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Abstract: Keeping railway tracks in good operational condition is one of the most important tasks
for railway owners. As a result, railway companies have to conduct track inspections periodically,
which is costly and time-consuming. Due to the rapid development in computer science, many
prediction models using machine learning methods have been developed. It is possible to discover
the degradation pattern and develop accurate prediction models. The paper reviews the existing
prediction methods for railway track degradation, including traditional methods and prediction
methods based on machine learning methods, including probabilistic methods, Artificial Neural
Network (ANN), Support Vector Machine (SVM), and Grey Model (GM). The advantages, shortage,
and applicability of methods are discussed, and recommendations for further research are provided.

Keywords: track geometry; track degradation prediction; machine learning; Artificial Neural Net-
work (ANN); Support Vector Machine (SVM); Grey Model (GM)

1. Introduction

Keeping railway tracks in good operational condition is one of the most important
tasks for railway owners [1]. However, the track quality is commonly determined by vari-
ous complicated factors and thus cannot be accurately predicted by mechanical algorithms
or empirical methods. Instead, the track quality has to be maintained actively based on
regular track geometry inspection [2]. Track geometry is the geometry of track layouts,
indicating the dimensions and relative positions of each part of the railway track [3]. It
typically includes gauge, twist, longitudinal level, alignment, and cross-level (also named
superelevation or cant), as shown in Figure 1. The definitions of the parameters are shown
in Table 1. All parameters are regularly measured at a network level to ensure the values
are within a safe range for train operation [4].

Table 1. Definition of track geometry parameters.

Track Geometry Definition

Gauge The distance between the inner sides of the left and right rail heads is
perpendicular to the track centre.

Twist The measurement of elevation difference between the top surfaces of two
rails [5].
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Table 1. Cont.

Track Geometry Definition

Longitudinal
level

The geometrical error in the vertical plane is represented by the difference (in
millimetres) between a point on the top of the rail in the running plane and

the ideal mean line of the longitudinal profile [6].

Alignment
The deviations in the lateral positions of the left and right rails from a mean

trajectory were obtained by filtering out wavelengths longer than a given
length [7,8].

Cross level The deviation between the top surfaces of two rails at a given location [9].

Figure 1. Schematic diagram of track geometry parameters.

Excessive deviation of track geometry can cause irregularities, affecting operation
safety, train speed, and passenger comfort [10]. Therefore, it is common to access the local
values and the average of a certain track length (e.g., 200 m). Peak values indicate specific
locations with large irregularities (see Figure 2a, the track geometry trace of Network
Rail), which is used as an evaluation index to determine the locations that need temporary
maintenance, emergency repair, or speed limitation. Conversely, average values show the
smoothness of a piece of track (see Figure 2b, the Colour Coded Quality Chart of Network
Rail), indicating the quality of a larger range of tracks and consequently advising the track
maintenance scheme at a network level [11].

Figure 2. Cont.
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Figure 2. Track geometry results: (a) Peak value; (b) Average value.

To better quantify the status of track geometry, some indices have been proposed,
e.g., the Track Quality Index (TQI) and Track Geometry Index (TGI) [12]. The indices
are commonly based on the sum of the standard deviation of multiple track geometric
parameters. Later, other parameters are integrated into the indices, e.g., track type [13], rail
inclination [14], and track structure [15,16].

The common method of evaluating the track geometry condition is automated inspec-
tion using Track Recording Cars (TRCs) or Comprehensive Inspection Trains (CITs) [17].
Both contain a track geometry measurement unit, using either the initial or chord mea-
surement methods to collect track geometry data at high speed (e.g., from 100 km/h to
300 km/h). However, because the acquisition and operation costs of TRCs or CITs are
high, track geometry’s measurement frequency is limited, ranging from once per month
to twice yearly worldwide. After data acquisition, the area with a large peak and average
values in the track geometry is detected, and corresponding actions can be taken. Because
the procedure is reactive, the track geometry inspection has to be conducted on the whole
network, which is costly and time-consuming [18].

With the fast development of computer science, machine learning methods have been
gradually used in the engineering industry, which provides the possibility of proactive
inspection, namely extracting features from existing track geometry measurements and
predictive maintenance. This can improve availability, reliability, punctuality, and safety
while supporting a cost leadership strategy and improving the return of experience, paving
the way for future innovations in the field of maintenance [19]. Thus, the following track
inspection can only be performed at limited locations to verify the prediction results instead
of at a network level [20]. More importantly, the whole track maintenance plan can be
optimised. For instance, based on the prediction of track geometry, track defects can be
removed in the early stage to prevent emergency maintenance in the later stage. Moreover,
the track sections that need to be immediately maintained can be combined with those that
will be maintained shortly to save on the maintenance cost. In this way, preventive and
conditional maintenance can be achieved.

Because many machine learning models have been proposed in recent years, some
machine learning-based prediction models, including the probabilistic model, Artificial
Neural Network (ANN), Support Vector Machine (SVM), and Grey Model (GM), have been
reviewed by Soleimanmeigouni et al. [21] in 2018, Falamarzi et al. [22] in 2019, Xie et al. [23]
in 2020, and Davari et al. [24] in 2021. However, the pros and cons of some types of predic-
tion models are not deeply discussed. For instance, the GM models that are widely used in
China (written in Chinese) have not been reviewed thoroughly. Moreover, the selection of
input parameters (e.g., train load, train speed, geographic location, environmental factors)
and setting parameters (e.g., number of hidden layers and neurons in ANN models) of pre-
diction models has not been reviewed. In addition, prediction models using a combination
of methods have not been fully reviewed, e.g., the Principal Component Analysis-SVM



Sensors 2022, 22, 7275 4 of 26

model, the Grey–Markov model, and the Incremental Support Vector Regression-Bayesian
model. Therefore, there is a lack of a comprehensive review of existing machine learning-
based prediction models. In addition, although many researchers have used prediction
models based on machine learning methods for track degradation prediction, they are not
widely accepted by railway companies and are rarely used to plan maintenance activities.
This is because the existing prediction models still have some limitations. For example,
the current machine learning-based track degradation prediction models, such as ANN
and SVM, have high complexity and are consequently difficult to interpret and the hyper-
parameters used in the current track degradation prediction models are determined by
researchers using trial-and-error, which is time-consuming. For the above limitations, there
are currently some recommendations related to future research missing.

