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Abstract: Early fire detection and notification techniques provide fire prevention and safety infor-
mation to blind and visually impaired (BVI) people within a short period of time in emergency
situations when fires occur in indoor environments. Given its direct impact on human safety and
the environment, fire detection is a difficult but crucial problem. To prevent injuries and property
damage, advanced technology requires appropriate methods for detecting fires as quickly as possible.
In this study, to reduce the loss of human lives and property damage, we introduce the development
of the vision-based early flame recognition and notification approach using artificial intelligence
for assisting BVI people. The proposed fire alarm control system for indoor buildings can provide
accurate information on fire scenes. In our proposed method, all the processes performed manually
were automated, and the performance efficiency and quality of fire classification were improved.
To perform real-time monitoring and enhance the detection accuracy of indoor fire disasters, the
proposed system uses the YOLOv5m model, which is an updated version of the traditional YOLOv5.
The experimental results show that the proposed system successfully detected and notified the occur-
rence of catastrophic fires with high speed and accuracy at any time of day or night, regardless of
the shape or size of the fire. Finally, we compared the competitiveness level of our method with that
of other conventional fire-detection methods to confirm the seamless classification results achieved
using performance evaluation matrices.

Keywords: fire warning system; smart glasses; blind and visually impaired; YOLOv5; artificial
intelligence; flame classification

1. Introduction

The global population is growing rapidly, and a growing number of people are living
well into old age, leading to an increase in the number of blind and visually impaired
(BVI) people. Elderly and BVI people face a variety of problems while performing routine
activities, including housework, environmental awareness, work, traveling, and sports
practice, owing to physical, sensory, and cognitive decline. This situation requires consid-
erable attention because the number of people with sight problems is likely to increase
tremendously in the coming decades. These numbers are particularly critical in developed
countries as advances in healthcare systems have enabled a longer life. Several solutions
exist for such problems, and assistive technologies and software are being developed to
help BVI people. Employing an early fire detection and notification system for BVI people
can reduce property damage, the number of victims, and most importantly, the number
of premature deaths.

Fire control has always been a global challenge. According to statistics published by
the Korean National Fire Agency, there were 40,030 fires in South Korea in 2019, resulting
in 284 fatalities and 2219 injuries. Furthermore, a daily average of 110 fires and 0.8 fire-
related fatalities resulted in property damage amounting to KRW 2.2 billion. In 2020, two
major Korean cities experienced fires that claimed the lives of over 50 people in each case.

Sensors 2022, 22, 7305. https://doi.org/10.3390/s22197305 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22197305
https://doi.org/10.3390/s22197305
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-1424-0799
https://doi.org/10.3390/s22197305
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22197305?type=check_update&version=3


Sensors 2022, 22, 7305 2 of 15

In Ulsan, a 33-story tower block building completely burned down, while in Incheon,
a warehouse fire occurred [1]. Cooking, heating equipment, electrical distribution and
lighting equipment, purposeful fire initiation, and smoking materials are the five factors
that contribute to the majority of interior fires and fire fatalities [2]. Cooking was the main
contributor to both interior fires and injuries from indoor fires over a five-year period from
2015 to 2019. BVI people are at a greater risk of injury and death owing to fire hazards.
Depending on the severity of their vision loss, they may accidentally start a fire during
routine household chores and are less likely to eliminate or avoid it. Additionally, a BVI
person is highly vulnerable to sustaining burns when attempting to suppress small fires.
Some relevant studies on outdoor fire detection have been conducted in the past few years.
However, there are insufficient research studies on early fire-detection and notification
systems for BVI people using artificial intelligence (AI) approaches in indoor scenes. There
are many reasons for this, and our research identified the following problems as the main
challenges in early fire-detection studies.

v Fire image collection and labeling for indoor fire-detection datasets are challenging
owing to the lack of open-access fire image datasets for real-world scenarios. A large
amount of labeled training data is key to the success of any deep learning model.

v Fires do not have any specified shape or size and even at times, vary in color, hence
achieving high accuracy in their detection is a difficult task while the data annotation
process is also time-consuming.

v Distinguishing between a real fire and an artificial fire or fire-like scene (sunlight
and lighting) is also a challenging task, particularly when several errors in real-time
fire detection occur in the case of a false alarm. This is because the sunlight and
lighting pixel values are very close to the fire color intensities, even though they are
not real fires.

v Ensuring real-time fire detection and notification along with indoor navigation meth-
ods is also a potential challenge because the rapid spread of the fire must not risk the
health of the blind and endanger their lives.

