that alters how a model is trained or
predicts to enable it to accurately predict on data outside its training set distribution. In this
work, the aim is to transfer ML models trained on NIR spectra acquired under stationary
conditions to accurately predict under moving conditions with none or few labelled data.
This would enable NIR and ML combination deployment in industrial environments
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by either negating or reducing the data to collect under moving conditions and thereby
minimizing disruption to a manufacturing process. Two domain-adaptation techniques
were investigated: DANNs and SGANs. Both methods were investigated individually
and combined. These models were compared with transfer learning using no domain
adaptation. The methods were investigated using no labelled data from the target domain
or using a single labelled instance from each material category in the target domain.

2.2.1. Domain-Adversarial Neural Networks

DANNs are trained using labelled data from the source domain (or also from the
target domain) and unlabeled data from the target domain (Figure 2). The aim is to extract
features discriminative as to the class of allergen but nondiscriminative as to which domain
the data are taken from. This is achieved through training the classifier module whilst
simultaneously confusing the discriminator module as to whether the input data are from
the source or target domain [33]. The network was trained on three losses sequentially.
Firstly, the feature extractor and classifier are trained to accurately classify the labelled data.
Secondly, the discriminator module is trained to accurately classify whether the labelled
data are from the source or target domain. As it is desired that the feature extractor learns
nondiscriminative features between the domains, it is trained on the negative inverse of this
loss to encourage gradient ascent, i.e., if the discriminator is highly accurate, a large step is
taken to move the feature-extractor weights away from local optima. If the discriminator
has low accuracy, a smaller gradient ascent step is taken with the feature-extractor weights.
Thirdly, in a similar way to previously described, the discriminator is then trained to
determine whether the unlabeled data are from the target domain and the feature extractor
is trained on the negative inverse of this loss.
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Figure 2. A diagram of the domain-adversarial neural network (DANN) structure and training
procedure. The network was trained in three steps, iteratively: (1) the feature extractor and classifier
were trained to classify the labelled data, (2) the discriminator module was trained to classify the
domain of the labelled data and the feature extractor was trained to confuse the discriminator, (3) the
discriminator module was trained to classify the domain of the unlabelled data and the feature
extractor was trained to confuse the discriminator.

2.2.2. Semisupervised Generative Adversarial Neural Networks

SGANs, in conjunction with using labelled data for the main learning task, train
a generator to generate fake data samples and a discriminator to classify whether each
input data sample is real or fake [34]. In this work, the generator was trained to produce
spectra similar to the target domain data. This encourages the feature extractor to learn
discriminative features to classify between allergen types whilst also being discriminative
to the real target domain data compared to the generated samples. The SGAN was trained
on three losses sequentially (Figure 3). Firstly, the feature extractor and discriminator
were trained to determine that the labelled data were real. Secondly, the feature extractor
and discriminator were trained to determine that the generated samples were fake. The
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generator was trained on the negative inverse of this loss to encourage gradient ascent
away from the local minima. Lastly, the feature extractor and discriminator were trained to
predict that the unlabelled target domain data were real.
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Figure 3. A diagram of the semisupervised generative adversarial network (SGAN) structure and
training procedure. The network was trained in three steps, iteratively: (1) the feature extractor
and discriminator were trained to classify that the labelled data were real, (2) the feature extractor
and discriminator were trained to classify that the generated samples were fake and the generator
was trained to confuse the discriminator, (3) the feature extractor and discriminator were trained to
classify that the unlabelled target domain data were real.

2.2.3. Model Training

The models were trained using a batch size of 32, a learning rate of 0.001, and the
Adam optimization algorithm for 10,000 epochs. The feature-extractor module consisted of
four fully connected layers with 256, 128, 64, and 32 neurons, respectively. The classifier
module consisted of a single logistic regression layer connecting the outputs of the last
feature-extractor layer to the five allergen classes. The generator module consisted of five
fully connected layers with 32, 64, 128, 256 neurons, and finally the size of the spectra being
generated, respectively. Both discriminator modules for the DANN and SGAN networks
consisted of a single logistic regression layer connecting the last layer of the feature extractor
to the predicted classes: whether the input data were sampled from the source or target
domain for the DANN discriminator, or whether the input data were real or generated for
the SGAN discriminator. The hyperparameters were chosen by achieving 100% accuracy
on the training set.