Therefore, this paper aims to provide a comprehensive review of existing machine
learning-based prediction models, with a focus on the pros and cons of prediction models,
parameter selection, and models using a combination of methods. The paper can propose
suggestions for future research to improve the existing machine learning-based prediction
models and provide guidance and suggestions for railway companies to apply machine
learning-based prediction models for better planning maintenance activities. The paper is
organised as follows. First, the traditional prediction methods (non-machine learning-based
prediction models) are briefly introduced in Section 2. Then, the existing machine learning-
based prediction methods are introduced in detail in Section 3, including probabilistic,
ANN, SVM, GM, and combination models. Section 4 discusses the prediction models’ pros
and cons, and recommendations for further research are provided. Finally, the conclusions
are summarised.

2. Traditional Prediction Methods

Traditional track degradation prediction methods are based on empirical formulas or
statistical analysis [25]. They can clarify the relationship between influence factors and
track degradation but cannot consider uncertainties, i.e., the heterogeneity of track sections.
However, when sufficient track geometry data measured by TRCs or CITs is provided,
uncertainties can be considered by the prediction methods based on the statistical analysis [26].

2.1. Prediction Models Based on Empirical Formulas

There have been many prediction models based on empirical formulas proposed. In
this section, only some typical prediction models are introduced. More detailed reviews
can be found in Guler et al. [27] and Dahlberg [28].

Sato [29] has proposed a formula for track degradation which considers the effects of
track settlement, train load, speed, and track structure, shown as follows.

S = 2.09 × 10−3 × T0.31 × V0.98 × M1.10 × L0.21 × P0.26 (1)

Where S is the track settlement (mm/100 days); T is the passed tonnage (million
tons/year); V is the average running speed (km/h); M is the structure factor; L is the effect
factor for jointed rail or CWR (1 for CWR and 10 for jointed); P is the effect factor for
subgrade (1 for good and 10 for bad).

Gao and Zhai [30] have proposed more developed prediction models considering the
coupling between track responses and vehicle dynamics. Using the model, the effect of the
track with initial subsidence can be considered, and the cumulation of track subsidence
under repeated track load can be calculated more accurately.

Shenton [31] has combined laboratory and field tests to study the mechanisms of track
degradation. It has been found that ballast settlement plays the most important role in
track degradation, and the track has a ‘quality inheritance’ or ‘memory effect’, as shown in
Figure 3. After multiple maintenance cycles, the track with an excellent initial condition is
likely still in good condition, while the track with a poor initial condition likely deteriorates.
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Figure 3. Memory effect of track degradation.

Compared to other components, the ballast is easily deteriorated by train loads,
external pollution, and maintenance activities [32,33]. For instance, tamping can damage
ballast particles and reduce the lifetime of ballast. Thus, prediction models focused on
ballast settlement have been proposed, e.g., in [34–36]. Sadeghi et al. [37] consider the
influences of fouling and contamination on ballasts and have developed a prediction model
for ballast settlement, after conducting a series of cyclic ballast box tests, shown as follows.

S = α × ln(N) + β (2)

where S and N denote the ballast settlement in (mm) and the number of loading cycles, respec-
tively. α and β are empirical parameters that are functions of the percentage of contamination.

It should be noted that the applicability of empirical formulas is discussable. An
experimental study performed by the Transportation Test Center (TTC), the American
Association of Railroads (AAR), and British Railways showed that the measurement results
in the United States and the United Kingdom were quite different, and few commonalities
have been found [38]. Moreover, empirical formulas are limited when considering various
uncertain factors related to the track, vehicle, and environment. Ignoring one factor
can greatly diverge from reality [21]. Sometimes, the track sections under very similar
conditions can show totally different degradation behaviours [39].

2.2. Prediction Models Based on Statistical Analysis

Some typical prediction models based on statistical analysis are briefly introduced in
this section. A more detailed review can be found in [21].

2.2.1. Linear, Multi-Stage Linear, and Exponential Prediction Models

According to Jovanovic et al. [39], track degradation has approximately linear char-
acteristics in short time intervals. Thus, a linear degradation model can predict the track
condition during a short maintenance period. Following this idea, predicting the TQI has
been implemented in the railway industry, e.g., in the PWMIS (Public Works Management
Information System) [40]. Xu et al. [41] have proposed using a linear regression equation
to predict the short-term track irregularity for the unit track section. Jia et al. [42] have
proposed a similar short-term prediction model using the linear Autoregressive Moving
Average method (ARMA).

Some researchers have used the multilevel linear regression method to predict the
nonlinear behaviour of track degradation between two consecutive maintenance actions for
a more extended period. For example, Chang et al. [43] have proposed a multistage linear
model to predict the change of track irregularity in different phases. Similarly, Guo and
Han [44] have used multistage linear models to predict various phases of track degradation
between two consecutive maintenance interventions.
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Some researchers have used exponential functions to develop prediction models that
can achieve higher accuracy, e.g., the prediction model in Zhou [45]. Akihito et al. [46] have
proposed an exponential smoothing method to predict the standard deviation of alignment
after 180 days and found that the prediction error is improved by 40% compared to the
linear regression model. It should be noted that the section length in prediction models
varies much, e.g., 5 m in [47] and 200 m in [48].

2.2.2. Prediction Models Based on Stochastic Processes

The prediction models based on stochastic processes used in railways include the
Wiener process, the Gamma process, and the Inverse Gaussian process. Meier-Hirmer
et al. [49] have used the Gamma process to predict the changes in the standard deviation of
track longitudinal level and found that the Gamma process is suitable for modelling the
cumulative damage in tracks. Later, Meier-Hirmer et al. [50] applied a bivariate Gamma
process to predict track degradation, which considers two track geometry parameters,
including longitudinal level and cross level. It has been found that the Gamma process
is inaccurate when the track degradation process is not monotonic, and thus the Wiener
process is recommended. Zhu et al. [51] have used the Gaussian process to predict track
longitudinal level and alignment. It should be noted that prediction models based on
stochastic processes can be inaccurate when the variance terms in the model are significantly
more extensive than the model’s mean term [5].

Compared to prediction models based on empirical formulas, prediction models
based on statistical methods consider the local effect by using inspection data and improve
prediction accuracy. However, they have the following shortcomings:

1. Models need a large sample of inspection data to reach an acceptable level of accuracy.
2. Models are barely updated with new inspection data.
3. Models lack a mechanical understanding of the relationship between factors, some-

times resulting in some unrealistic results [7].