Despite these problems, we conducted fire research and developed a new fire-detection
and notification system. The proposed fire warning system can immediately detect and
notify dangerous fire situations to reduce fire damage to building interiors and to protect
lives. The early fire-detection and notification system provides fire prevention and safety
information to BVI people in a short period in emergency situations when fires occur
in indoor environments.

In summary, the main contributions of this study are as follows:

• Most traditional methods use sensor-based technologies to detect fire scenes [3–6];
however, these technologies depend on environmental and illumination changes.
Further research has shown that camera-based fire-detection systems achieve much
better results with high prediction accuracy, low cost, and reduced processing time to
enhance fire safety [7–10].

• AI-based fire detection is a potentially powerful approach to detect flames and to warn
building occupants in different indoor environments because it is highly distinctive,
does not depend on colors, size, or shape, and is robust to illumination changes [11,12].
However, traditional computer vision or image processing approaches have been
applied to simple fires and are appropriate only under certain conditions [13–16].

• We proposed a fire detection and classification system that can monitor and predict
home emergency fire-related situations to provide early warning to BVI people to
prevent or reduce the risk to life.

• The use of smart glasses as an assistive technology supports blind users to self-evacuate
with minimal assistance during emergencies, such as fires and floods. Furthermore,
this assistive technology can be easily adopted in many applications, such as indoor
or outdoor navigation, obstacle avoidance, education, and traveling for BVI people.
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• The goal of this research is to converge Internet-of-Things devices and AI methods
in the field of fire prevention, safety, and indoor navigation for BVI people. This is a
unique idea, and smart glasses associated with a security camera can improve the lives
of blind users when they perform important daily tasks (such as cooking and heating).

The remainder of this paper is organized as follows. In Section 2, the proposed fire-
detection and notification system for BVI residents is described in detail. The experimental
findings are described in Section 3. Section 4 concludes the paper and discusses the future
directions of the proposed method.

2. Proposed Fire-Detection and Notification Method
2.1. System Overview

In this subsection, we provide an overview of the proposed method for the rapid
and accurate detection of house fires, regardless of their size and shape. Unexpected
fires in a house can ignite within a short time and cause unpredictable and frightening
consequences. We tested several techniques to achieve our goal and used them success-
fully in our approach, which is explained in detail in the following subsections. The
primary purpose of this research is to develop a new fire-detection method based on AI
approaches that can be applied to eliminate fire accidents and an early notification system
to avoid unexpected fires and keep BVI people safe. The system is aimed at monitoring
home fire hazards to accurately detect even small sparks of flames and notify the BVI
occupants and fire department when activated, as illustrated in Figure 1. The YOLOv5
and smart glasses-based approach proposed a fire detection and alerting system that
captures images using a small camera and sends them to a server outfitted with an AI
module that provides fire detection results with voice feedback. We present a client-server
architecture with a smartphone and smart glasses acting as the client and an AI server
handling image processing.
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Figure 1. Overall flowchart of the system.

It is relatively easy for sighted people to detect fire disasters indoors. However,
identifying fire zones and their sizes by BVI people is extremely difficult. One goal of the
proposed work is to enable BVI people to deal with the fire while it is very small before the
firefighters arrive, or else they can attempt to escape fire regions using a smart navigation
system for indoor wayfinding.
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2.2. Dataset

Dataset collection and generation processes were performed as follows. There are
certain specific tasks for which large datasets are unavailable or insufficient, and existing
open-access datasets have limited images; these include medical (healthcare) image and fire
image datasets [17,18]. AI-based approaches require training data to obtain high prediction
accuracy and test data to evaluate the method. To eliminate overfitting, we collected
publicly available fire image datasets and Google images for training and testing. However,
the training dataset is constrained using this approach for fire detection. To address this, we
used picture augmentation techniques and various computer vision techniques to enhance
the number of fire frames [9,11].