The models were trained using labelled data from all spectra acquired under static
conditions, i.e., 50 stationary spectra for each material (or material brand). This totals
1250 spectra for each sensor used. Either none or a single labelled instance of each material
category collected under moving conditions was also added to the training set. Half of the
spectra (625 spectra per sensor, 25 spectra per material) for each material or material brand
collected under moving conditions was used as an unlabelled dataset during training. The
remaining moving condition spectra (625 spectra per sensor, 25 spectra per material) were
used as the test set.

2.2.4. Trust in Machine Learning

Trust in model predictions is required to facilitate acceptance of ML models in manu-
facturing environments and for operators to make decisions based on their outputs. Three
key components of trust are accuracy, uncertainty quantification, and interpretability. Ac-
curacy is commonly reported and refers to the proportion of correct predictions an ML
model makes. Uncertainty quantification requires an estimate of how confident the model
is in its prediction. Uncertainty estimates can provide information as to whether a model’s
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prediction should be trusted or whether further investigation is necessary. Interpretability
necessitates information about how the model is deciding its predictions.

In this work, the prediction accuracy is reported as the percentage of correctly classi-
fied allergen categories for the test set acquired under moving conditions. For uncertainty
quantification, an ensemble of five deep neural networks were trained, taking advantage of
random initialization to produce models with different final weights. Ensemble learning
techniques are one of the widest used uncertainty-quantification techniques [35]. Ensemble
methods are usually used to combine predictions from multiple ML models to increase pre-
diction accuracy, but they can also provide an uncertainty estimation by reporting the level
of consensus among the individual models. To interpret the trained models, a permutation-
based method was used to determine the most important wavelengths to the prediction
made by the ensemble model. This is a global feature-importance method that randomly
shuffles each feature (in this case, the intensity values of each wavelength) and measures
the reduction in accuracy caused by this augmentation [36]. The augmented wavelengths
that cause the largest reduction in accuracy are most important to the model’s prediction.

3. Results

The model prediction-accuracy results are presented in Table 2. Overall, high accuracy
were obtained through using none (up to 96%) or a single instance (up to 99.68%) of
labelled data from each material under moving conditions. This demonstrates that the
domain-adaptation methodology is suitable for transfer across stationary and moving
samples. Therefore, the methodology has the potential to minimize disruption to a food
manufacturing process by reducing the burden of collecting labelled data under moving
conditions. These results were more accurate than using transfer learning alone (i.e.,
not using the DANN or SGAN domain-adaptation methodology), which achieved up
to 92.96% with no labelled data or 96.8% using a single instance of labelled data from
each material under moving conditions. This demonstrates that the domain-adaptation
methodologies improved the extraction of features that were applicable to the spectra
acquired under moving conditions.

Table 2. The accuracies (%) for each domain-adaptation methodology on the test set acquired under
moving conditions for each speed. A comparison between using both sensors and each sensor
individually is provided. A comparison to using transfer learning (TL) with no domain-adaptation
methodology is included. None or single in the labelled data instances row indicates whether no
labelled data from the spectra acquired under moving conditions was used in the training set or if
a single labelled instance from each material was included. The bolded results show the highest
accuracies achieved for each task (i.e., combination of speed and number of labelled target domain
data instances).