Due to the above limitations of traditional methods, prediction methods using machine
learning methods have been proposed in the railway industry, which can better reflect the
random characteristics of the track degradation and even find unknown factors through
data mining and eventually deliver more accurate prediction results.

3. Prediction Methods Based on Machine Learning

Machine learning algorithms can improve performance by self-learning, which can
develop a model based on sample data (known as training data) to make predictions or
decisions without being explicitly formulaic. As a result, prediction methods using machine
learning algorithms are more accurate in fields where it is difficult or unfeasible to develop
conventional algorithms, such as areas with many unpredictable factors. Because data
acquisition has become increasingly accessible, railway engineering has entered the big
data era, and thus, machine learning prediction methods have become popular. Table 2
summarises some of the recent machine learning applications in railway engineering, and
the probabilistic methods ANN, SVM, and GM are the most common machine learning
methods used to predict track degradation in railways.

Table 2. Recent applications of machine learning methods for railway tracks. Adapted from [52].

Reference Application Objective Machine Learning
Technique

[53] Sleeper inspection
Predict rail machine

vision for
maintenance

Classifier fusion
combined models
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Table 2. Cont.

Reference Application Objective Machine Learning
Technique

[54] Rail track geometry
modelling

Predict rail track
geometry

degradation for
maintenance

Hierarchical Bayesian
models, Markov

Chain-Monte Carlo
(MCMC)

[55]

Condition-based
maintenance in

railway
transportation

systems

Use sensor data
collection to

maximise remaining
useful life (RUL)

Big data streaming
analysis, online
support vector

regression models

[56]

Material classification
and semantic

segmentation of
railway track images

Extraction of accurate
information from

visual track
inspection images

Deep convolutional
neural networks

[57] Prediction of railway
track irregularities

Identify possible
underlying patterns

or rules for predicting

Classification
learning,

tree-augmented naive
Bayes

[58] Risk assessment of
rail failure

Use big data
techniques to process

image data for
automatic squat

detection

Deep convolution
neural network

[59] Rail accident data
reporting

Text analysis of
railway accident

reports

Deep learning,
recurrent neural
networks (RNN),
long short-term

memory networks
(LSTM)

[60] Data-driven artificial
track quality indices

Use the principal
component analysis
for feature selection
and combined track
quality index (TQI)

Dimension reduction
random forest,
support vector

machines

[61]
Recent applications of
big data techniques in

railway
Literature review Descriptive statistics,

charts, etc.

[62]

Data-driven
optimisation of

railway maintenance
for track geometry

Track degradation
modelling

Random forests,
Markov methods
including MCMC,
Markov decision
processes (MDP)

3.1. Prediction Models Based on Probabilistic Method

The most important task of prediction methods based on machine learning is to
estimate unknown variables (such as labelling) and make predictions. The probabilistic
model can provide a description framework that converts machine learning tasks into
calculating the probability distributions of input and output variables. More specifically,
the probabilistic model can first calculate a stochastic matrix by analysing observable
variables and inferring the stochastic matrix for all variables. It can be used to predict track
degradation because track degradation has randomness and is affected by many factors,
including train loads, transportation conditions, materials, and weather conditions.
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In probabilistic models for railways, the variables can be determined separately in
each track section according to influencing factors, e.g., 50 m or 200 m. The prediction can
be conducted in every track section and thus more accurately. Probabilistic models can
adopt the Markov, Bayesian, Monte Carlo, and Particle Filter algorithms. Among them, the
Markov models and Bayesian models are more commonly used.

3.1.1. Prediction Models Based on Markov Theory

The Markov model is an effective tool for predicting the degradation of structures [63],
which considers structure degradation a discrete process according to conditions. The tran-
sition from one condition to another in discrete time intervals is random and characterised
by a probability [64]. It has been used to predict accumulative damage for various engineer-
ing structures, such as bridges and infrastructures [65,66]. Markov models have been used
to predict track degradation, wherein the transition probability reflects the relationship
between random factors and track degradation. The input data (track inspection data) is
assumed to follow the probability distribution and is used to calculate the characteristic
matrix (called a stochastic matrix or Markov matrix) to predict track geometric parameters.
Markov models are suitable for data with large random fluctuations, e.g., track degradation
between two consecutive maintenance interventions. It has been used to analyse the track
degradation rate after maintenance in the British railway network [67] and to predict track
degradation in tram tracks in Melbourne [26].

Shafahi and Hakhamaneshi [68] have used the Markov model to predict track degra-
dation. They divide the track into six classes according to train loads, geographical location,
and track conditions, which are described by five categories using a Combined Track
Record index (CTR). The results show that the Markov model is better than conventional
regression models, such as the ORE model. A similar conclusion has been found by Shafahi
et al. [69]. They have used four models to predict track degradation: the ORE model,
Markov model, ANN model, and Fuzzy Neural Network (FNN) model. The results of the
Markov model are the most accurate, as shown in Table 3. Lyngby et al. [70] have proposed
a modified Markov model to calculate track degradation wherein the effect of track layout
(straight, curved, or a transition section) on the degradation rate is considered. Bai et al. [71]
have proposed a Markov model to evaluate track degradation between two consecutive
maintenance interventions. They have found that some heterogeneous factors can explain
the difference in tract degradation rates in tracks (such as accumulated gross tonnage and
train speeds), which should be considered in the stochastic matrix.

Table 3. The comparisons of Markov chain, ANN, FNN, and ORE models. Adapted from [69].

Model R2

ORE 0.12
Markov chain 0.83

ANN 0.72
FNN 0.81

3.1.2. Prediction Models Based on Bayesian Theory

Like the Markov model, the Bayesian model uses previous finite states to predict the
next state. The difference is that the Bayesian model is more flexible than the Markov
model. The relationship between states is calculated more accurately in the Bayesian model
by a probabilistic mechanism that learns from data. Thus, Bayesian models have also been
used to predict track degradation.

Andrade et al. [72] have used Bayesian models to evaluate track degradation. The
uncertainty of the initial standard deviation of the longitudinal level measured after renewal
or tamping operations and the degradation rate in the degradation process is considered.
Tanaka et al. [73] have used a similar method, wherein the position error in historical track
irregularity data is first corrected to improve the prediction accuracy. Andrade et al. [74]
and Yang [75] also used Bayesian models to predict track degradation. The models use
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the standard deviation of longitudinal level and the standard deviation of alignment as
indicators. A conditional autoregressive term is added to consider the spatial interaction of
adjacent track sections and avoid the prior distribution’s effect on the posterior estimation.
The results show that the Bayesian model can reduce the uncertainty of track degradation
and consider tamping and renewal’s effect on track degradation. Jamshidi et al. [76] have
developed a Bayesian-based model for assessing rail failure (including optimistic, average,
and pessimistic scenarios) probability in railway infrastructure. The results show that the
model is effective for evaluating rail failure risk. In the above models, the prior available
data and experience in the railway system for making maintenance decisions are not taken
into account. Therefore, Movaghar and Mohammadzadeh [77] have proposed a novel
method to consider the inherent uncertainties in the railway track degradation model using
data elicited from expert prior beliefs in the Bayesian framework.