To make the system work in real time, a clear image frame that should be read from
a fixed camera every second is delivered to the system. However, the dominant light
source is an artificial light source in indoor surroundings, which may decrease the accuracy
of fire-detection tasks because of dark scenery and low-quality image of objects. Image
contrast enhancement methods have been used to produce high-quality output images in
artificial light sources [19,20]. After obtaining suitably enhanced frame sequences, training
and testing procedures were performed to create weight files (pretrained weights) to predict
possible candidate fire pixels. After gathering sufficient data to overcome the overfitting
problem, we used our dataset to train and evaluate the improved YOLOv5 model at the
initial stage of our research, as shown in Figure 2.
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As illustrated in Figure 2, we divided the fire detection and classification process into
three steps. The data processing subsection explains dataset collection and modification
with different image enhancement methods. The fire prediction step is mostly focused on
selecting an appropriate AI model to apply for fire detection purposes. After training and
testing in fire detection cases, the default implementations of the YOLO technique have
relatively poor accuracy. We decided to employ and enhance the YOLOv5 network for the
effective identification and warning of fire disasters. We recorded the results of quick and
accurate fire detection by altering the algorithm.

At the fire notification stage, smart glasses and security cameras record video and
capture image frames, which are then sent to the AI server for processing. Following the
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detection of fire regions, the AI server performs two separate actions for the fire notification
stage: (1) it sends voice and text messages to the user’s smartphone, and (2) it sends the fire
department a discovered fire image. Regarding the first measure, BVI residents can manage
the environment and distinguish between normal household fires and dangerous fires by
donning smart glasses. They can self-evacuate if a dangerous fire is confirmed utilizing
fire, object, and text recognition techniques, together with object mapping techniques to
ascertain the links between various things.

As shown in Table 1, our initial collected fire image dataset consists of 7395 original
indoor fire images, which includes fire-like images without fire to decrease false alarm
notifications. Existing methods sometimes incorrectly classify fire-like scenarios (environ-
ments) as fire hazards because of lamps, sunrise, or sunset and activate the warning system.
Therefore, we had to further expand our dataset to include daytime and nighttime non-fire
images to eliminate errors.

Table 1. Dataset distribution for fire classification research.

Dataset
Flame Frames Non-Flame Frames

Total
GitHub Kaggle Flickr Google GitHub Kaggle Flickr Google

Indoor environment 1572 1693 855 741 962 987 327 258 7395

As mentioned earlier, during the experiments, we found that image data augmentation
techniques, such as geometric transformations, brightness/contrast enhancement, and data
normalization, proved to be the most effective way to improve the final accuracy rate. The
effectiveness of convolutional neural network (CNN) models depends on the size and
resolution of the training picture datasets. Therefore, we rotated each original fire image
and then flipped each rotated image horizontally to increase the number of images in the
fire-detection dataset, as explained in detail in the refs. [9,11,12]. By applying the data
augmentation methods to the original 7395 fire images, we increased the total number of
images to 90,700. In our previously published papers, we achieved high accuracy using
YOLOv3/YOLOv4 networks with images of 608× 608 and 416× 416 resolutions. However,
the YOLOv5 architecture was suitable for training with an image size of 640 × 640 pixels.
If the dataset was sufficiently large and well labeled, we could typically obtain good results
without changing the models or training settings. Larger images are typically associated
with better outcomes. Each line of the txt file that YOLOv5 requires as annotations for
each image should define a bounding box. We trained the model using our own custom
dataset, so we needed to perform annotations on the collected images, which is basically
labeling the images with their class names so that they can be fed into the model to train
it. The image annotations are text files having the same name as that of the image in the
following format containing class number, object coordinates, and image height and width.
Object coordinates are normalized between 0 and 1 and basically denote the position of the
bounded object, the image height and width. We converted the dataset annotations into
the well-known PASCAL VOC XML format required by YOLOv5. We divided the entire
fire image dataset into training (75%) and test sets (25%).

2.3. Fire Detection and Notification

The proposed architecture can be considered as a combination of fire-detection and
visually impaired research. After studying AI approaches (machine learning, deep learn-
ing, reinforcement learning, and transfer learning) and applying YOLO networks to our
research, we significantly improved the home fire-detection and notification performance
to eliminate fire fatalities in indoor environments. First, we tested the latest versions of the
YOLO algorithms to select the appropriate algorithm and used it in our research for fire
detection. Standard versions of the YOLOv5 approach have low accuracy after training
and testing in fire-detection situations. After applying computer vision augmentation
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techniques to the dataset, we observed fast and highly accurate fire disaster detection
using YOLOv5.

