
Citation: Lee, H.; Lee, N.; Lee, S.

A Method of Deep Learning Model

Optimization for Image Classification

on Edge Device. Sensors 2022, 22,

7344. https://doi.org/10.3390/

s22197344

Academic Editors: Cosimo Distante

and Anastasios Doulamis

Received: 25 July 2022

Accepted: 21 September 2022

Published: 27 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Method of Deep Learning Model Optimization for Image
Classification on Edge Device
Hyungkeuk Lee 1 , NamKyung Lee 1 and Sungjin Lee 2,*

1 Media Intelligence Research Section, Electronics and Telecommunications Research Institute, 218, Gajeong-ro,
Yuseong-gu, Daejeon 34129, Korea

2 Electronic Engineering, Dong Seoul University, 76 Bokjeong-ro, Sujeong-gu, Seongnam-si 13117, Korea
* Correspondence: sungjinlee@du.ac.kr

Abstract: Due to the recent increasing utilization of deep learning models on edge devices, the
industry demand for Deep Learning Model Optimization (DLMO) is also increasing. This paper
derives a usage strategy of DLMO based on the performance evaluation through light convolution,
quantization, pruning techniques and knowledge distillation, known to be excellent in reducing
memory size and operation delay with a minimal accuracy drop. Through experiments regarding
image classification, we derive possible and optimal strategies to apply deep learning into Internet of
Things (IoT) or tiny embedded devices. In particular, strategies for DLMO technology most suitable
for each on-device Artificial Intelligence (AI) service are proposed in terms of performance factors. In
this paper, we suggest a possible solution of the most rational algorithm under very limited resource
environments by utilizing mature deep learning methodologies.

Keywords: image classification; lightweight network; network compression; convolutional neural
network; quantization; pruning; knowledge distillation

1. Introduction

As athe demand for applying deep learning models on mobile and Internet-of-Things
(IoT) devices increases, industrial needs for a Deep Learning Model Optimization (DLMO)
and Neural Network Compression (NCC) suitable for on-device Artificial Intelligence (AI)
are also increasing. In particular, an AI service on the edge devices, referred to as edge
computing or Artificial Internet of Things (AIoT) [1], is being applied in various fields
such as a smart cities, smart factories, smart agriculture, smart mobility, etc. Since the
native neural networks are difficult to deploy on tiny devices and embedded systems
with limited resources, researchers in this field have studied model optimization and
network compression [2]. Many studies have tried to apply deep learning into several
applications such as the detection of diabetic retinopathy [3], the management of security
in Internet of Medical Things (IoMT) environments [4], and optimization techniques for
IoT data [5,6]. Due to model optimization and network compression, the memory size and
a computational delay of deep learning models are reduced compared to the native neural
networks, while the performance of models is maintained as well [7].

In this paper, we address usage strategies of DLMO based on performance evaluation
through several combinations of Lightweight Convolution, Quantization and Pruning
techniques. First, in order to examine each performance among combinations, we are using
VGGNet [8] and ResNet [9] as baseline networks. Then, for a comparison, MobileNet v1,
v2 and v3 [10–12] are used as lightweight networks. In various IoT use cases, we evaluate
the performances of several quantization techniques, which comprise Quantization Aware
Training (QAT) and subtypes of Post Training Quantization (PTQ), i.e., Baseline Quantization
(BLQ), Full Integer Quantization (FIQ) and Float 16 Quantization (F16) [13,14]. Lastly, for
the pruning technique, the performance improvement will be analyzed by applying the
training method to the basic Convolution Neural Network (CNN) and lightweight CNN

Sensors 2022, 22, 7344. https://doi.org/10.3390/s22197344 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22197344
https://doi.org/10.3390/s22197344
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5183-4855
https://doi.org/10.3390/s22197344
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22197344?type=check_update&version=2


Sensors 2022, 22, 7344 2 of 15

technologies [14,15]. As datasets for performance analysis, we will use the Canadian
Institute For Advanced Research 10 (CIFAR10) and CIFAR100. Rather than present a new
high-level algorithm, we try to guide a possible combination of the most rational algorithm
under very limited resource environments by utilizing the dominant technologies with
high maturity.

The remainder of this paper is organized as follows. Section 2 presents the related
work. Section 3 illustrates the proposed methodology with respect to lightweight network
techniques, while Section 4 shows the simulation results. Section 5 provides the conclusions
of the work.

2. Related Work

The performance improvement in the deep learning-based image classification models
has come from the excellence of the CNN’s feature extraction [16]. Thus, how to design the
network layer as an extractor’s role has become key to improving the overall performance
and computational efficiency. In the early days of deep learning, the convolutional extractor
network was mainly focused on performance improvement, so the number of layers
gradually increased and the structure was designed to be more complex. Nevertheless,
the authors in [17,18] pointed out that a bottleneck in CNN’s performance is due to the
imbalanced memory distribution in CNN designs, i.e., the first several blocks have an order-
of-magnitude larger memory usage than the rest of the network. However, even though
VGGNet [8], with a simple 3 × 3 convolutional block-based structure, has dramatically
reduced computational complexity, it showed a comparable performance to the Inception
model [19] with a complex structure. Then, an interest in reducing computational efficiency
of convolution extractor networks has begun to rise. Afterwards, ResNet, with a skip-
connection structure [9], also contributed to both a reduction in computational complexity
and an improvement in accuracy. In addition, enhanced versions of ResNet appeared, such
as Wide Residual Network (WRN) [20] and ResNeXt [21]. In this trend, as subtypes of
MobileNets (MobileNet v1 using Depthwise Separable Convolution [10], MobileNet v2 [11]
using Bottleneck Residual Block [9] and Squeeze and Excitation Block [22], MobileNet
v3 [12] using Network Architecture Search (NAS) [23]) appear, convolution lightweight
technology has made substantial progress.