3.1.3. Prediction Models Based on Monte Carlo Algorithm

Compared with Markov and Bayesian models, the Monte Carlo algorithm can directly
solve problems with statistical properties. It is not necessary to consider structural degradation
as a discrete process. The Monte Carlo algorithm generates sampling results to calculate
parameters when the problem has probabilistic characteristics. As the number of simulations
increases, it can get stable results by averaging the estimation of various parameters. Quiroga
et al. [78] have proposed the Monte Carlo method to obtain solutions for track geometry
degradation, which can be used to assess the effect of the maintenance activities.

A sequential Monte Carlo algorithm is the Particle Filter algorithm, a state estimation
method for nonlinear and non-Gaussian problems. The algorithm represents the posterior
probabilities with a set of weighted random samples in a time-dependent system. Mishra
et al. [79] have proposed using the Particle Filtering algorithm to model railway track
degradation. The prediction results based on the particle filter are better than the results
of the regression method. The main advantage of the Particle Filtering model is that
it can generate probability results according to uncertain input parameters. However,
since the Monte Carlo algorithm usually requires more calculation steps, it is seldom
used independently to predict track degradation. It is generally used to form a Markov
Chain-Monte Carlo simulation for the complex calculation of the Bayesian model in [74].

3.2. Prediction Models Based on ANN

The ANN is a mathematical model that simulates the connection structure of human
brain neurons for information processing. The ANN model can be divided into input,
output, and hidden layers (see Figure 4). Each node in the input layer corresponds to a
predictor variable, and the node in the output layer corresponds to the target variable.
Between the input layer and the output layer are hidden layers. The number of hidden
layers and the number of nodes (neurons) in each layer determine the complexity of
the ANN model [10]. ANN models with multiple non-linear hidden layers can learn
complicated relationships between input and output variables. However, limited training
data may contain the results of sampling noise, resulting in a complex relationship between
input and output variables. This complex relationship may not exist in actual test data,
leading to overfitting [80].
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Figure 4. Structure of ANN model.

Other neural networks are the Convolutional Neural Network (CNN), Recurrent
Neural Networks (RNN), and Deep Neural Network (DNN). The CNN is mainly designed
for image data [81–83], and the RNN is widely used to analyse time series and sequence
data [23,84]. The DNN can be used for track component classification [85], railway defect
detection [86], and track settlement prediction [87]. The ANN is commonly used for
engineering to explore the importance of input features to output parameters. Moreover,
the ANN model is relatively simple compared to other techniques [6]. Therefore, this
section mainly introduces the application of ANN models in track degradation prediction.

The hidden layers of the ANN model improve the network’s mapping accuracy. The
number of hidden layers is proportional to the complexity of the research object. Exper-
iments usually determine the number of hidden layers for track degradation prediction.
Sadeghi et al. [88] have developed an ANN model with a single hidden layer to predict
structural defects in railway tracks. The model considers the standard deviation of track ge-
ometry data as inputs and component defects (defects in rail, sleeper, ballast, and fasteners)
as outputs. It has been found that the prediction accuracy varies with the combinations of
inputs and neurons in the hidden layer, as shown in Table 4. Peng et al. [89] have used ANN
models to predict track geometry irregularity and found that the ANN model with two
hidden layers is better than with a single hidden layer. Falamarzi et al. [90] have used ANN
models with two hidden layers to predict the track gauge of tram lines under different
maintenance conditions (repaired or unrepaired) and track layouts (curve or straight). It has
also been found that the combination of neuron numbers in hidden layers affects prediction
accuracy. For instance, the ANN model with 15 neurons in the first hidden layer and 10
in the second obtains the best prediction accuracy for repaired straight tracks; the ANN
model with 20 and 15 neurons in hidden layers is optimal for the prediction of repaired
curve tracks; and the ANN model with 25 and 20 neurons is optimal for the prediction of
unrepaired straight and curve tracks.

Table 4. Settings for ANN model in [88]. Adapted from [88].

Prediction Object Input Variable (Standard Deviation) Neurons

Rail defect Gauge, longitudinal level, alignment, twist 15
Sleeper defect Gauge, longitudinal level, alignment, twist 10
Ballast defect Longitudinal level, alignment, twist 25

fastener defect Gauge, longitudinal level, twist 15

When using the ANN model for predictions for railway tracks, the choice of input
variables strongly impacts the prediction accuracy. When too many input variables are
used, the calculation efficiency of the ANN model is low; when too few input variables
are used, the prediction accuracy of the ANN model is low. In practice, input variables are
commonly selected based on personal experience. After that, the correlation between each
input variable and the prediction is analysed. The input variables with higher correlation
and less independent of each other are selected to improve the efficiency and accuracy of
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prediction models. For instance, Shafahi et al. [69] used an ANN model to predict track
degradation, which considered six input variables, including the CTR index, train load,
train speed, geographic location, and the gradient of the track section, and the track layout.
The ANN model developed by Guler et al. [91] considers more input variables, including
cross level, rail and sleeper type, and environmental factors (falling rock, landslide, snow,
and flood). However, the authors in Lee et al. [92] think the environmental factors are less
important and consider the subgrade type and maintenance parameters (the number of
compactions on ballast and initial TQI) instead. In the work of Khajehei et al. [93], the
authors used the Garson algorithm to calculate the relative importance of input variables,
as shown in Table 5, and found that the maintenance record, track degradation rate after
tamping, and train load are more relevant to prediction accuracy than other variables.

Table 5. Relative importance of input variables. Adapted from [93].

Input Variables Relative Importance (%) Rank

Maintenance record 16.1 1
Track degradation rate after

Tamping 11.79 2

Train load 9.51 3
Train speed 7.97 4
Ballast age 7.81 5
Sleeper age 7.78 6
Sleeper type 7.45 7
Cross level 7.29 8
Rail type 6.69 9

Bridge 6.58 10
Track layout 6.32 11

A summary of the input and output variables considered in existing studies is shown
in Table 6.