2.3.1. Model Selection

YOLOv5 is a recently introduced CNN that identifies static and dynamic objects with
remarkable performance and high accuracy in real time. This model utilizes a single neural
network to process the entire image region, then decomposes it into several components,
and estimates the candidate bounding boxes and probabilities for each part. YOLOv5
network is a continuous improvement of YOLOv1–YOLOv4 and is divided into three
architectures: the backbone based on cross stage partial (CSP) incorporated into Darknet,
the neck for boosting information flow based on the path aggregation network (PANet),
and the head, which is used to generate YOLO layers for multi-scale prediction [21].
Before being sent to PANet for feature fusion, the data were fed to CSPDarknet for feature
extraction. As shown in Figure 3, the YOLO layer delivers detection results by employing
three different feature maps (class, score, location, and size).
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As shown in Figure 3, the YOLO v5 network is employed as a backbone for extracting
important and useful features from the input frame sequences with CSP. The neck model
is used by the YOLO v5 network to build feature pyramids that help models generalize
successfully with regard to object scaling. This makes it easier to recognize the same thing
within a range of scales and sizes. The use of feature pyramids helps models operate
efficiently on previously unexplored data. To obtain feature pyramids that enhance the
localization of objects at lower levels, YOLOv5 uses PANet as its neck. The final detection
stage, which uses three feature maps of sizes 18 × 18, 36 × 36, and 72 × 72, is primarily
addressed by the head model. It builds the final output vectors with bounding boxes,
objectness scores, and class probabilities using anchor boxes [22,23].

The YOLOv5 family of networks contains five types of models, from the smallest
and fastest YOLOv5 nano to YOLOv5 extra-large [24]. YOLOv5n is a newly introduced
nano-model that achieves good efficiency for mobile solutions. The compact form, known
as YOLOv5s (small model), is appropriate for use with CPU. A medium-sized model,
YOLOv5m has 21.2 million parameters. Given that it offers a fair balance between speed
and accuracy, it is the model most suited for many datasets and training. The large model
of the YOLOv5 family, YOLOv5l, is perfect for datasets in which smaller items need to
be found. The largest of the five models, with the highest mean average precision, is
YOLOv5x. As shown in Table 2, larger models, such as YOLOv5l and YOLOv5x, are
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slower to execute and contain more parameters than the others, but they almost always
yield superior results.

Table 2. Description of the YOLOv5 models.

Models Backbone Image Size AP AP50 Speedms FLOPS ParamM Epochs

YOLOv5n CSPDarknet-53

640 × 640

28.0% 45.8% 1.7 4.5 1.9
YOLOv5s CSPDarknet-53 37.4% 57.6% 2.1 16.5 7.2
YOLOv5m CSPDarknet-53 45.4% 63.9% 2.8 49.1 21.2 300
YOLOv5l CSPDarknet-53 49.1% 65.5% 3.7 110 46.5
YOLOv5x CSPDarknet-53 50.6% 67.4% 5.9 205.7 86.7

Based on the size of our dataset and the purpose of our research, we selected YOLOv5m
for the implementation in our study. A network that immediately detects and notifies fire
accidents is required to reduce fire damage to buildings and protect lives. YOLOv5m has
sufficient ability to learn the features of diverse home fire evaluations.

2.3.2. Fire Detection

We focused on moving object detection approaches that work successfully in indoor
environments. Because fire regions have the property of movement, they are classified as
dynamic objects rather than static objects. When fire detectors recognize fire using selected
and improved methods, the monitored alarm system automatically transmits an emergency
alarm to the smartphones of BVI people and the fire department to confirm whether it
is a human-made fire or fire accident. BVI people may not accurately distinguish daily
fires when they wear smart glasses. Therefore, the AI server sends the fire images to the
fire department (fire safety office) for verification. If the fire is confirmed by the system
operator, they immediately send firefighters to the address where the fire occurred and
notify the local hospital.