Accuracy (%)

Method SGAN + DANN SGAN DANN TL

Labelled Data Instances
None Single None Single None Single None Single

Sensor Speed

Both
Slow 95.04 99.36 89.76 98.56 94.08 99.04 89.92 96.80

Medium 95.20 99.20 92.48 95.70 92.16 99.68 87.36 94.72
Fast 95.04 98.24 93.76 97.44 96.00 97.12 92.96 94.08

S2.0
Slow 93.20 95.60 94.12 92.88 92.76 95.00 88.56 93.34

Medium 91.60 92.12 90.80 94.32 89.72 96.72 88.32 92.96
Fast 86.36 91.64 87.40 90.12 87.80 88.28 86.56 89.12

S2.5
Slow 60.96 89.12 65.28 84.32 79.36 80.80 70.40 90.88

Medium 65.12 84.16 65.60 84.32 72.00 82.88 61.12 82.88
Fast 65.12 86.56 74.72 77.92 74.08 87.84 71.20 86.88
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In isolation, the DANN approach achieved higher accuracy than using the SGAN
training for four out of six tasks and achieved higher accuracy than using both combined for
two out of six tasks. However, the SGAN approach still achieved higher accuracy than the
transfer learning approach for five out of six tasks, proving that it was useful in extracting
discriminative target domain features. Using the DANN and SGAN approaches together
achieved the highest prediction accuracy for four out of six tasks compared with using
either method alone. This indicates that the domain nondiscriminative features learned by
the DANN are enhanced by the target domain discriminative features extracted through
the SGAN training.

Interestingly, for models using no labelled data from the target domain, an increase in
accuracy was found with increasing speed. Furthermore, for models using a single labelled
instance from each material, the highest accuracy was achieved at the medium-speed
setting. This is counterintuitive, as higher accuracy was expected at the lowest speeds due
to the slower moving materials causing less distribution in intensity values (Figure 4) [15].
However, it is possible that at higher speeds, the larger intensity distribution enables the
networks to better adapt to samples at the edges of the distribution and encourages learning
of features based on spectra shape, rather than average intensity values.
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Using both sensors achieved the highest prediction accuracy, with the S2.0 sensor
alone producing more accurate predictions than the S2.5 sensor. This indicates that the
more important wavelength ranges for discriminating between materials are located in the
S2.0 wavelength range, but for accurate monitoring of a conveyor line, installation of both
sensors is optimal. Furthermore, using a single labelled instance for each material category
under moving conditions improved model accuracy over using no labelled data from the
target domain (e.g., from 95.04% to 99.36% using the SGAN and DANN methods combined
for the slow speed). Therefore, provided the level of process disruption is acceptable, a
small number of labelled samples under moving conditions should be collected on the
conveyor system to improve model accuracy.

3.1. Uncertainty

To illustrate how these models could include uncertainty as a trust measure in an
industrial setting, an ensemble of five neural networks was trained, providing a distribu-
tion of predictions owing to the random initialization of the network weights. This was
undertaken using the combined DANN and SGAN model using no labelled samples in the
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target domain, to predict for samples under the fast-moving conditions and using data from
both sensors. This sensing combination (SGAN and DANN, both sensors) was selected as
it produced overall the highest model accuracy and this task combination (fast speed, no
moving condition labelled data) was chosen as it represents the most difficult task. Overall,
the ensemble of models achieved an accuracy of 96.96% (Table 3) on the moving condition
samples compared with 95.04% achieved by a single model alone, as reported in Table 2.
This illustrates the improved model accuracy achievable by ensemble methods whilst also
providing a quantification of model confidence. The confidence scores and corresponding
model performance are presented in Table 3. A confidence score of 0.6 indicates that three
out of five models predicted that class, whereas a confidence score of 1.0 indicates that all
models predicted the same class.

Table 3. A summary of the accuracy and confidence of the ensemble model predictions on the test set
data. The ensemble model consisted of five networks. As a case study, the networks were trained
using both SGAN and DANN methods and both sensor measurements to predict for the fast speed
with no labelled data from the target domain. A confidence score of 0.6 indicates that three out of five
models predicted that class, whereas a confidence score of 1.0 indicates that all models predicted the
same class.