Table 6. Input and output variables in existing studies.

Reference Input Variables Output Variables

[88]
Standard deviation of gauge,
longitudinal level, alignment,

and twist

Defect density of rail, sleeper,
ballast, and fastener

[89]
Standard deviation of gauge,
longitudinal level, alignment,

cross level, and twist

Standard deviation of gauge,
longitudinal level, alignment,

cross level, and twist

[90]
Gauge, train load, track

layout, ballast type, rail type,
and rail support

Gauge

[69]

CTR index, train load, track
layout, train speed,

geographic location, and
gradient of track section

CTR index
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Table 6. Cont.

Reference Input Variables Output Variables

[91]

Cross level, train load, track
layout, train speed, rail type,
sleeper type, the gradient of

the track section, and
environmental factors

Track
degradation rate

[92]
TQI, train load, track layout,
train speed, subgrade type,

and maintenance parameters
TQI

[93]

Cross level, train load, track
layout, train speed, rail type,

sleeper type, sleeper age,
ballast age, bridge, and

maintenance parameters

Track
degradation rate

3.3. Prediction Models Based on SVM

The SVM (Support Vector Machine) is a popular machine learning model for classifica-
tion and regression prediction [94]. The SVM can generally be divided into two categories:
Support Vector Classification (SVC) and Support Vector Regression (SVR). The SVM can
assign new examples to one category or another by transforming the input space into a
high-dimensional space using an optimal classification surface, as shown in Figure 5. Four
kernel functions are commonly used to find optimal classification surfaces, including linear,
polynomial, radial, and sigmoidal functions [95]. The SVM is good at solving data with
a small sample, nonlinearity, and high dimensions and thus has been used for pattern
recognition, regression analysis, and time series prediction for track degradation.

Figure 5. Schematic diagram of SVM.

The prediction accuracy of the SVM model is also strongly determined by input
variables. Considering train load, speed, track layout, track class, time intervals, and length
and amplitude of defects, Hu et al. [96] have used the SVM model to predict the track
geometry defects, including cross level, longitudinal level, and twist. The results show that
the SVM model achieves more than 70% prediction accuracy for track geometry defects.
Falamarzi et al. [97] have used the Pearson correlation analysis to analyse continuous
input variables, including train load, track layout, and gauge, and the One-way Analysis
of Variance (ANOVA) to analyse categorical input variables, including rail support, rail
profile, surface, and rail type. The statistical analyses show that the gauge and rail type are
significant for predicting the gauge in straight sections, while the rail type is insignificant
for predicting the gauge in curved sections. They have compared the prediction results
(gauge) of the SVM model and that of the ANN model and found that the prediction
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accuracy of the SVM is higher in curved sections while lower in straight sections, as shown
in Table 7. Bergmeir et al. [98] have used the SVM model to predict incidence on railway
tracks, which considers the acceleration of the bogie, axle box, and car body as input and
compared the prediction results to other prediction models, including neural networks and
statistical autoregression models. The results show that the Root Mean Squared Forecaster
Error (RMSFE) of the SVM model is 0.7, which is more suitable for incidence prediction
than others.

Table 7. Results of SVM and ANN for prediction of straight and curved sections. Adapted from [97].

Model Sections Type R2 MSE

SVM
Straight sections 0.90 1.48
Curved sections 0.83 2.43

ANN
Straight sections 0.95 0.80
Curved sections 0.78 3.8

The prediction accuracy of the SVM model can be improved when combined with
another algorithm. Gallo et al. [99] have proposed two ensemble classifiers (aggregation
and stacking) to predict cross level, longitudinal level, and twist. The classifiers consider
three perspectives: degradation, regression, and classification, modelled by the gamma
process, binary logistic regression, and SVM separately, as shown in Figure 6. The results
show that the accuracy of the ensemble methods for predicting longitudinal level and twist
is higher than that of the single SVM model, while it is lower for predicting cross level,
wherein the detailed improvements are shown in Table 8.

Figure 6. Structure of ensemble classifiers. Adapted from [99].

Table 8. Overall accuracy results of single and ensemble models. Adapted from [99].

Defect
Single Classifier Ensemble Classifier

SVM Support Vector Machine
Stacking (SSV)

Cross level 74.55% 73.99%
Longitudinal level 78.73% 79.50%

Twist 76.28% 82.56%

Lee et al. [100] have developed the Online Support Vector Regression (OSVR) model to
predict the TQI, which is a regularly updated SVM model without retraining all historical
measurement data. The results show that the prediction accuracy of the OSVR model is better
than that of SVR by about 10%, while the OSVR model is unsuitable for predicting incremental
data sets. After that, they combined an SVM model (Incremental Support Vector Regression,
referred to as ISVR) with Bayesian optimisation. The results show the prediction accuracy of
the combined model is better than that of SVR by about 20% because Bayesian optimisation
can realise the automatic tuning of hyperparameters in the ISVR model.

Lin et al. [101] introduced Principal Component Analysis (PCA) to the SVM model and
developed a PCA-SVM prediction model for the track geometry defects. The PCA is used
to extract the main elements of the axle box acceleration characteristic parameters, which
are considered as input to the SVM model. The results show that the PCA-SVM model
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can achieve 75.5% prediction accuracy for track geometry defects. Xu et al. [102] have
proposed the SVM-Monte Carlo (SVM-MC) method to construct a stochastic prediction
model for the track longitudinal level. The SVM model is used to calculate the parameters
of the stochastic prediction model, which are used as input for the Monte Carlo method to
predict the track longitudinal level. The results show that the Mean Relative Error (MRE)
of prediction results of the SVM-MC model is 4.63%, which can provide technical support
for maintenance plan decisions. A summary of the input and output variables considered
in existing studies is shown in Table 9.

Table 9. Input and output variables in existing prediction modes based on SVM.