The authors in [24] systematically studied model scaling and identified that carefully
balancing network depth, width and resolution can lead to better performance. They pro-
posed a new scaling method that uniformly scales all dimensions of depth/width/resolution
using a simple yet highly effective compound coefficient. The authors in [25] improved
the performance by combining ResNet scaling strategies. The strategy depends on the
training regime and offers two new scaling strategies: (1) scale model depth in regimes
where overfitting can occur (width scaling is preferable otherwise); (2) increase image
resolution more slowly. The Google brain team has thoroughly researched a method to
reduce significant amounts of computational resources, memory and power to train and
run on mobile and IoT devices. Google provided one of the core Machine Learning (ML)
kits, ‘Learn2Compress [26]’, to make machine learning accessible for all mobile developers.
It is an automatic model compression service and enables custom on-device deep learning
models in TensorFlow Lite that run efficiently on mobile devices, without developers hav-
ing to worry about optimizing for memory and speed. TensorFlow Lite Micro (TFLM) is, in
particular, an open-source ML inference framework for the tiny embedded systems [27].
Other AI industries have also provided network compression and light weight ML models
such as the Pytorch module, NeuralMagic, Nvidia’s TensorRT, OpenVINO, etc. The authors
in [28] demonstrated the efficient neural network kernel to maximize the performance and
minimize the memory consumption on Arm Cortex-M processor. On microcontrollers,
which are small computing resources on a single VLSI integrated circuit (IC) chip for IoT or
embedded devices, the authors in [17,18] suggested a joint framework of the efficient neu-
ral architecture and the lightweight inference engine for image classification. There have
been also vigorous studies on reducing the amount of memory consumption or managing



Sensors 2022, 22, 7344 3 of 15

memory resources efficiently in [29–31]. We have summarized related works mentioned
above in Table 1.

Table 1. Summary of the related work.

Reference # Proposed

Lin et al., 2020 [17] A framework that jointly designs the efficient neural architecture and the lightweight inference engine,
enabling ImageNet-scale inference on microcontrollers (MCUNet v1).

Lin et al., 2021 [18] A generic patch-by-patch inference scheduling, which operates only on a small spatial region of the
feature map and significantly cuts down the peak memory (MCUNet v2).

Tan et al., 2019 [24] A new scaling method that uniformly scales all dimensions of depth/width/resolution using a simple
effective compound coefficient (EfficientNet).

Bello et al., 2021 [25] Training and scaling strategies: (1) scale model depth; (2) increase image resolution depending on the
training regime.

David et al., 2021 [27] A model-architecture framework that enables hardware vendors to provide platform-specific
optimizations and is open to a wide machine-learning ecosystem (TensorFlow Lite Micro).

Lai et al., 2018 [28]
An efficient kernels developed to maximize the performance and minimize the memory footprint of
neural network applications on Arm Cortex-M processors targeted for intelligent IoT edge
devices(CMSIS-NN)

Gural et al., 2019 [29] Memory-optimal direct convolutions as a way to push classification accuracy as high as possible given
strict hardware memory constraints at the expense of extra compute.

Sakr et al., 2021 [30] An in-place computation strategy to reduce memory requirements of neural network inference.

Müksch et al., 2020 [31] A comparison among several CNN variations (as like ProtoNN, Bonsai and FastGRNN) to apply
3-channel image classification using CIFAR10.

3. System Model
3.1. Quantization Technique

In [2], a model quantization was a widely used technique to compress and accelerate
the inference stage of deep learning. Recent hardware accelerators for deep learning have
begun to support mixed precision (1–8 bits) to further improve computation efficiency,
which raises a great challenge to find the optimal bitwidth for each layer: it requires domain
experts to explore the vast design space, trading off between accuracy, latency, energy, and
model size, which is both time-consuming and sub-optimal.

A quantization technique compresses the network weights by reducing the number
of bits, and then the network weight becomes smaller from 32 bits. Therefore, the quan-
tization method limits the dynamic range and the expression accuracy of bits but also
has the advantage of reducing the overall network weight size as much as the number of
quantized bits.

To analyze the quantization transformation mathematically, let us define the former
FP32-bit tensor as x f and the quantized INT8 tensor as xq. The basic transformation method
of quantization then becomes:

xq = Round
(

s · Clip
(

x f ,−r, r
))

, where s =
127

r
. (1)

As shown in Figure 1, the distribution of the dynamic range of FP32 is in [−3.4 ×
10−38, 3.4 × 1038] based on IEEE 754 standard [32] and the dynamic range of INT8 can
express 255 equally spaced numbers. In other words, in order to map numbers from FP32
to INT8, the Clip function is used to discard some outlier numbers outside −r and r in
the dynamic range of FP32. In addition, s is used for spacing adjustment. Therefore, the
conversion from FP32 to INT8 results in some latency due to the operations of Equation (1),
such as Clip, Round and Scale.



Sensors 2022, 22, 7344 4 of 15

Figure 1. Quantization from FP32 to INT8.

On the other hand, the dynamic range of FP16 becomes [−65504, 65504] with the half
size of FP32 based on IEEE 754 standard [32]. As shown in Figure 2, the two floating point
representations FP32 and FP16 shows the similarity in the format, so that their conversion
needs just bitwise operation with little latency, i.e., the exponent and mantissa of FP16 can
be obtained by removing 2 LSBs (Least Significant Bits) of the exponent in FP32 and 13
LSBs of mantissa in FP32.

Figure 2. Quantization from FP32 to FP16.

The quantization technique can be divided into two types depending on whether the
bit conversion is performed before or after training the weight values:

• Post-Training Quantization(PTQ): A method of training weights with FP32 and then
quantizing the results into smaller datatypes;

• Quantization Aware Training (QAT): A method of training weights for maximizing their
accuracy with the quantized datatype.

PTQ techniques can be also categorized into the following three methods according to
how the weights are quantized: Baseline Quantization (BLQ), Full Integer Quantization
(FIQ) and FP16 Quantization.