We introduced a client–server scheme containing a smartphone and smart glasses
as the client and an AI server to execute the image analysis [25]. The client section
includes smart glasses and a smartphone that transfers information through Bluetooth
and a home surveillance camera that records consistently. The AI server simultaneously
receives the client’s supply of frames, processes them, and outputs the results in audio
format. The built-in speaker or smartphone is used by the smart glasses to connect
with users after receiving audio findings. The user uses Bluetooth to link smart glasses
to a smartphone. The user can then instruct the smart glasses to capture pictures
that are subsequently transmitted to the smartphone. In this scenario, it is possible
to decrease the power consumption of glasses, as it is more efficient than continuous
video recording. Speech feedback from the AI server is subsequently sent through
earphones or speakers. Users of tactile devices can also touch and feel the outline
of the prominent object [26]. We used an AI server to perform deep-learning-based
computer vision tasks despite the recent introduction of lightweight deep CNN models,
because the GPUs in wearable assistive devices are less capable than an AI server. The
battery life of smartphones and smart glasses is increased because they are used solely
to take pictures.

Moreover, the AI server is practical for enhancing the accuracy of the deep CNN
models and introducing new features. The AI server receives images and uses fire-detection
and object recognition models to identify fires and objects after text-to-speech [27]. The
audio results are then sent to the client as an AI server to respond to their requests. BVI
people can hear voice guidelines (“in,” “on,” “next to,” “below,” and “above,” for instance,
“fire above oven” or “fire next to chair”) and receive tactile information to assist indoor
navigation from fire zones to safe zones [28].
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3. Experimental Results

We implemented and tested the proposed configuration from the Anaconda 2020 Python
distribution on a computer with an 8-core 3.70 GHz CPU, 32 GB RAM, and NVidia GeForce
1080Ti GPUs. As indicated in Table 3, to improve the energy-storage viability of smart
glasses and to guarantee real-time system performance, we used a high-performance AI
server system.

Table 3. AI server specifications.

Hardware Detailed Specifications

Graphic Processing Unit GeForce RTX 2080 TI 11 GB (2 are installed)

Central Processing Unit Intel Core 9 Gen i7-9700k (4.90 GHz)

Random Access Memory DDR4 16 GB (4 are installed)

Storage SSD: 512 GB
HDD: 2 TB (2 are installed)

Motherboard ASUS PRIME Z390-A

Operating System Ubuntu Desktop

Local Area Network Internal port—10/100 Mbps
External port—10/100 Mbps

Power 1000 W (+12 V Single Rail)

In Table 4, the detailed specifications of the smart glasses with a Raspberry Pi 3 Model
B+ used to conduct the experiments are listed. In this section, we analyze the application of
traditional fire-detection methods and the proposed strategy in terms of qualitative and
quantitative outcomes. Examples of visible experiments employing the CSPDarknet-53
feature extractor in daytime and nighttime settings are shown in Figures 4–6. DarkNet-53
was used by CSPDarknet-53, a CNN that serves as the backbone for object detection [29,30].
The YOLOv5 network used CSPNet as a backbone to solve repeated gradient data issues
and integrate any intensity changes in the feature map.

Table 4. Full description of the smart glasses.

Hardware Detailed Specifications

Processor Broadcom BCM2837B0 chipset, 1.4 GHz Quad-Core ARM Cortex-A53 (64 Bit)

Graphic Processing Unit Dual Core Video Core IV® Multimedia Co-Processor

Memory 1 GB LPDDR2 SDRAM

Connectivity Wireless LAN 2.4 GHz and 5 GHz IEEE 802.11.b/g/n/ac, maximum range of 100 m

Connectivity Bluetooth IEEE 802.15 Bluetooth 4.2, BLE, maximum range of 50 m

Connectivity Ethernet Gigabit Ethernet over USB 2.0 (maximum throughput 300 Mbps)

Video and Audio Output 1 × full size HDMI, Audio Output 3.5 mm jack, 4 × USB 2.0 ports

Camera 15-pin MIPI Camera Serial Interface (CSI-2)

Operating System Boots from Micro SD card, running a version of the Linux operating system or Windows 10 IoT

SD Card Support Micro SD format for loading operating system and data storage

Power 5 V/2.5 A DC via micro-USB connector

Owing to its ability to record both full HD 1080p video and high-resolution still images,
an 8 MP device camera was employed to capture both images and videos.
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Qualitative Evaluation

Based on the experimental results, it can be concluded that our upgraded fire warning
system efficiently recognizes fire regions, even with the same color contrast and similar
movements as fire pixels in the background area. Furthermore, our method shows better
performance and immediately detects fire accidents, even several fires or small fires in
frame sequences, as shown in Figure 4.

