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Abstract: The Internet of Things applications have become popular because of their lightweight nature
and usefulness, which require low latency and response time. Hence, Internet of Things applications
are deployed with the fog management layer (software) in closely located edge servers (hardware)
as per the requirements. Due to their lightweight properties, Internet of Things applications do not
consume many computing resources. Therefore, it is common that a small-scale data center can
accommodate thousands of Internet of Things applications. However, in small-scale fog computing
environments, task scheduling of applications is limited to offering low latency and response times.
In this paper, we propose a latency-aware task scheduling method for Internet of Things applications
based on artificial intelligence in small-scale fog computing environments. The core concept of the
proposed task scheduling is to use artificial neural networks with partitioning capabilities. With
the partitioning technique for artificial neural networks, multiple edge servers are able to learn and
calculate hyperparameters in parallel, which reduces scheduling times and service level objectives.
Performance evaluation with state-of-the-art studies shows the effectiveness and efficiency of the
proposed task scheduling in small-scale fog computing environments while introducing negligible
energy consumption.

Keywords: fog computing; artificial intelligence; task scheduling

1. Introduction

The Internet of Things and applications are part of a multi-billion-dollar industry [1].
The technical reasons for its popularity are that small and lightweight devices with various
sensors (for temperature, humidity, pressure, accelerometers, gyroscope, gas, infrared ray,
or optics) are able to perform both real-time applications (video/audio conferencing, online
games, real-time operating systems and middleware, instant messaging applications, etc.)
and general applications in cloud-enabled fog computing environments [2,3]. Note that
in fog computing environments, Internet of Things device tasks are offloaded to nearby
edge servers [4,5]. Due to their lightweight properties, Internet of Things applications do
not require supercomputer-class computing resources. Instead, a small amount of PC-class
computing resources are enough for edge servers [6,7].

Thanks to edge servers in cloud-enabled fog computing environments, latency and
response time can greatly be reduced since the Internet of Things devices communicate with
nearby edge servers, not the central cloud datacenter. However, for real-time applications
of the Internet of Things, unawareness of the fog computing architecture can result in poor
latency, response time, and service level objectives [8,9]. In other words, in order to benefit
from cloud-enabled fog computing environments, efficient and effective resource and task
orchestrations are indispensable. However, enhancing the application performance is tricky
and hard to implement in small-scale fog computing environments since the margin for
improvement is also small [10,11].
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Recently, various techniques based on artificial intelligence for fog computing resource
and task management have been proposed [12,13]. The state-of-the-art studies for fog
resource and task management proved that adopting artificial intelligence and related
techniques (including artificial neural networks and reinforcement learning) is promis-
ing [14,15]. However, the downside of the existing artificial intelligence-based resource
and task management is that scheduling time and service level objectives are sub-optimal
since it involves hyperparameter training of artificial neural networks [16]. Hence, there
is room for improvement in latency and response time for the real-time and Internet of
Things applications in small-scale fog computing environments (under ten hosts).

In this paper, we propose a latency-aware task-scheduling method for Internet of
Things applications based on artificial intelligence in small-scale fog computing environ-
ments. The core concept of the proposed resource and task scheduling is to use artificial
neural networks with partitioning capabilities. With the partitioning technique for artificial
neural networks, multiple edge servers are able to learn and train hyperparameters in
parallel, which reduces the scheduling time and service level objectives.

The main contributions of the paper can be described below:

1. We propose a latency-aware task scheduling method for Internet of Things applica-
tions based on artificial intelligence in small-scale fog computing environments.

2. We introduce a partitioning technique that allows us to perform hyperparameter
tunings in parallel with multiple edge servers.

3. We design and implement the artificial neural network and partitioning method suitable for
real-time and Internet of Things applications in small-scale fog computing environments.

4. We compare performance results with state-of-the-art studies to show the effective-
ness and efficiency of the proposed latency-aware fog resource and task manage-
ment scheme.

The rest of the paper can be summarized as follows. Section 2 describes the research
motivation and background with existing studies based on nature-inspired optimization
and artificial intelligence. Section 3 details our latency-aware fog resource and task manage-
ment technique for Internet of Things applications, partition-based parallel hyperparameter
training methods, and algorithms to reduce scheduling time. Section 4 shows extensive
experimental results in comparison with state-of-the-art studies. Finally, we conclude the
paper with future research directions in Section 5.