The BLQ is a method of quantizing FP32 weight values into the INT8 type. In particular,
the inference is performed by reversing the quantized INT8 value to a FP32 decimal value
with the reduced precision. Then, as shown in Figure 3, the inference is operated as:

Input(FP32)× Weight(FP32 with reduced precision)

+ Bias(FP32) = Output(FP32). (2)

The FIQ is a method that quantizes all mathematical values of the network model
using a sample data set, that is, it determines the quantization parameters such as the
minimum and maximum values of the weight and activation function values and the bias
values. Then, the inference is performed by quantizing input FP32 values to INT8 values
with the predetermined quantization parameters. Here, to determine the quantization



Sensors 2022, 22, 7344 5 of 15

parameters, a small data set of around 100–500 samples is needed for the additional training.
Figure 4 represents the procedure.

Figure 3. Baseline Quantization.

Figure 4. Full Integer Quantization.

The FIQ also includes an implementation of the float fallback method in case there is
no implementation of conversion to integer values for each decimal value due to hardware
limitations. The F16 is a method of expressing the FP32 weight values into to the nearest
FP16 weight values with lower precision. It is possible to reduce the model size in half with
minimal accuracy loss. The overall procedure is shown in Figure 5.



Sensors 2022, 22, 7344 6 of 15

Figure 5. Float 16 Quantization.

3.2. Pruning

The pruning technique is a method to leave weights over the threshold value and set
the rest of weights to zero within a deep learning operation. In general, a rule for choosing
pruning weights is to sort some weights by their absolute values and to adjust the rest of
weights to zero the smallest weights until some desired sparsity level is satisfied [15]. In
this paper, weights set to zero in the aforementioned CNN models are gradually increased
for 60–70 iterations to achieve maximal accuracy.

3.3. Knowledge Distillation

Knowledge Distillation (KD) is a deep learning method to transfer the knowledge
from the cumbersome model with the large deep neural network to a small model with
more suitable structure for deployment [33]. The cumbersome model and the small model
are also known as teacher model and student model, respectively. A simple way to transfer
the generalization ability of the teacher model to the student model is to use the class
probabilities produced by the teacher model as “soft targets” for training the student
model.

In KD, the soft target, i.e., each class probability qi from each logit zi in a “softmax”
equation, can be more distributed through temperature T as:

qi =
exp(zi/T)

∑j exp(zj/T)
(3)

Since the vanilla KD method was published in [33], various KD schemes have been
developed. As shown in Tables 2–4, the KD methods can be generally classified in terms of
Knowledge Type (KT), Distillation Type (DT) and Teacher–Student Architecture (TSA) [34].
First of all, the KT for KD can be classified into response, feature and relation according to
the KT, as shown in Table 2. The aim of the response-based KT is to calculate the distillation
loss from the logit outputs of the teacher and student models [35–38]. The feature-based
knowledge type aims to calculate the distillation loss from the intermediate representations
of the teacher and student models [39–44]. The relation-based knowledge type aims to
utilize the relation from the feature maps [45–48]. Although it has a similarity with the
previous feature-based KT in the perspective of using the intermediate feature map, it is
distinguished from using the manipulated function of the feature maps such as the Gram
matrix [45].



Sensors 2022, 22, 7344 7 of 15

Table 2. KD Classification according to Knowledge Type.

Category Meaning

Response logit outputs of TSA
Feature intermediate representations of TSA
Relation relation between the feature maps

On the other hand, the KD can be classified into online, offline and self-distillation ac-
cording to the DT, as shown in Table 3. The offline-based DT aims to transfer the knowledge
from a pre-trained teacher model into a student model [33,42–44,49–51]. The online-based
DT aims to update the teacher and student models simultaneously [41,47,52–55]. In the
special case of online distillation, the self-distillation-based distillation type aims to utilize
the same network model for the teacher and student models [56–61].

Table 3. KD Classification according to Distillation Type.

Category Meaning

Offline KD from a pre-trained teacher model
Online Update the TSM simultaneously
Self-Distillation Online method with same TSA

Last, as shown in Table 4, the KD can be classified into the same architecture as the
teacher [62–64]; reduced architecture from teacher and light-weight architecture using
light-weight convolution modules [51,65,66]; and Quantization and Pruning according
to the TSA [10,67–72]. In particular, the light-weight architecture-based student model is
based on the various light-weight convolution structure mentioned in Section 2. Likewise,
the quantization and pruning based student model is based on the structure mentioned in
Sections 3.1 and 3.2.

Table 4. KD Classification according to Teacher–Student Architecture.

Category Meaning

Same as Teacher Same architecture with Teacher
Reduced Teacher Reduced architecture from Teacher
Light Network Design with Light-Weight Conv,

Quantization and Pruning

This paper evaluates the performance of the Vanilla KD with a Light-Network-based
student architecture in terms of Response, Offline and Light Network types (MobileNetv1,
v2 and v3).

4. Simulation Results
4.1. Performance of Quantization and Pruning

In order to examine the performance of the quantization and pruning technology
groups, let us define the evaluation setups. First, the basic technology without quantization
and pruning is denoted as NQ (No Quantization). Then, as mentioned in Section 3.1, the
other quantization techniques for the evaluation are denoted by BLQ, FIQ, F16 Quantization
and QAT.

In addition, let us define the pruning technique as PRN (Pruning). Then, a technique
that applies both quantization BLQ and pruning is PRQ (Pruning Quantization). Finally,
VGGNet and ResNet50, as the baseline networks, are tested on the CIFAR10 and CIFAR100
datasets. The recognition delay or latency (Lat) is the value computed for 10,000 images of
the validation set in CIFAR10 and CIFAR100. All of these experiments have gone through
the TensorFlow-Lite conversion and code optimization procedures [14].