Reference Input Variables Output Variables

[96]

Train load, train speed, track
layout, track class, time

intervals, and length and
amplitude of defect

Track geometry defects

[97] Gauge and rail type Gauge

[98] Acceleration of the bogie, axle
box, and car body Incidence in railway tracks

[99]
Train load, track class, time
intervals, and length and

amplitude of defect
Track geometry defects

[100]
TQI, train load, track layout,
train speed, subgrade type,

and maintenance parameters
TQI

[101]
Time-domain and frequency

domain of axle box
acceleration

Track geometry defects

[102]
Mean and variance of the

parameters of a track
degradation model

Mean and variance of the
parameters of a track
degradation model

3.4. Prediction Models Based on GM

Deng [103] has proposed the grey system theory, which mainly studies the uncertainty
caused by small and insufficient samples. The grey system explores the potential pattern of
research objects by screening and extracting parts of known information [104]. The grey
prediction theory is an important part of the grey system theory, which can be used to
predict the future change of a research object. In the grey prediction theory, the GM (n, m)
represents a grey model, where n is the order of the difference equation and m is the
number of variables. The GM (1, 1) model is widely used due to its high computational
efficiency [105]. Because track degradation is complex and the correlation between factors
is uncertain, prediction models based on the GM (1, 1) have been developed.

When using GM (1, 1) models to predict variables with time series, e.g., TQI, they can
be divided into equal and unequal time interval models. The GM (1, 1) with unequal time
intervals is commonly used when track maintenance is considered. Using the GM (1, 1)
model to predict the track degradation mainly focuses on the optimisation and extension of
the GM (1, 1). Qu et al. [106] have developed an improved GM (1, 1) model to predict the
TQI. They use the integration method to reconstruct the GM (1, 1) and introduce a periodic
function to correct the residual of TQI. The results show that the MRE of prediction results
of this model is 0.88%, which indicates this model has high prediction accuracy. Later, Qu
et al. [107] introduced time-varying parameters to the GM (1, 1) model in [100] to predict
the TQI. The results show that the MRE of prediction results for this model is 0.69%, which
is lower than that of the GM (1, 1) model in [106].
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The traditional GM (1, 1) is only good at predicting the sequence with an exponen-
tial increase. Jia [108] has developed a linear recursive GM (1, 1) model to predict the
standard deviation of longitudinal level and cross level by improving data preprocessing,
background value reconstruction, and model deviation processing. Similarly, Xu [109] has
proposed a recursive liner GM (1, 1) model with residual modification for the prediction of
TQI. These models all introduce the correction function to correct the residual sequence of
the TQI. Guo et al. [110] have developed a GM (1, 1) model with an updated mechanism
to predict track degradation. The results show that the MRE of prediction results of the
unit track section (200 m) is 1.95%, and that of the continuous track sections (600 m) is
3.62%, which indicates that the model has good prediction accuracy for track degradation
of different sections. Wang et al. [111] and Bao et al. [112] both proposed a grey interval
prediction model based on the GM (1, 1) to predict the track degradation of passenger
railway lines and heavy haul railway lines, respectively. The MRE of prediction results is
0.07% and less than 0.05%, respectively, which shows grey interval prediction models can
be used for different types of railway lines.

With the rapid development of monitoring technology, the amount of inspection
data has increased, and the random fluctuation of data occurs more often. It becomes
more challenging to predict track degradation accurately from big data with significant
randomness using single GM (1, 1) models. Thus, GM (1, 1) models have also been
combined with other algorithms for better prediction accuracy.

According to Qu [113], the development of TQI is composed of deteriorating trend
components and random fluctuation components. Because Markov models can better
predict the random fluctuation components, the Grey–Markov model has been developed
for track degradation prediction, which can compensate for the drawbacks of the single GM
(1, 1) model and achieve higher prediction accuracy [114]. Liu et al. [115] have combined
the GM (1, 1) model with the centre approach (introduced in [116]) to combine with the
Markov model to predict TQI. The results show that the model has better prediction
accuracy than that of a single GM (1, 1). Pan et al. [117] have compared the single GM (1, 1),
Gray–Markov, and linear regression models and found that the Grey–Markov model has
the best prediction accuracy for TQI with strong randomness in a long time.

Because the neural network models can predict problems with complex nonlinearity
or uncertainty problems, the combination of the neural network model and the GM (1, 1)
model has been studied. Han et al. [118] have combined the Back Propagation (BP) Neural
Network model with the GM (1, 1) to form the BP-GM model to predict TQI. The BP
Neural Network model is used to correct the residual values of the TQI predicted by the
GM (1, 1) model. Compared with the TITCGM (1, 1)-PC model (introduced in [113]), the
MRE of prediction results of the BP-GM model decreased from 4.59% to 2.42%. However,
the prediction results of the BP-GM model are unstable because the initial weights and
thresholds of the BP Neural Network are randomly assigned. To solve this problem,
Tang [119] has optimised the BP Neural Network using the Mind Evolutionary Algorithm
(MEA) and developed a GM-MEA-BP model. Thanks to the global optimisation ability of
MEA (introduced in [120]), the convergence speed of the BP Neural Network is improved,
and the mistake of the BP Neural Network falling into local optimum is solved. Ma
et al. [121] have combined the GM (1, 1) with the Elman Neural Network optimised by a
Genetic Algorithm (GA) to develop the GM-GA-Elman model to predict TQI, wherein the
optimised Elman Neural Network is used to correct the residual values of TQI. Compared
with the TITCGM (1, 1)-PC model (introduced in [113]) and the GM-BP model (introduced
in [118]), the MRE of prediction results of the GM-GA-Elman model decreased from
5.74% and 2.59%, respectively, to 1.89%. Yao [122] has developed a prediction model
(GM-RNN) combined with the GM (1, 1) model and RNN. The GM-RNN model considers
the characteristics of the time series of TQI to improve prediction accuracy. Compared
with the GM-BP model (introduced in [112]) and the GM-GA-Elman model (introduced
in [121]), the MRE of prediction results of the GM-RNN model decreased from 3.12% and
1.88%, respectively, to 1.52%.



Sensors 2022, 22, 7275 16 of 26

The SVM models can better solve data with a small sample, nonlinearity, and high
dimensions. The SVM models have also been combined with GM models to improve
prediction accuracy. Ma et al. [123] have proposed a prediction model (GM-PSVM) that
combined the GM (1, 1) and SVM models optimised by the Particle Swarm Optimization
(PSO) (introduced in [124]). The PSO can automatically find the best parameters for SVM
and effectively avoid the influence of improper parameter selection on SVM. In the GM-
PSVM, the GM (1, 1) model is used to predict the TQI, and the residual values of TQI
are corrected by the PSVM model, as shown in Figure 7. Compared with the TITCGM
(1, 1)-PC model (introduced in [113]) and the GM-BP model (introduced in [118]), the MRE
of prediction results of the GM-PSVM model decreased from 5.07% and 3.48%, respectively,
to 2.74%. Feng et al. [125] have proposed a prediction model (GM-WOA-LSSVM) to
predict TQI, which combines the GM (1,1) model and the Least Squares SVM (LSSVM)
model (introduced in [126]) and is optimised by the Whale Optimization Algorithm (WOA)
(introduced in [127]). The WOA can also automatically find the best parameters for SVM.
Compared with the GM-BP model (introduced in [118]), the MRE of prediction results of
the GM-WOA-LSSVM model decreased from 2.29% to 1.99%.