2. Related Work

Task scheduling in fog computing environments is a well-known problem, and there
are many approaches to solving the problem. Examples are genetic algorithm [17], swarm
intelligence [18,19], ant colony optimization [20], and evolutionary techniques [21], to
name a few. These nature-inspired optimizations are among the approximated and meta-
heuristic solutions [22]. In other words, they explore the search space and find the optimal
parameters in non-deterministic and efficient ways.

For example, genetic algorithms use a selection process inspired by human and
biological evolution. There are six steps for genetic algorithms: (1) initialization based
on a random function, (2) selection of parents based on a fitness function, (3) crossover
and reproducing, (4) mutation of offspring, (5) evaluation for offspring, and (6) merging
offspring. Although genetic algorithms are able to find near-optimal solutions efficiently, it
is hard to customize for specific requirements.

Methods based on artificial intelligence have been proposed to overcome the limita-
tions of nature-inspired optimization algorithms. The deep Q-learning approach utilizes
neural networks like deep learning to help agents to choose the next action [23,24]. As the
name suggests, it uses the Q-value (expected reward) to make the decision. Since deep
Q-learning does not need to create a model for environmental transitions, it is called a
model-free algorithm.

Deep reinforcement learning is another method based on artificial intelligence. A
subfield of machine learning, it is a combination of reinforcement learning and deep neural
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networks [25,26]. Deep reinforcement learning uses predefined or simulated states, actions,
and rewards to determine the loss function, which offers trajectory planning. As a variation,
GOBI [27,28] runs on top of feed-forward artificial neural networks and updates gradients
with respect to the input. The core process of deep neural network-based approaches is a
learning process. Since task scheduling based on big workloads takes a huge amount of
time, an efficient technique is urgently needed.

In artificial neural network designs, training and hyperparameter tuning can be
done by backpropagation [29]. Since deep neural networks have hundreds or thousands
of hyperparameters to learn, training on a single machine is limited in meeting real-time
requirements. To this end, we adopt a parallelism technique for fast neural network learning
in fog computing environments. Broadly, there are two approaches to the parallelism of
neural network learning: data parallelism and model parallelism [30].

In fact, there is no global memory in fog computing environments like traditional
distributed systems, and both data and model parallelisms are not easily achievable. The
straightforward way to achieve parallelism is to use data partitioning [31]. For the input
(workloads) of artificial neural networks, it splits input data into several parts, and a
compute node (host) is asked to perform training for a split. Specifically, there are sub-
branches for data parallelism: sample-level partitioning and feature-level partitioning.

The sample-level partitioning is to split data based on shuffling or random sampling.
In contrast, the feature-level partitioning splits data based on feature dimensions, which
capture neural network characteristics better. However, it requires more tasks to split data
evenly than the sample-level partitioning as the number of features is unpredictable.

In model parallelism [32], a requirement to resolve a large learning model is to partition
it into several parts, and each partition can be processed in different hardware modules
such as a CPU, GPU, tensor processing unit (TPU), or neural processing unit (NPU). Since
a commodity data center and edge servers are assumed, we consider data parallelism in
this paper. The details of the proposed sample-level partitioning of data parallelism are
provided in the next section.

3. The Proposed Method

The proposed method is based on the partitioning technique of artificial neural net-
work learning: hence, the partitioning technique is integrated into the proposed scheduling
algorithms. In this section, we detail the proposed partitioning techniques and scheduling
algorithms in each subsection.

3.1. Architecture and Partitioning Framework

Figure 1a shows our fog computing architecture composed of the central cloud server,
fog management layer, and Internet of Things layer. The central cloud server is responsible
for all operations within the architecture. The fog computing architecture offers edge
servers for local processing and data storage to support real-time and Internet of Things ap-
plications. The fog management layer allows real-time and Internet of Things applications
to reduce latency and use fewer bandwidth networks. Each edge server is able to provide a
number of containers for computing capabilities. As far as migration costs are concerned,
container migrations are more lightweight than virtual machine migrations.

Figure 1b depicts the partitioning framework. When the fog management layer asks
edge servers to perform neural network training (backpropagation), one of the edge servers
becomes a parameter server that distributes data sets to other edge servers and aggregates
local models from them. Details of the partitioning technique are explained in the next
subsection, but it is important to note that there is a tradeoff between the number of
edge servers and the performance overheads. For the overheads, we perform a mini-test
experiment in Section 4.
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3.2. Partitioning Technique

The basic aim of using a partitioning technique is to allow multiple edge servers to
perform hyperparameter training in parallel. Among various partitioning techniques, we
adopt the sample-based-partitioning method, which is a comprehensive way to implement
artificial neural networks. To this end, the sample-based partitioning uses a random
approach for data shuffling to make sure each edge server has a subset of the global dataset
for training.