Sensors 2022, 22, 7344 8 of 15

As shown in the results of Tables 5–7, when the quantizations are applied, all quanti-
zation setups have similar or better accuracy performance (as shown in “Acc”) than NQ,
whereas the model size (Size) is decreased by 25%∼50%. Among them, it is observed that
BLQ, FIQ and QAT have similar performance, i.e., accuracy around 80% and size of 25%.
However, F16 has a size of 50% with a similar accuracy around 80%. In terms of “Lat”,
F16 shows the best performance. On the other hand, BLQ, FIQ and QAT have rather long
latencies. This proves that the conversion from the FP32 inputs to INT8 values takes a
significant amount of time.

Table 5. VGGNet.

DLMO CIFAR10 CIFAR100

Eval Acc Size Lat Acc Size Lat
Setup (%) (KB) (ms) (%) (KB) (ms)

NQ 71.9 56 4 43.5 425 18
BLQ 71.9 19 20 43.7 112 35
FIQ 72.5 18 44 43.5 110 53
F16 72.1 30 6 43.8 214 19

QAT 72.5 18 42 42.5 106 45
PRN 68.7 16 2 39.7 123 2
PRQ 68.6 7 19 39.7 37 19

Table 6. ResNet50.

DLMO CIFAR10 CIFAR100

Eval Acc Size Lat Acc Size Lat
Setup (%) (KB) (ms) (%) (KB) (ms)

NQ 80.7 94,052 177 36.5 94,790 129
BLQ 80.3 24,161 2348 36.5 24,346 2642
FIQ 80.4 24,269 2078 37.2 24,454 1997
F16 80.6 47,072 152 39.4 47,441 162

QAT 80.5 24,281 2069 36.9 24,431 2001
PRN 81.2 27,503 155 43.2 27,857 148
PRQ 81.2 8023 2399 43.1 8059 2379

Table 7. ResNet101.

DLMO CIFAR10 CIFAR100

Eval Acc Size Lat Acc Size Lat
Setup (%) (KB) (ms) (%) (KB) (ms)

NQ 79.6 169961 336 41.3 170,698 365
BLQ 79.5 43776 4576 41.5 43,960 4646
FIQ 80.8 43990 4555 37.4 44,174 4726
F16 80.2 85072 329 41.4 85,441 352

QAT 80.1 43799 4529 37.0 44,111 4731
PRN 79.8 49704 347 38.7 49,697 337
PRQ 79.8 14812 4603 38.6 14,670 4587

For the performance of “PRN”, it is observed that although its accuracy and size are
similar with those of the quantization techniques, it has significant advantages in “Lat”.
The reason for this is that pruning has no conversion procedure from the FP32 input to other
data units such as FP16 or INT8. Moreover, the density of effective weights, i.e., non-zero
values, is sparse compared to that of the quantization, so the computational complexity can
be reduced. Those two reasons are the main factors in the model compression performance
of PRN.



Sensors 2022, 22, 7344 9 of 15

In addition, if the quantization is added to this pruning technique, i.e., PRQ, the model
compression performance can be extremely enhanced, but latency increases similar with
the other quantization schemes due to the conversion of data units.

In particular, it is remarkable that pruning shows better accuracy in ResNet compared
to VGGNet. From this fact, it can be seen that the higher the network depth and number of
channels, the greater the pruning gain.

Based on the above experiments and observations, the following remarks can be
derived:

Remark 1. If the quantization is applied, the model can be compressed while maintaining the
similar accuracy.

Remark 2. The data conversion procedure of the quantization can cause recognition delays.

Remark 3. If pruning is applied, both the model size and the recognition delay can be reduced while
maintaining a similar accuracy.

Remark 4. The pruning shows a better performance improvement when applied to neural networks
with a large capacity.

4.2. Performance Evaluation of Light-Weight CNNs

In this section, we examine the performance of the lightweight CNNs, i.e., MobileNet
v1, v2 and v3. As shown in Tables 8–11, it is observed that MobileNet v2 shows higher
accuracy at only 5∼10% the size of ResNet50, whereas MobileNet v3 Small and Large show
not enough accuracy, even with an increased size (141∼391% of MobileNet v2, 13∼37% of
ResNet50). MobileNet v1 also shows similar performance to MobileNet v2.

Table 8. MobileNet v1.

DLMO CIFAR10 CIFAR100

Eval Acc Size Lat Acc Size Lat
Setup (%) (KB) (ms) (%) (KB) (ms)

NQ 81.8 12,840 18 42.2 13,208 34.6
BLQ 81.8 3477 346 42.2 3560 379.7
FIQ 82.4 3517 332 43.1 3612 330
F16 80.9 6435 22 45.1 6620 30.4

PRQ 81.0 1319 350 46.1 1349 350
PRN 81.0 3934 18 45.9 4063 19

Table 9. MobileNet v2.

DLMO CIFAR10 CIFAR100

Eval Acc Size Lat Acc Size Lat
Setup (%) (KB) (ms) (%) (KB) (ms)

NQ 81.6 8924 11 45.7 9386 21.7
BLQ 81.5 2663 224 45.5 2782 213.6
FIQ 81.2 2730 173 45.9 2848 161
F16 82.0 4509 10.6 41.5 4740 21.6

PRQ 80.2 1082 213 47.2 1118 221
PRN 80.5 2876 8 47.1 2997 7



Sensors 2022, 22, 7344 10 of 15

Table 10. MobileNet v3 small.

DLMO CIFAR10 CIFAR100

Eval Acc Size Lat Acc Size Lat
Setup (%) (KB) (ms) (%) (KB) (ms)

NQ 68.8 12,161 10 34.8 12,624 24
BLQ 68.7 3269 73 34.9 3389 97
FIQ 69.7 3301 41 35.4 3419 43
F16 72.1 6128 10 35.2 6359 20

PRQ 69.6 1172 64 36.0 1187 69
PRN 69.7 3740 6 36.2 3862 7

Table 11. MobileNet v3 Large.