Figure 7. Structure of GM-PSVM model.

Some researchers have also adopted other methods to improve the prediction accuracy
of GM (1,1) models. Jia et al. [42] have shown that the GM (1, 1) model can predict the cross
level at fixed measuring points in the long term after residual modification. In addition,
they used the Autoregressive, Kalman Filter, and ANN models for the short-term prediction
of the cross level at the unit track section. The results show that combining these four
models can predict the cross level at fixed measuring points and unit track sections in
the short and long term. Li [128] has developed an ESGM-RGCD model to predict TQI,
which combines the Exponential Smoothing model and Relative Grey Correlative Degree
(introduced in [129]) with the GM (1, 1) model. The results show that the prediction
accuracy of the ESGM-RGCD model is better than that of the Exponential Smoothing
model and GM (1, 1). Xin et al. [130] have combined the GM (1, 1) with the Fourier Series
(introduced in [131]) to develop the FGM prediction model for TQI, wherein the Fourier
Series is used to correct the residual value of TQI predicted by the GM (1, 1) model. The
results show that the FGM model presents the best performance compared with the linear
model, exponential model, GM (1, 1), and Grey–Markov model.

The existing predictive models combing the GM (1, 1) model and other models are
shown in Table 10.
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Table 10. Existing predictive models combined GM (1, 1) model and other models.

References Model Application Advantage Limitation

[113] TITCGM
(1,1)-PC

Short-term
prediction for

the TQI

Respectively
consider the
deteriorating

component and
random

component in
the TQI

Poor prediction
accuracy

[114,115,117] Grey-Markov
Long-term

prediction of the
TQI

Predict the TQI
with strong
randomness

Need to build
complex

transition
matrixes

[118] GM-BP
Short-term

prediction for
the TQI

Improve the
prediction

accuracy of the
GM (1, 1)

Lack of
prediction

stability

[119] GM-MEA-BP
Short-term

prediction for
the TQI

Improve the
convergence

speed of the BP
Neural Network

The time-series
properties of the

TQI are not
considered

[121] GM-GA-Elman
Short-term

prediction for
the TQI

Avoid the BP
Neural Network

instability
caused by
random

assignment

Need to study
the applicability
of the model in

the medium and
long term

[122] GM-RNN
Short-term

prediction for
the TQI

Consider the
time-series

properties of the
TQI

Lack of
prediction

stability

[123] GM-PSVM
Short-term

prediction for
the TQI

Solve the
problem of BP

Neural Network,
which easily falls

into local
optimum

Need to study
the applicability
of the model in

the medium and
long term

[125] GM-WOA-
LSSVM

Short-term
prediction for

the TQI

Need few
optimisation

parameters and
improve the

learning speed

Need to study
the applicability
of the model in

the medium and
long term

[42] GM-AR

Long-term and
short-term

prediction for
the TQI

Realise
long-term and

short-term
prediction for

the TQI

Need to consider
more random

factors

[128] ESGM-RGCD
Short-term

prediction for
the TQI

Obtain the
optimal solution

of the weight
coefficient of the
combined model

Need to study
the applicability
of the model in

the medium and
long term

[130] FGM
Short-term

prediction for
the TQI

Improve the
prediction

accuracy of the
GM (1, 1)

Need to study
the applicability
of the model in

the medium and
long term
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4. Discussions and Perspectives

There are 46 studies reviewed in Section 3, and the machine learning methods are
shown in Figure 8. The most commonly used machine learning method is GM (39%),
followed by the probabilistic model (30%), ANN (15%), and SVM (15%). For probabilistic
models, the most commonly used models are the Markov model (43%) and the Bayesian
model (43%). Moreover, the GM and SVM methods are mostly combined with other
methods, which shows that combined models have become increasingly popular.

Figure 8. Statistical analysis for existing machine learning methods for track degradation prediction.

4.1. Pros and Cons of Prediction Models

Track degradation is determined by many factors, including train load, track layout,
speed, rail type, weather conditions, etc. Even if two track sections have similar conditions,
the degradation rate may still differ. Probabilistic models can consider this difference in
predicting track degradation. The track condition can be predicted separately in each
section, e.g., 50 m or 200 m, and thus more accurately. However, it is worth noting that
probabilistic models also have some limitations.

• There are three limitations in Markov models: (1) The model is discrete while the track
geometric is continuous, which may lead to inaccurate prediction. (2) Defining a large
number of discrete states for track degradation leads to a complex calculation using a
stochastic matrix. (3) When using different stochastic matrices for track sections, the
complexity of Markov models is even further increased.

• The limitation of the Bayesian model is that the prior probability distributions of
fitting track degradation parameters are assumed to be independent, while the prior
probability distributions are not completely independent in practice. This assumption
may lead to lower prediction accuracy.

• Monte Carlo models usually require many calculation steps and are commonly used
together with other models to predict track degradation.

Compared to probabilistic models, ANN models can predict track degradation without
complex matrix calculations and the prior assumption that track degradation parameters
are independent. The advantages of ANN models can be summarised as follows.

• ANN models can study the correlation between input and output variables and
identify the key factors for track degradation, which can simplify the prediction model
and improve computational efficiency.

• ANN models have a strong computational capability and can process a larger amount of
track detection data, which are suitable for predicting large-batch track geometry data.

• ANN models can learn hidden relationships in data without imposing any fixed
relationships on the data, which are robust to predict the track geometry data with
drastic fluctuations.

• ANN models are relatively simple compared to other Neural Network models [6],
such as the CNN, RNN, and DNN models, etc.

The limitations of ANN models are as follows.
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• A large amount of high-quality inspection data is required for ANN models as training
data. ANN models cannot work when track geometry data is insufficient.

• ANN models have high complexity and are consequently difficult to interpret. The
prediction results can lack theoretical explanation and have poor generalisation per-
formance due to extrapolation and observational biases.

• The parameters of ANN models are commonly determined by researchers using a
trial-and-error way, which is time-consuming and causes the performance of ANN
models to vary from person to person.