The easiest way to implement the sample-based-partitioning method is to split the
global dataset into the number of edge servers and allocate each split to the edge server
without overlapping. However, when the global dataset is not a multiple of the number
of edge servers, the sizes of the allocated data splits are not equal to each other. Thus, we
assign a split to a randomly selected edge server, allowing each edge server to have one
split for load balancing. Note that we assume that each edge server is capable of processing
a split with available memory and storage.

A downside of using the sample-based-partitioning method is that the multiple uses
of the random function can affect performance degradation. However, performance degra-
dation due to the random function is limited since we consider a small-scale fog computing
environment. Another potential weakness is that local training of edge servers may lead
to the over-fitting problem. To avoid the problem, as we mentioned before, we use the
data-shuffling technique at the beginning. In fact, the data-shuffling operations do not
affect performance degradation because we do not consider large-scale environments.

The parameter server aggregates them from the edge servers to assemble the local
models. More specifically, when an edge server finishes computing a local model, it
informs the parameter server and sends its local model to the parameter server. When the
parameter server completes the aggregation, the global model can be used for resource
and task scheduling. It is worth noting that an edge server may fail and not inform the
parameter server. In this case, the parameter server uses a timeout parameter to avoid
indefinite waiting. The inherent property of artificial neural networks means the training
problem with the loss of a local model would be minimal and would slow the training
procedure down somewhat. We show how effective the sample-based-partitioning method
is in Section 4 with real-world datasets.

3.3. Algorithms

To explain the overall algorithmic structure, we divide the algorithms into two parts:
the parameter server and edge servers, in addition to the scheduling algorithm.
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Algorithm 1 shows our partitioning algorithm for the parameter server. Note that we
consider a single parameter server in artificial neural network learning. The input of the
algorithm is a workload dataset, and the output is a global model (Model_global). There
are a few steps for initialization before iterations. It initializes Seed based on the random
function and retrieves information from edge servers (Set_edge and Num_edge). At this
stage, there is no global model (Model_global); hence, this global variable is set to null. Since
it is based on sample-level-partitioning, it calculates the total size of the dataset (Total_size)
and configures the split size (Split_size).

The first iteration procedure (Lines 9–16) is to split data and allocate them to edge
servers in the system. To assign a split to an edge server, it uses the make_split function
with shuffling. The shuffle function is based on randomization, and the return value of
the make_split function can be duplicated. To avoid duplicated splits, it performs the
duplication_check function. When it is not duplicated, the split (Split_i) is assigned to
Edge_i by the allocate_split function. Otherwise, it encounters the continue procedure
(Line 13) and skips the rest of the iteration. The second iteration procedure is to aggregate
local models for the parameter server. After assigning data splits to edge servers, it listens
and waits until all the edge servers’ local models are aggregated. Whenever an edge server
returns the local model to the parameter server, it updates the Model_global variable. Then
it returns Model_global.

Algorithm 1. Partitioning Algorithm for Parameter Server.

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

Input: Dataset
Output: Model_global
Initialization: Seed← get_random(CurrentTime);

Set_edge← get_edgeservers();
Num_edge← convert_to_num(Set_Edge)
Model_global← null;
Total_size← get_total_entry(Dataset);
Split_size← Total_size/Num_edge;

for all Edge_i ∈ Set_edge do // making data splits and allocate them to edge servers
Split_i←make_split(Dataset, Split_size, shuffle(Seed, Num_edge));
Boolean← duplication_check(Split_i);
if Boolean == false then

continue;
end if
allocate_split(Edge_i, Split_i);

end for
for all Edge_i ∈ Set_Edge do // aggregation of local models for data splits

Local_model_i← retrieveLocalModel(Edge_i);
Model_global←Model_global ∪ Local_model_i;

end for
return Model_global

Algorithm 2 shows the sub-mode of the partitioning algorithm for edge servers.
The input of the algorithm is Split_i from the parameter server, the pre-trained model
(Model_pre), and Workload. The role of edge servers in the partitioning algorithm is simple.
It trains the model for Split_i and returns the local model (Local_model_i) to the parameter
server. Algorithm 3 shows the scheduling algorithm, whose input is Model_global, and the
output is SchedulingDecision. The return value of the getModelFromPS function is the same
as that of Algorithm 1. After receiving the Model_global, it converts to SchedulingDecision,
which is interpretable for the scheduler. Then, it checks whether it needs task migrations.
If the current scheduling decision is different from the previous scheduling decision for
fog tasks, it schedules the tasks for migrations (Lines 5–7). Afterward, it saves the current
scheduling decision (it can be the previous scheduling decision in the next cycle) for
future use.
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Algorithm 2. Partitioning Algorithm for Edge Server i.