DLMO CIFAR10 CIFAR100

Eval Acc Size Lat Acc Size Lat
Setup (%) (KB) (ms) (%) (KB) (ms)

NQ 77.9 34,939 26 37.1 35,401 37
BLQ 78.0 9122 195 37.2 9239 218
FIQ 77.2 9178 149 36.7 9295 150
F16 77.9 17,525 26 38.1 17,756 28

PRQ 75.7 3062 206 39.4 3122 211
PRN 75.6 10,510 19 39.3 10,653 29

However, as shown in Table 12, MobileNet v3 shows a better performance in accuracy
than MobileNet v2 in the large dataset, such as ImageNet [12]. The differences in perfor-
mance between MobileNet v3 with different numbers of parameters are due to differences
in training methods, in which training with large parameters in the small dataset introduces
an overfitting problem.

On the other hand, the performances of WRN [20] are shown in Table 13. Even though
WRN does not utilize the light-weight convolution schemes such as DSP, Linear Bottleneck
and SE, it shows the best accuracy with the minimal size. Based on the aforementioned
observation, it is recommended that the neural network model is selected with considering
the scale of datasets.

Table 12. MobileNet v2, v3 in ImageNet.

Network Top-1 MAdds Params

V3-Large1.0 75.2 219 5.4M
V2 1.0 72.0 300 3.4M

V3-Small 1.0 67.4 56 2.5M

Table 13. Wide Residual Networks.

DLMO CIFAR10 CIFAR100

Eval Acc Size Lat Acc Size Lat
Setup (%) (KB) (ms) (%) (KB) (ms)

NQ 88.8 1899 39 60.5 192 50
BLQ 88.8 537 1820 59.4 544 1860
FIQ 88.7 538 1913 59.3 544 2009
F16 86.7 982 39 60.0 994 51

QAT 88.6 540 1916 58.9 549 2002
PRN 87.6 547 42 60.2 572 37
PRQ 87.6 195 1902 60.3 200 1860



Sensors 2022, 22, 7344 11 of 15

For the performance evaluation of the KD technique, ResNet54 and MobileNet series
are respectively used as teacher and student models in the CIFAR10 dataset. In addition,
in order to investigate the combination with the KD and the other model optimizations
(quantization and pruning), F16 and PR are used as the representative techniques.

As shown in Table 14, the KD scheme has the benefit of boosting the accuracy. In
other words, although the KD itself could not minimize the size or the latency, it could
increase the accuracy of lightened models for stable deployment. Moreover, if quantization
and pruning are used together in the KD technique, the effect can be further enhanced.
As shown in Tables 8–12, it is remarkable that M3L and M3s show better performance
in a large-scale dataset such as ImageNet than in a small-scale dataset such as CIFAR10.
This is because the M3L and M3s are designed to have the best performance in ImageNet
based on NAS, i.e., it can have an inferior performance in other datasets. Therefore, when
applying the KD training into those M3L and M3s models for the small-scale dataset, their
performance improvement was also limited compared to the other neural networks.

Table 14. Performance Evaluation of KD in the CIFAR10 Dataset.

DLMO Original KD

Eval Acc Size Lat Acc Size Lat
Setup (%) (KB) (ms) (%) (KB) (ms)

M1 81.8 12,840 18 86.3 12,840 18
M2 81.6 8924 11 85.4 8924 11

M3L 77.9 34,939 26 60.5 34,939 26
M3s 68.8 12,161 10 60.5 12,161 10

M1-F16 80.9 6435 22 86.3 192 50
M2-F16 82.0 4509 10.6 85.4 192 50

M1-PR 81.0 3934 18 86.3 192 50
M2-PR 80.5 2876 8 85.4 192 50

4.3. Optimization Strategy

First, let us define the service types of AIoT and find out about the optimal DLMO
strategy for each service.

The AIoT service performs existing AI services at the edge device level without going
through the cloud server. According to the performance requirements, it can be classified
into the following three categories:

• Low-end AIoT Service: Aims for low-end AIoT service such as vacant parking space
detection. Their deep learning models are loaded on the small memory of the IoT
device in each parking lot, but the service is not delay-sensitive. In addition, the scale
of the required dataset is small, e.g., two classes with vacant and occupied classes:

• Mid-end AIoT Service: Aims for Mid-end AIoT Service, such as license plate recogni-
tion. The number of classes to be recognized is around 10∼20, and the difficulty of
recognition is easy. In addition, the model is normally embedded on IoT devices, and
real-time performance is required.

• High-end AIoT Service: Aims for High-end AIoT Service, such as autonomous driv-
ing. Both real-time performance and accuracy are required.

Then, based on the aforementioned remarks, the following strategies are proposed for
each AIoT service:

• Neural Network Selection: The neural network model for DLMO needs to be selected
considering the scale of the datasets.

• Low-end AIoT Service: It is recommended to utilize PRQ because it can minimize
the model size with minimal accuracy drops.

• Mid-end AIoT Service: It is recommended to utilize PRN because it guarantees all
performances of accuracy, latency and size reduction.



Sensors 2022, 22, 7344 12 of 15

• High-end AIoT Service: It is better to use F16 or PRN because it guarantees all
performances of accuracy, latency and size reduction.

• KD: For the low-to-high end AIoT services, KD can be used simultaneously with the
aforementioned techniques for boosting the accuracy of the reduced model.

5. Conclusions

In this paper, we analyzed four methods, i.e., Light Convolution, Quantization, Prun-
ing and Knowledge Distillation, for DLMO of edge devices and also derived application
strategies according to AI services through experiments. First of all, we found that quan-
tization was the most effective in compressing the model size, but it led to a lot of delay
in data conversion. We also found that the pruning technique was excellent in all aspects
of model compression, accuracy loss minimization and delay minimization. In particular,
the larger the model is, the more effects of model is. Moreover, it is recommended to train
the aforementioned deep learning models with knowledge distillation, because it could
improve the accuracy without additional increases in latency and size. We found that it
was better to select an optimized network after analyzing the data set in the field to be
used, rather than selecting the lightweight network technique unconditionally according
to insights from this paper. Finally, by classifying AIoT services according to three perfor-
mance factors (these are accuracy, size, and delay), we derived the optimal combinations of
DLMO techniques depending on situations. Moreover, transformer-based approaches [73]
have recently become a dominant deep learning method instead of CNNs. However, what
we have researched in this paper will be valid for a while because transformer network
models are very complicated and require high hardware specifications and are thus not
suitable for IoT and embedded devices.