• Because ANN models have a low convergence speed and easily fall into local optimum,
the theory and learning algorithm of the ANN models need to be further improved.

Compared to ANN models, SVM models can avoid falling into local optimums. In
addition, empirical components are not needed in SVM models due to the theoretical basis
of SVM. Other advantages of SVM models are as follows.

• SVM models can consider many factors for track degradation because the complexity
of SVM is irrelevant to the dimension of input variables.

• SVM models can still achieve high prediction accuracy when the sample amount
(inspection data) is limited.

• SVM models are good at predicting track geometry data with nonlinearity and high
dimensions.

However, it is difficult to train a large amount of track geometry data for SVM models.
The reason is that large-batch data can increase the computational complexity of the SVM
models, and a large number of peaks in data can be considered as super vectors, which can
mislead the maximum margin hyperplane of the SVM models (see Figure 5). In addition,
it is also difficult to select appropriate kernel functions for SVM models. To overcome
this shortcoming, SVM models are often combined with other methods to optimise model
parameters, increase computational efficiency, and expand the scope of application. It is
worth noting that there are still more combinations of SVM models and other methods to
be explored in future research.

Because track degradation is a grey system which is affected by many uncertain factors,
GM (1, 1) models can be used to predict track degradation. Specifically, GM (1, 1) models
can study the uncertainty caused by the small-batch track geometry data and insufficient
railway track information. In addition, GM (1, 1) models can easily explore the potential
rules between input and output variables due to their high computational efficiency. It is
worth noting that GM (1, 1) models are more suitable for short-term prediction of track
degradation with slight fluctuation (see Table 10).

Because the development of track geometry data is composed of deteriorating trend
and random fluctuation components, and because random fluctuation components often
cause significant inaccuracy in the GM (1, 1) model, GM (1, 1) models are usually combined
with other models to correct the residual values of the sequence and eventually achieve
better prediction accuracy. In some combined models, the inspection data can be directly
used without training, and long-term prediction can be performed.

4.2. Recommendations for Future Research

Although many researchers have used prediction models based on machine learn-
ing methods for track degradation prediction, they are not widely accepted by railway
companies and are rarely used to plan maintenance activities. To improve it, some recom-
mendations for future research are as follows.

1. The current machine learning-based track degradation prediction models, such as
ANN and SVM, effectively solve problems but remain rather opaque about how they
actually solve them [19]. The results can lack theoretical explanation and have poor
generalisation performance due to extrapolation and observational biases. Therefore,
machine learning models should be combined with mechanical models or empirical
models in future research. For instance, the mechanical models or empirical mod-
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els can be used to check whether predicted TQI or track geometry are within the
reasonable limit or proportional to other variables.

2. In the current machine learning-based track degradation prediction models, the tracks
are commonly divided into sections of a fixed length, e.g., 50 m or 200 m. The track in
a section is assumed to be the same. However, the track can be very different within a
section. Therefore, track sections in prediction models should be divided according to
features instead.

3. The performance of machine learning models is strongly determined by the values of
hyperparameters. However, the hyperparameters used in the current track degrada-
tion prediction models are determined by researchers using a trial-and-error approach,
which is time-consuming. Therefore, the theory of automatically determining hyper-
parameters should be studied.

4. In the existing studies, the proposed machine learning-based prediction models are
tested on individual railway tracks. Therefore, the generalisation performance of the
models is unclear. The models should be tested for railway tracks of different types in
future research to improve the generalisation performance.

5. Generally speaking, it requires certain knowledge of computer science to properly
use the prediction results of machine learning models, which may be challenging for
some maintenance staff or inspectors. Therefore, the prediction models should be
further integrated into simple applications to improve usability.

6. Other advanced machine learning methods can also be combined into track degra-
dation prediction models for track inspection data with large-size, multi-source,
high-fluctuation, and high-noise. For instance, Deep Learning has been used in other
engineering fields [59,81,132], but rarely for track degradation.

5. Concluding Remarks

Due to the rapid development of computer science, many machine learning models
for predicting track degradation have been developed, which can extract features from
existing track geometry measurements and predict future development. According to the
prediction results, track inspection can only be performed at limited locations and track
maintenance plans can be optimised.

The paper reviews the existing prediction methods for railway track degradation,
including traditional methods and prediction methods based on machine learning methods,
including probabilistic methods, Artificial Neural Network (ANN), Support Vector Machine
(SVM), and Grey Model (GM). The machine learning models can improve performance
by self-learning and making predictions without explicit formulas, thus often having
better prediction accuracy than traditional prediction models. The main shortcomings of
probabilistic models are that prior probability distributions of fitting track degradation
parameters are assumed to be independent, and the calculation of the matrix is complex.
The main shortcoming of the ANN and SVM models is that their selection of model
parameters lacks theoretical explanation. The main shortcoming of GM models is the high
data requirement.

To improve the acceptance of prediction methods based on machine learning methods
in the railway industry, some recommendations for future research are provided as follows.

• Machine learning-based prediction models should be combined with mechanical
models or empirical models, which can give a theoretical explanation for the prediction
results of the prediction models and enhance the generalisation performance of the
prediction models. For instance, the mechanical models or empirical models can be
used to check whether predicted TQI or track geometry are within the reasonable limit
or proportional to other variables.

• Track sections in prediction models should be divided according to features, which
can fully consider the differences of track sections to achieve fine modelling. For
instance, special track sections (such as turnout zones, transition zones, etc.) can be
distinguished from other track sections.
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• The theory of automatically determining hyperparameters should be studied, which
can achieve automatic adjustment of hyperparameters for different track geometry
datasets and provide excellent prediction accuracy. For instance, the Random Search
algorithm built into KerasTuner (a deep learning Application Programming Interface
(API) written in Python) can be used to automatically find the best hyperparameters
of the SVM or ANN models for track degradation prediction.

• Prediction models should be tested for railway tracks of different types, which can
improve the generalisation performance of the prediction models. For instance, the
same prediction model can be used to predict the degradation of passenger and freight
railway tracks, respectively, and analyse and compare the prediction results.

• Prediction models should be further integrated into simple applications, which can
allow the prediction models to be widely accepted by railway companies and used
to plan maintenance activities. For instance, predictive models can be integrated into
software on portable mobile phones.

• Other advanced machine learning methods can be used, such as Deep Learning, which
can be used to better predict the track inspection data with large-size, multi-source,
high-fluctuation, and high-noise. For instance, the Deep Neural Network (DNN)
model can be used to predict track degradation.
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