We compared well-known fire-detection algorithms to analyze and discuss the quan-
titative performance of our method. Because the source codes and datasets for these
approaches are not publicly available, we used the results in their publications for com-
parison; however, we are unsure of their veracity. As in our previous studies [31–35], we
calculated the F-measure (FM), precision, and recall. The FM score is a weighted average
that equalizes the measurements of the recall rates and precision. Precision measures
the proportion of successfully anticipated positive observations for all forecasted positive
observations. As explained in Equation (1), recall is the proportion of accurately predicted
positive observations to all observations in actual class. The average of the FM, recall, and
precision of the suggested method was 98.2%. False detection occurred in 1.8% of cases:
sometimes, the system classified electrical lamps and blurred spark objects as a real fire.
The following equations can be used to calculate the average precision and recall rates of
the fire-detection methods:

Precision = TP
TP+FP ,

Recall = TP
TP+FN ,

(1)

where TP stands for “true positives,” FP for “false positives,” and FN for “false
negatives,” all of which indicate correctly discovered fire zones. Precision was calculated
as the ratio of true positives to both true and false positives. The proportion of genuine
positives to both true positives and false negatives is known as the recall.

Then, using (2) FM is calculated as follows

FM =
2× precision× recall

precision + recall
. (2)

Actual applications may result in extremely dark, hazy, or obstructed fire areas or
pixels in photographs of natural scenes (by cloud). Additionally, we evaluated the effective-
ness of the fire-detection techniques using the Jaccard index or the intersection-over-union
(IoU) measure, which expresses the ratio of items that the two sets share to the total number
of the objects. It is defined as the area of union of the detected fire region and the ground
truth divided by the area of overlap of the detected fire region and the ground truth. In
other words, it is a useful statistic for evaluating detection outcomes (3).

IoU =
groundTruth∩ prediction
groundTruth∪ prediction

(3)

The FM score and IoU values range from 0 to 1, with 1 representing the optimal value
for these metrics. Table 5 provides an analysis of our strategy in comparison with other
previously reported fire-detection techniques.

Furthermore, based on Table 5, we performed a statistical analysis to determine the av-
erage accuracy of the examination methods using the average evaluation metrics, as shown
in Figure 7. The improved fire warning system yielded an approximately 98.2% accuracy,
whereas other approaches yielded accuracies approximately between 84% to 97%. We used
the results of previous studies for comparison; however, the accuracy of these values is not
easily verifiable because the source codes and datasets of these methods are not publicly
available to confirm their real performance. Nevertheless, in the case of standard scenes,
the proposed method experimentally proved its ability to provide excellent fire-detection
accuracy by reducing the computational time, even when the fire region was small or there
were multiple fire regions.
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Table 5. Quantitative results of fire identification and notification approaches.

Algorithms P (%) R (%) FM (%) IoU (%) Average (%)

ELASTIC-YOLOv3 [36] 0.956 0.969 0.937 0.901 0.940

Capsule Networks [37] 0.864 0.816 0.892 0.922 0.873

Swin-YOLOv5 [38] 0.948 0.936 0.942 0.958 0.943

YOLOv2 CNN [39] 0.834 0.716 0.762 0.882 0.801

YOLOv5 Improvement [40] 0.937 0.942 0.943 0.941 0.940

Dilated CNNs [8] 0.971 0.974 0.982 0.957 0.971

Improved YOLOv3 [11] 0.968 0.982 0.985 0.967 0.975

Improved YOLOv4 [9] 0.976 0.958 0.979 0.982 0.979

YOLOv3 + OHEM [41] 0.866 0.778 0.892 0.863 0.845

Improved YOLOv4 BVI [12] 0.968 0.981 0.974 0.974 0.977

Proposed Method 0.982 0.997 0.997 0.991 0.982
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Additionally, we assessed the false-positive records of the selected methodologies, as
illustrated in Figure 8. The trials revealed that the suggested technique contained the least
errors compared with the weight files in the existing algorithms after adding fire-like and
small-size fire photos to the dataset.