Author Contributions: Conceptualization, H.L., S.L. and N.L.; methodology, H.L., S.L. and N.L.;
software, H.L. and S.L.; validation, H.L. and S.L.; resources, H.L. and S.L.; data curation, H.L. and
S.L.; writing—original draft preparation, H.L. and S.L.; writing—review and editing, H.L., S.L. and
N.L.; visualization, H.L. and S.L.; supervision, H.L. and S.L.; project administration, H.L., S.L. and
N.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by Institute of Information and communications Technology
Planning and Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2021-0-00852,
Development of Intelligent Media Attributes Extraction and Sharing Technology) and the Basic
Science Research Program through the National Research Foundation of Korea (NRF) funded by the
Ministry of Education (NRF-2019R1F1A1062878).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liu, F.; Tang, G.; Li, Y.; Cai, Z.; Zhang, X.; Zhou, T. A Survey on Edge Computing Systems and Tools. Proc. IEEE 2019, 107,

1537–1562. [CrossRef]
2. Han, S.; Mao, H.; Dally, J. Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and

Huffman Coding. arXiv 2015, arXiv:1510.00149.
3. Gundluru, N.; Rajput, D.S.; Lakshmanna, K.; Kaluri, R.; Shorfuzzaman, M.; Uddin, M.; Rahman Khan, M.A. Enhancement of

Detection of Diabetic Retinopathy Using Harris Hawks Optimization with Deep Learning Model. Comput. Intell. Neurosci. 2022,
2022, 8512469 . [CrossRef] [PubMed]

4. Palve, A.; Patel, H. Towards Securing Real Time Data in IoMT Environment. In Proceedings of the International Conference on
Communication Systems and Network Technologies (CSNT), Bhopal, India, 24–26 November 2018.

5. Lakshmanna, K.; Kaluni, R.; Gundluru, N.; Alzamil, Z.; Rajput, D.S.; Khan, A.A.; Haq, M.A.; Alhussen, A. A Review on Deep
Learning Techniques for IoT Data. Electronics 2022, 11, 1604. [CrossRef]

6. Rajput, D.S.; Reddy, T.S.K.; Raju, D.N. Investigation on Deep Learning Approach for Big Data: Applications and Challenges.
Deep. Learn. Neural Netw. Concepts Methodol. Tools Appl. 2020, 11, 1604.

http://doi.org/10.1109/JPROC.2019.2920341
http://dx.doi.org/10.1155/2022/8512469
http://www.ncbi.nlm.nih.gov/pubmed/35665292
http://dx.doi.org/10.3390/electronics11101604


Sensors 2022, 22, 7344 13 of 15

7. Deng, L.; Li, G.; Han, S.; Shi, L.; Xie, Y. Model Compression and Hardware Acceleration for Neural Networks: A Comprehensive
Survey. Proc. IEEE 2020, 108, 485–532. [CrossRef]

8. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556.
9. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition(CVPR), Las Vegas, NV, USA, 27–30 June 2016.
10. Howard, A.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient

Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861.
11. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L. MobileNetV2: Inverted Residuals and Linear Bottlenecks. arXiv 2018,

arXiv:1801.04381
12. Howard, A.; Sandler, M.; Chu, G.; Chen, L.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching

for MobileNetV3. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2
November 2019.

13. Gholami, A.; Kim, S.; Dong, Z.; Yao, Z.; Mahoney, M.; Keutzer, K. A Survey of Quantization Methods for Efficient Neural Network
Inference. arXiv 2021, arXiv:2103.13630.

14. TensorFlow for Mobile and Edge. Available online: https://www.tensorflow.org/lite (accessed on 1 March 2022).
15. Zhu, M.; Gupta, S. To Prune, or Not To Prune: Exploring the Efficacy of Pruning for Model Compression. arXiv 2017,

arXiv:1710.01878.
16. Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of

the Conference on Neural Information Processing Systems(NeurIPS), Lake Tahoe, NV, USA, 3–8 December 2012.
17. Lin, J.; Chen, W.-M.; Lin, Y.; Cohn, J.; Gan, C.; Han, S. MCUNet: Tiny Deep Learning on IoT Devices. Adv. Neural Inf. Process. Syst.

2020, 33, 11711–11722.
18. Lin, J.; Chen, W.-M.; Cai, H.; Gan, C.; Han, S. MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning. In

Proceedings of the Conference on Neural Information Processing Systems (NeurIPS), Online, 6–14 December 2021.
19. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Boston, MA, USA,
7–12 June 2015.

20. Zagoruyko, S.; Komodakis, N. Wide Residual Networks. arXiv 2016, arXiv:1605.07146.
21. Xie, S.; Girshick, R.; Dollar, P.; Tu, Z.; He, K. Aggregated Residual Transformations for Deep Neural Networks. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Honolulu, HI, USA, 21–26 July 2017.
22. Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition(CVPR), Salt Lake City, UT, USA, 18–23 June 2018.
23. Zoph, B.; Le, Q. Neural Architecture Search with Reinforcement Learning. arXiv 2016, arXiv:1611.01578
24. Tan, M.; Le, Q. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the 36th

International Conference on Machine Learning(PMLR), Long Beach, CA, USA, 9–15 June 2019.
25. Bello, I.; Fedus, W.; Du, X.; Cubuk, E.; Srinivas, A.; Lin, T.; Shlens, J.; Zoph, B. Revisiting ResNets: Improved Training and Scaling