Confidence Score

0.6 0.8 1.0 Total Count

Count Percentage Count Percentage Count Percentage
Correct 15 68.2 38 90.5 553 98.6 606
Incorrect 7 31.8 4 9.5 8 1.4 19
Total 22 42 561 625

Notably, as the confidence score increases, the percentage of incorrectly classified sam-
ples with this confidence score decreases (31.8 to 1.4%, Table 3). This demonstrates that the
ensemble method is less confident with incorrectly predicted materials. This validates the
proposed method’s efficacy in quantifying model uncertainty and subsequently enhancing
model trust. In an industrial environment, a threshold value could be implemented based
on the model’s confidence in its prediction. Therefore, if in addition to predicting the
material on the conveyor, the model also presents its confidence, production would only be
stopped if the prediction confidence score were above this threshold. Importantly, there
were eight samples where all the models incorrectly predicted the material. Therefore, it
is likely that a greater number of networks in the ensemble is required. In an industrial
environment during production, if it were found that confident incorrect predictions were
being made, additional networks could be trained to form part of the ensemble.

A detailed breakdown of the incorrectly identified samples is presented in Table 4.
Gluten-free and peanut allergen categories produced the most false negatives, with a
total of seven instances each. In particular, coconut flour produced five false-negative
predictions with oat flour and peanut flour producing four each. All of these instances
were predicted as gluten-containing materials. The gluten allergen category produced the
most false-positive predictions, with a total of 15 instances. However, the most frequent
high-confidence false positives were peanut-containing products being classified as gluten-
containing. This suggests that rather than adding additional networks uniformly to all
material classes, this could be tailored based on observed misclassifications. For example, a
greater number of networks can be trained to only be used when a production line that
is meant to contain peanut-based products is predicted as containing gluten. Another
solution may be to implement higher confidence limits for these scenarios.
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Table 4. A breakdown of the incorrectly predicted allergen classes for the ensemble model. The
ensemble model consisted of five networks. As a case study, the networks were trained using both
SGAN and DANN methods and both sensor measurements to predict for the fast speed with no
labelled data from the target domain.

Misclassified Materials Real Allergen Category Predicted Allergen Category Frequency (Confidence Scores)

Coconut flour Gluten-free Gluten 5 (0.8, 0.6, 0.6, 0.6, 0.6)
Egg yolk powder Egg Gluten 1 (0.6)
Gluten free white flour Gluten-free Gluten 1 (0.6)
Oat flour Gluten Peanut 4 (1.0, 1.0, 0.8, 0.6)
Peanut flour Peanut Gluten 4 (1.0, 1.0, 1.0, 0.8)
Peanut butter powder Peanut Gluten 3 (1.0, 1.0, 1.0)
Rice flour Gluten-free Gluten 1 (0.8)

3.2. Interpretability

Important wavelength ranges were determined through permutation of individual
wavelength values and by monitoring the reduction in prediction accuracy. From this, five
wavelength ranges were identified (Table 5). Interestingly, the most important wavelength
range (1785–1870 nm) did not correspond to a presence of powder components. However,
the second (1686–1744 nm) and third (1931–1951 nm) most important wavelength ranges did
correspond to the presence of long-chain fatty acids and water absorption, respectively. This
indicates that the most important wavelength range was identified as it held information
about both of the other two wavelength ranges that were deemed less important when
used on their own. The fourth most important wavelength range (2111–2132 nm) indicated
a protein-absorption band, and the fifth most important wavelength range (1569–1604 nm)
corresponded to a carbohydrate-absorption band. Most of the important wavelength ranges
were found within the S2.0 sensor wavelength range (1550–2000 nm), explaining why the
S2.0 sensor achieved higher prediction accuracy than the S2.5 sensor. However, despite
this, better accuracy was observed using both sensors together, suggesting that there is still
useful information to be extracted by incorporating the S2.5 sensor in the prediction task.

Table 5. Important wavelength ranges for the ensemble model and spectral features located in these
ranges. The wavelength ranges are listed in order of importance from top to bottom.