1:
2:
3:
4:
5:
6:
7:

Input: Split_i (can be allocated from the parameter server)
Model_pre (pre-trained model)
Workload

Output: Local_model_i
Split_i← getSplitFromPS();
Local_model_i← train(Workload, Model_pre); // backpropagation
return Local_model_i;

Algorithm 3. Scheduling Algorithm.

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:

Input: Model_global (can be retrieved from the parameter server)
Output: SchedulingDecision
Model_global← getModelFromPS();
vSchedulingDecision← convertToDecision(Model_global);
Diff ← searchForMigration(SchedulingDecision, SchedulingDecision_previous)
for each FogTask ∈ Diff do

performMigration(FogTask.source, FogTask.destination);
end for
saveSchedule(SchedulingDecision);
return SchedulingDecision;

4. Performance Evaluation

In this section, we perform extensive experiments and show the performance results
in comparison with state-of-the-art studies: GA [33], DQL [34], DRL [35], and GOBI [27].
For the artificial neural network design, we use a feed-forward neural network model
with two hidden layers, whose sizes are 128 and 64, respectively. The sigmoid activation
function is used, and softplus and tanhshrink activation functions are optionally used for
non-affine approximation. For workload datasets, we use BitBrain [36] and DeFog [37]
datasets. For hosts (edge servers), we use a heterogeneous configuration with Azure B2
and B4 models. Azure B2 and B4 models use the same CPU (Intel Haswell 2.4 GHz E5-2673)
with different RAM configurations: that is, 4 GB and 16 GB, respectively. For experimental
results, we plot for 100 simulation intervals. Each interval is set to 300 s (5 min).

To figure out the partitioning overhead, we configure a mini-test environment with six
hosts (see Figure 2). Note that the other experiments are performed with ten hosts unless
specified otherwise. In fact, in our partitioning framework, a parameter server is also
responsible for local model processing. Hence, unbalancing exists between a parameter
server and other edge servers.

Figure 2 shows scheduling time over time, total scheduling time, service level objective
violations, average migration time, and total migration time. When the number of hosts
is six, the scheduling time (Figure 2a,b) of GOBI and Ours is less than the other methods.
However, Ours is slightly higher than GOBI for scheduling time. This difference stems
from unbalancing caused by the partitioning technique. The unbalancing results in service
level objective violations (Figure 2c). The service level objective violations of Ours are
higher than GA and GOBI. Figure 2d,e shows average migration time, total migration time,
and average wait time. For average migration time, Ours is the best, but for total migration
time, Ours is higher than GOBI due to the total number of migrations.

Note that the service level objective is based on latency (response time), and the
response time is the sum of scheduling time, wait time (container provisioning time),
execution time, and migration time. However, the unbalancing problem can be mitigated
when the number of hosts increases (e.g., to 10 or higher). In other words, local model
processing time can be reduced when there are more hosts. Since we consider a small-scale
environment, we leave ultra-scale performance (e.g., at 100 or higher) experiments as
future work. Furthermore, the distance between a fog user and an edge server is tens to
hundreds of meters, whereas the distance between edge servers can be hundreds of meters.
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In this regard, we can hypothesize that ten hosts are suitable for covering the Internet of
Things devices.
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Figure 2. Mini-test experiments with six hosts.

Figure 3 shows CPU and RAM utilization of containers for GA, DQL, DRL, GOBI, and
Ours. For CPU utilization (Figure 3a,b), GA and Ours exhibit high CPU utilization relative
to DQL, DRL, and GOBI. As far as server utilization is concerned in cloud computing
environments, high CPU utilization is preferable for data centers’ costs and maintenance.
In this regard, our approach meets the basic requirement while not exceeding 80% of
CPU utilization. Note that maximum utilization of a CPU may result in high energy
consumption due to boost (e.g., Turbo Boost and Turbo Core) and performance degradation
due to race conditions.