Strategies. Adv. Neural Inf. Process. Syst. 2021, 34, 22614–22627.
26. Custom On-Device ML Models with Learn2Compress. Google AI Blog. 2018. Available online: https://ai.googleblog.com/2018/0

5/custom-on-device-ml-models.html (accessed on 1 March 2022).
27. David, R.; Duke, J.; Jain, A.; Reddi, V.J.; Jeffries, N.; Li, J.; Kreeger, N.; Nappier, I.; Natraj, M.; Regev, S.; et al. Tensorflow Lite

Micro: Embedded Machine Learning for TinyML systems. arXiv 2021, arXiv:2010.08678.
28. Lai, L.; Suda, N.; Chandra, V. CMSIS-NN: Efficient Neural Network Kernels for Arm Cortex-M CPUs. arXiv 2018, arXiv:1801.06601.
29. Gural, A.; Murmann, B. Memory-Optimal Direct Convolutions for Maximizing Classification Accuracy in Embedded Applications.

In Proceedings of the 36th International Conference on Machine Learning(PMLR), Long Beach, CA, USA, 9–15 June 2019.
30. Sakr, F.; Bellotti, F.; Berta, R.; De Gloria, A.; Doyle, J. Memory-Efficient CMSIS-NN with Replacement Strategy. In Proceedings of

the IEEE International Conference on Future Internet of Things and Cloud(FiCloud), Rome, Italy, 23–25 August 2021.
31. Müksch, S.; Olausson, T.; Wilhelm, J.; Andreadis, P. Quantitative Analysis of Image Classification Techniques for Memory-

Constrained Devices. arXiv 2020, arXiv:2005.04968.
32. IEEE STD 754-2019; IEEE Standard for Floating-Point Arithmetic. IEEE: Piscataway, NJ, USA, 2019; pp. 1–84.
33. Hinton, G.; Vinyals, O.; Dean, J. Distilling the Knowledge in a Neural Network. arXiv 2015, arXiv:1503.02531.
34. Gou, J.; Yu, B.; Maybank, S.J.; Tao, D. Knowledge Distillation: A Survey. arXiv 2021, arXiv:2006.05525.
35. Meng, Z.; Zhao, Y.; Gong, Y. Conditional Teacher-Student Learning. In Proceedings of the IEEE International Conference on

Acoustics, Speech and Signal Processing(ICASSP), Brighton, UK, 12–17 May 2019.
36. Kim, S.W.; Kim, H.E. Transferring Knowledge to Smaller Network with Class-Distance Loss. In Proceedings of the International

Conference on Learning Representations(ICLR) RobustML Workshop, Toulon, France, 24–26 April 2017.
37. Muller, R.; Kornblith, S.; Hinton, G.E. When Does Label Smoothing Help? In Proceedings of the Conference on Neural Information

Processing Systems(NeurIPS), Vancouver, BC, Canada, 8–14 December 2019.
38. Ding, Q.; Wum S.; Sun, H.; Gou, J.; Xia, S. Adaptive Regularization of Labels. arXiv 2019, arXiv:1908.05474.
39. Romero, A.; Ballas, N.; Kahou, S.E.; Chassang, A.; Gatta, C.; Bengio, Y. Fitnets: Hints for Thin Deep Nets. arXiv 2015,

arXiv:1412.6550.

http://dx.doi.org/10.1109/JPROC.2020.2976475
https://www.tensorflow.org/lite
https://ai.googleblog.com/2018/05/custom-on-device-ml-models.html
https://ai.googleblog.com/2018/05/custom-on-device-ml-models.html


Sensors 2022, 22, 7344 14 of 15

40. Zagoruyko, S.; Komodakis, N. Paying More Attention to Attention: Improving the Performance of Convolutional Neural
Networks via Attention Transfer. In Proceedings of the International Conference on Learning Representations(ICLR), Toulon,
France, 24–26 April 2017.

41. Kim, J.; Park, S.; Kwak, N. Paraphrasing Complex Network: Network Compression via Factor Transfer. In Proceedings of the
Conference on Neural Information Processing Systems(NeurIPS), Montréal, QC, Canada, 2–8 December 2018.

42. Passalis, N.; Tefas, A. Learning Deep Representations with Probabilistic Knowledge Transfer. In Proceedings of the European
Conference on Computer Vision(ECCV), Munich, Germany, 8–14 September 2018.

43. Heo, B.; Lee, M.; Yun, S.; Choi, J.Y. Knowledge Distillation with Adversarial Samples Supporting Decision Boundary. In
Proceedings of the Association for the Advancement of Artificial Intelligence(AAAI), Honolulu, HI, USA, 27 January–1 February
2019.

44. Heo, B.; Lee, M.; Yun, S.; Choi, J.Y. Knowledge Transfer via Distillation of Activation Boundaries Formed by Hidden Neurons. In
Proceedings of the Association for the Advancement of Artificial Intelligence (AAAI), Honolulu, HI, USA, 27 January–1 February
2019.

45. Yim, J.; Joo, D.; Bae, J.; Kim, J. A Gift from Knowledge Distillation: Fast Optimization, Network Minimization and Transfer
Learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Honolulu, HI, USA, 21–26
July 2017.

46. Lee, S.H.; Kim, D.H.; Song, B.C. Self-supervised Knowledge Distillation using Singular Value Decomposition. arXiv 2018,
arXiv:1807.06819.

47. Zhang, C.; Peng, Y. Better and Faster: Knowledge Transfer from Multiple Self-supervised Learning Tasks via Graph Distillation for
Video Classification. In Proceedings of the International Joint Conferences on Artificial Intelligence(IJCAI), Stockholm, Sweden,
13–19 July 2018.

48. Passalis, N.; Tzelepi, M.; Tefas, A. Heterogeneous Knowledge Distillation using Information Flow Modeling. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Seattle, WA, USA, 14–19 June 2020.