In addition, we obtained the processing time performance for each phase of the
proposed system, including the time required for image processing for the fire detection and
notification module in the AI server, 5G/Wi-Fi image transmission between the smartphone
and server, and Bluetooth image transmission between the smart glasses and smartphone.
Table 6 displays the typical processing time for each stage. The total time at every stage is
1.26 s, which is allowed under actual conditions.

We summarize the robustness of our published papers using the proposed method
in different categories using quantitative and qualitative performance results, as shown
in Table 7. Based on the evaluated scores, the performance of the proposed approach did
not suffer when small fire areas were included and successfully distinguished artificial
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or non-fire scenes (sunsets, sunshine, lighting, and electric lamps) from real fires. In an
indoor environment, the best results, with enhanced detection time and accuracy, were
obtained for solving early fire classification and notification challenges by applying the
proposed method.
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Table 6. Average frame processing time (in seconds) for each sequence.

Transmission and Image Processing Average Frame Processing Time (s)

Bluetooth transmission 0.11

5G/Wi-Fi transmission 0.32

Fire detection and notification 0.83

Total 1.26

Table 7. Evaluation of the effectiveness of fire detection using different characteristics.

Criterion Improved
YOLOv3 [11]

Improved
YOLOv4 [9]

Improved
YOLOv4 BVI [12]

Proposed
Method

Scene Independence standard robust standard robust

Object Independence standard robust robust standard

Robust to Noise powerless robust standard robust

Robust to Color standard standard powerless robust

Small Fire Detection robust standard robust robust

Multiple Fire Identification standard powerless powerless robust

Processing Time powerless standard robust robust

The outcomes of fire identification and notification techniques can be divided into
three categories: robust, standard, and powerless. Robust measures show that the method
is applicable to all types of fires. The algorithm may fail in some circumstances, such as
when it occurs frequently or the fire spreads, according to normal standards. Powerless
evidence suggests that algorithms are unreliable in the presence of noise or color, and the fire
identification procedure frequently modifies the initial geometry of moving fires. Spread
fire elimination shows that image-based fire detectors can detect fires in many directions.
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4. Conclusions and Future Directions

In this study, we developed improved smart fire warning systems based on advanced
technologies to enhance firefighting safety and life protection. The proposed AI-based fire-
detection method can be used in various environments, such as smart/safe cities, and for
monitoring fires in urban areas to protect visually impaired people. In our study, we focused
on its application in early fire-detection systems based on cameras and wireless systems.
These systems are becoming more attractive for use in housing, as they accommodate
patients with impairments and disabilities who live alone because they are perceived to be
more secure from dangerous fire scenes. Similarly, we expect that the proposed system can
be effectively used in fire safety industries. The system detects and notifies catastrophic fire
outbreaks in real time with high speed and accuracy. Early detection of a fire accelerates
the process of eliminating it; thus, the fire poses a lesser threat to the health and lives of
people including the firefighters.

Another major contribution of the proposed system is that it can analyze the intentions
of humans as well as the safety of generated fires through artificial intelligence (AI) and
Internet-of-Things (IoT) approaches. Real-time fire detectors can make rapid decisions
during emergencies and ignore alarms when cameras detect fires created by humans.
Thus, this AI-based fire-detection approach helps prevent the occurrence of false alarms.
Furthermore, we generated a large fire image dataset that contained 7395 fire and non-fire
images for model training and testing. To effectively identify the target data and overcome
overfitting issues, deep CNNs learn critical features from big datasets. By contrasting
the proposed system with other well-known one-stage object detectors, we assessed the
qualitative and quantitative performance of the system during the experiments. The
experimental findings and evaluation demonstrated that the enhanced YOLOv5 model
produced seamless classification results while performing slightly better accuracy using
our fire detection dataset.

Finally, we hope that the proposed system will be effective in various medical centers
focused on blindness and visual impairments to control and preserve the health and lives
of patients from unpredictable fire accidents. Future tasks include solving blurry problems
under dark conditions and increasing the accuracy of the approach. We plan to develop a
small model with reliable fire detection performance using 3D CNN and 3D U-Net in the
IoT Environment [42–44].
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