Figure 3c,d shows the cumulative and average RAM utilization for containers. Because
we consider fog computing environments based on containers, RAM utilization is a metric
that is less because a single server supports a few thousand containers. Nevertheless, RAM
utilization indirectly indicates the scheduling behavior. In other words, we can hypothesize
that GOBI (high RAM utilization) performs fewer migrations while DRL performs larger
migrations. Figure 3d depicts the average RAM utilization over time. As expected, GOBI
fluctuates between 20 to 60 simulation times, while DRL exhibits little diversification. Our
approach, however, gets stable after 60 simulation times.

Figure 4 shows scheduling time, the number of migrations, and the number of com-
pleted tasks for GA, DQL, DRL, GOBI, and our approach. When we orchestrate resource
and task maintenance, scheduling time affects the response time and service level objec-
tives. Since the Internet of Things applications have real-time properties, reducing the
scheduling time is important for task scheduling. When we compare the scheduling time
for the five techniques (GA, DQL, DRL, GOBI, and Ours), Ours is shorter than the other
four. Specifically, the scheduling time of our technique is about 69.5% on average when
compared to the other techniques.
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Based on Figure 4b, we confirm that the scheduling time of our approach is both
low and stable. Meanwhile, the other four techniques fluctuate much more than Ours,
showing a high scheduling time. Figure 4c,d shows the number of task migrations and
completed tasks. As we mentioned before, the highest task migrations can be found in
DRL, and the lowest can be found in GOBI. On the other hand, our approach is positioned
in the mid-range for the number of task migrations. In addition to the scheduling time, the
number of completed tasks given time is an essential requirement for Internet of Things
applications. When we see the number of completed tasks (Figure 4d), our approach
recorded the highest number while avoiding over-scheduling for migrations. Even DRL
performs more task migrations (Figure 4c). Ours is second-to-none regarding the number
of completed tasks.

Figure 5 depicts energy consumption, cost per container (in USD), the total number
of containers, and the average number of containers for GA, DQL, DRL, GOBI, and Ours.
Note that the cost model is measured based on the cost list of Azure cloud machines by
Microsoft for the South UK region. Surprisingly, the cost per hour of our approach is the
lowest even though Ours consumes more energy consumption. This is because the basic
cost model of the cloud computing service is an hourly-basis model. It signifies that our
fog resource and task management in small-scale environments is expeditious.
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forms more task migrations (Figure 4c). Ours is second-to-none regarding the number of 
completed tasks. 

Figure 5 depicts energy consumption, cost per container (in USD), the total number 
of containers, and the average number of containers for GA, DQL, DRL, GOBI, and Ours. 
Note that the cost model is measured based on the cost list of Azure cloud machines by 
Microsoft for the South UK region. Surprisingly, the cost per hour of our approach is the 
lowest even though Ours consumes more energy consumption. This is because the basic 
cost model of the cloud computing service is an hourly-basis model. It signifies that our 
fog resource and task management in small-scale environments is expeditious. 

Figure 4. Scheduling time, the number of migrations, and the number of completed tasks with
ten hosts.

More details about resource and task scheduling properties can be found in Figure 5c,d.
Of the five comparison targets, Ours uses more containers: hence, it consumes more energy.
When we look at the average number of containers (Figure 5d), DQL and GOBI fluctuate
as the simulation time goes on. This results in more costs than others (Figure 5b). It also
indicates that DQL and GOBI’s scheduling decisions are not accurate for the workload,
while GA and Ours reach the top faster than others for the workload.

Figure 6 shows service level objective violations for GA, DQL, DRL, GOBI, and Ours.
Not surprisingly, our approach has the lowest service level objectives for Internet of Things
applications. Note that for real-time and Internet of Things applications, the service level
objectives are based on the response time. The major reason for this reduction of service
level objective violations is contributed by enhanced scheduling time based on the proposed
partitioning method. The highest number of violations can be found in GOBI due to wrong
and mismatched scheduling decisions (Figure 3d). Compared with GOBI, the service level
violations of the series Ours are about 1/5 (20%).
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5. Conclusions

Speeding up the training of artificial neural networks is an essential research topic in
deep learning. In this paper, we proposed the mapping from the scheduling problem of
Internet of Things applications in fog computing environments to artificial neural networks
and a parallelism mechanism for neural network training based on sample-level data parti-
tioning. The proposed algorithms integrate the partitioning technique and task scheduling
in small-scale fog computing environments. To figure out the performance of the proposed
method, we compared the results with state-of-the-art studies. The experimental results
show that our method is expeditious and suitable for real-time and Internet of Things
applications. The proposed partitioning technique incurs bottlenecks in the aggregation
stage, but the overhead is negligible in small-scale fog computing environments.
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