49. Huang, Z.; Wang, N. Like What You Like: Knowledge Distill via Neuron Selectivity Transfer. arXiv 2019, arXiv:1707.01219.
50. Mirzadeh, S.I.; Farajtabar, M.; Li, A.; Ghasemzadeh, H. Improved Knowledge Distillation via Teacher Assistant. In Proceedings of

the Association for the Advancement of Artificial Intelligence(AAAI), New York, NY, USA, 7–12 February 2020.
51. Li, T.; Li, J.; Liu, Z.; Zhang, C. Few Sample Knowledge Distillation for Efficient Network Compression. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition(CVPR), Seattle, WA, USA, 14–19 June 2020.
52. Chen, D.; Mei, J.P.; Wang, C.; Feng, Y.; Chen, C. Online Knowledge Distillation with Diverse Peers. In Proceedings of the

Association for the Advancement of Artificial Intelligence (AAAI), New York, NY, USA, 7–12 February 2020.
53. Xie, J.; Lin, S.; Zhang, Y.; Luo, L. Training Convolutional Neural Networks with Cheap Convolutions and Online Distillation.

arXiv 2019, arXiv:1909.13063.
54. Anil, R.; Pereyra, G.; Passos, A.; Ormandi, R.; Dahl, G.E.; Hinton, G.E. Large Scale Distributed Neural Network Training through

Online Distillation. In Proceedings of the International Conference on Learning Representations(ICLR), Vancouver, BC, Canada,
30 April–3 May 2018.

55. Zhou, G.; Fan, Y.; Cui, R.; Bian, W.; Zhu, X.; Gai, K. Rocket Launching: A Universal and Efficient Framework for Training
Well-performing Light Net. In Proceedings of the Association for the Advancement of Artificial Intelligence(AAAI), New Orleans,
LA, USA, 2–7 February 2018.

56. Phuong, M.; Lampert, C.H. Distillation-based Training for Multi-exit Architectures. In Proceedings of the International Conference
on Computer Vision(ICCV), Seoul, Korea, 27 October–2 November 2019.

57. Mobahi, H.; Farajtabar, M.; Bartlett, P.L. Self-distillation Amplifies Regularization in Hilbert Space. Adv. Neural Inf. Process. Syst.
2020, 33, 3351–3361.

58. Zhang, Z.; Sabuncu, M.R. Self-Distillation as Instance-Specific Label Smoothing. Adv. Neural Inf. Process. Syst. 2020, 33, 2184–2195.
59. Yuan, L.; Tay, F.E.; Li, G.; Wang, T.; Feng, J. Revisit Knowledge Distillation: A Teacher-free Framework. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition(CVPR), Seattle, WA, USA, 14–19 June 2020.
60. Yun, S.; Park, J.; Lee, K.; Shin, J. Regularizing Class-wise Predictions via Self-knowledge Distillation. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition(CVPR), Seattle, WA, USA, 14–19 June 2020.
61. Hahn, S.; Choi, H. Self-knowledge Distillation in Natural Language Processing. In Proceedings of the International Conference

on Recent Advances in Natural Language Processing(RANLP), Varna, Bulgaria, 2–4 September 2019.
62. Zhang, Y.; Xiang, T.; Hospedales, T.M.; Lu, H. Deep Mutual Learning. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition(CVPR), Salt Lake City, UT, USA, 18–22 June 2018.
63. Furlanello, T.; Lipton, Z.; Tschannen, M.; Itti, L.; Anandkumar, A. Born Again Neural Networks. In Proceedings of the International

Conference on Machine Learning(ICML), Stockholm, Sweden, 10–15 July 2018.
64. Tarvainen, A.; Valpola, H. Mean Teachers Are Better Role Models: Weight-averaged Consistency Targets Improve Semi-supervised

Deep Learning Results. In Proceedings of the Conference on Neural Information Processing Systems(NeurIPS), Long Beach, CA,
USA, 4–9 December 2017.

65. Wang, H.; Zhao, H.; Li, X.; Tan, X. Progressive Blockwise Knowledge Distillation for Neural Network Acceleration. In Proceedings
of the International Joint Conferences on Artificial Intelligence (IJCAI), Stockholm, Sweden, 13–19 July 2018.



Sensors 2022, 22, 7344 15 of 15

66. Zhu, X.; Gong, S. Knowledge Distillation by On-the-fly Native Ensemble. In Proceedings of the Conference on Neural Information
Processing Systems(NeurIPS), Montreal, QC, Canada, 3–8 December 2018.

67. Polino, A.; Pascanu, R.; Alistarh, D. Model Compression via Distillation and Quantization. In Proceedings of the International
Conference on Learning Representations(ICLR), Vancouver, BC, Canada, 30 April–3 May 2018.

68. Mishra, A.; Marr, D. Apprentice: Using Knowledge Distillation Techniques to Improve Low-precision Network Accuracy. In
Proceedings of the International Conference on Learning Representations(ICLR), Vancouver, BC, Canada, 30 April–3 May 2018.

69. Wei, Y.; Pan, X.; Qin, H.; Ouyang, W.; Yan, J. Quantization Mimic: Towards Very Tiny CNN for Object Detection. In Proceedings
of the European Conference on Computer Vision(ECCV), Munich, Germany, 8–14 September 2018.

70. Shin, S.; Boo, Y.; Sung, W. Empirical Analysis of Knowledge Distillation Technique for Optimization of Quantized Deep Neural
Networks. arXiv 2019, arXiv:1909.01688.

71. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Salt Lake City, UT, USA, 18–22 June
2018.

72. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Honolulu, HI, USA, 21–26 July 2017.

73. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is All you Need. In
Proceedings of the Conference on Neural Information Processing Systems(NeurIPS), Long Beach, CA, USA, 4–9 December 2017.


	Introduction
	Related Work
	System Model
	Quantization Technique
	Pruning
	Knowledge Distillation

	Simulation Results
	Performance of Quantization and Pruning
	Performance Evaluation of Light-Weight CNNs
	Optimization Strategy

	Conclusions
	References