Wavelength Range (nm) (in Order of
Importance, Top to Bottom) Spectral Features

1785–1870 Range between long-chain fatty acid and water-absorption bands
1686–1744 Long-chain fatty acids producing a CH2 first overtone at 1725–1750 nm [37,38]
1931–1951 Water-absorption bands due to the vibration of O-H bonds [39]
2111–2132 Protein-absorption band [37,40,41]
1569–1604 O-H stretching of the first overtone in carbohydrates [17]

3.3. Comparison to Previous Work

The results in this work are in close agreement with those presented in the literature
that have also compared domain-adaptation methodologies to transfer learning alone using
NIR spectroscopy. In summary of this work, an increase in prediction accuracy of up
to 7.84% was achieved through using the DANN and SGAN methodologies combined
compared with transfer learning alone (Table 2, medium speed, no labelled data instances).
Similarly, Zhang et al. (2022) [29] used domain adaptation to allow the use of visible-light
image datasets to train networks for infrared pedestrian detection. Domain adaptation
was used to align the features between the infrared and visible-light domains. A domain
classifier and gradient reversal layer were used to achieve this, a method similar to the
DANNs used in this work. The feature-extraction module was updated in the direction
of increasing domain classification loss to enable alignment of the feature space from
both domains. Compared with transfer learning alone, using domain adaptation with
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the EfficientDet network increased the average precision by 2.0% on the XDU-NIR2020
dataset and 2.2% on the CVC-09 dataset. Mishra and Nikzad-Langerodi (2020) [42] and
Mishra et al. (2020) [43] compared partial least squares regression and domain-invariant
partial least squares regression (di-PLS), and dynamic orthogonal projections and transfer
component analysis (TCA), respectively. Di-PLS uses a regularization term to minimize
the variability between both domains whilst maximizing covariance between the source
domain and response variables. This is followed by ordinary PLS, where latent variables
that explain most of the variability in the data are extracted. TCA aims to minimize the
distance between the source and target domains whilst maximizing variance in the data.
A disadvantage of these methods compared to the deep-learning approaches used in this
work is their limited feature-extraction capability. When using deep neural networks, not
only can features from the original spectra be amplified throughout the network layers, but
relationships between wavelength intensities can also be considered [12]. Both works used
these methods for analysis of fresh fruit samples. The domain-adaptation approaches were
used to overcome spectral changes due to using different instruments, different operating
temperatures, or seasonal variations for the fruit samples. Mishra and Nikzad-Langerodi
(2020) [42] achieved increases in R2 by up to 67% and decreases in prediction bias and root
mean squared error (RMSE). Similarly, Mishra et al. (2020) [43] noticed increases in R2 of
up to 31% and 98% and 66% reductions in prediction bias and RMSE, respectively. This
similarity to other works indicates that the methods presented in this work are suitable
for improving in-line allergen detection and minimizing the data-collection burden in
industrial environments.

4. Conclusions

A common problem in food manufacturing is human error causing the wrong powder
material being loaded onto a production line. In-line NIR combined with ML is a solution
to enable early detection of this problem. However, a method is needed to minimize the
data-collection burden when deploying this solution in manufacturing environments to
minimize process disruption. This work investigated two deep-learning domain-adaptation
methodologies (DANNs and SGANs) to transfer ML models trained using spectra acquired
under stationary conditions, akin to collecting spectra in a laboratory, to accurately predict
using spectra acquired whilst moving, i.e., when the sensor is implemented above a
conveyor. Combining both methods worked best, as did combining spectra from two NIR
sensors with different wavelength ranges. Overall, accuracy of up to 96.0% was achieved
using no labelled instances from the moving target domain data and up to 99.68% when
incorporating a single labelled instance for each material category. The use of ensemble
methods was shown to increase accuracy and provide a measure of model prediction
confidence, and a feature-permutation method was used for global interpretability of the
models. The most high-confidence false positives were produced when peanut-containing
materials were incorrectly classified as containing gluten. This indicates that a greater
number of neural networks in the ensemble models could be used for these cases or a
higher confidence threshold could be utilized. Implementation of this screening method in
production lines could help to reduce food waste and improve productivity, economics,
and sustainability of agri-food systems.
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