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Abstract: The subject of the research contained in this paper is a new design solution for an energy
harvesting system resulting from the combination of a quasi-zero-stiffness energy harvester and a
two-stage flexible cantilever beam. Numerical tests were divided into two main parts-analysis of the
dynamics of the system due to periodic, quasiperiodic, and chaotic solutions and the efficiency of
energy generation. The results of numerical simulations were limited to zero initial conditions as they
are the natural position of the static equilibrium. The article compares the energy efficiency for the
selected range of the dimensionless excitation frequency. For this purpose, three cases of piezoelectric
mounting were analyzed-only on the first stage of the beam, on the second and both stages. The
analysis has been carried out with the use of diagrams showing difference of the effective values
of the voltage induced on the piezoelectric electrodes. The results indicate that for effective energy
harvesting, it is advisable to attach piezoelectric energy transducers to each step of the beam despite
possible asynchronous vibrations.

Keywords: bifurcations; lyapunov exponent; periodicity; energy efficiency; chaos

1. Introduction

The use of electricity in all spheres of human life is constantly increasing. At the same
time, the challenges of today’s world related to ecology, certain limitations of renewable
sources and depleted fossil fuels have resulted in the search for solutions allowing for
more efficient use of available energy, in particular when we are dealing with phenomena
that are even common in technology, such as energy lost due to friction and heat release,
acoustic effects or vibration propagation and related unfavorable phenomena. All of them
cause a loss of energy from the system which, if properly processed, could become useful to
power small electronic device sensors [1–3]. We can use energy harvesters to process such
energy [4]. They are not sources that generate large amounts of energy, therefore researchers
constantly work on increasing their efficiency [5,6]. In laboratories and simulations, mostly
harmonic [7], stochastic methods [8] or their combinations are used to test the mechanical
energy harvesters [9]. In other applications, intermitted or time-limited excitations are
available, other than simple ideal harmonic excitation or stochastic methods [10,11]. This is
especially useful for real vibration sources of energy such as ocean waves, wind, passing
trains and walking persons [12–15].

From a technical point of view, the design of the vast majority of energy harvesters
for vibrating mechanical systems is based on a flexible cantilever beam resonator coupled
to a piezoelectric transducer [1,7,16]. Unfortunately, the performance of such a system
has a limited applicability to the resonance frequency of the beam. On the other hand,
permanent magnets inducing nonlinear forces are used to modify the form potential
of nonlinear harvester systems [17] to go beyond single-resonance-frequency working
conditions. Namely, magnets modify the stiffness of the system and lead to a multi-well
potential which leads to a wider effective frequency range and additional solutions present
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in the nonlinear system [18]. As all the solutions have their own frequencies for the
maximum outputs (including new resonances) nonlinear vibration energy harvesters are
robust against frequency variability of vibration sources [19,20]. It is a feature helpful for
real applications using ambient vibration sources with uncertain parameters [21,22].

In addition to magnets, as elements modifying the potential barrier, there are also
used, inter alia, elastic and damping elements, such as springs [22,23] or various beam
structures, additional degrees of freedom, bumpers etc. [24,25]. Such structures have both
advantages and disadvantages. They allow for a fairly simple modification of parameters,
but from an engineering point of view, they can be a challenge due to the more complicated
structure. The nonlinear characteristics significantly increase the efficiency of energy
harvesting [7,8] through the distortion of the resonance region [26] and the occurrence
of additional solutions. Namely, resonant and non-resonant solutions can appear in the
strongly inclined resonance curve. Additionally, sub- and super-harmonic solutions can
appear in a wide frequency range [27,28]. This is important to the design of self-powered
sensors in the presence of a variable source. As elements transforming mechanical energy
into electricity, various transducers are used, the most common of which are piezoelectric
ones [29,30] due to their simple structure and high energy density [31,32]. The nonlinear
monostable or bistable mechanical structures designed for effective vibration insulation
and harvesting may include X-shaped springs [33], K-shaped springs [34] bio-inspired
structures [35–37], and different combination of linkages and spring.

Nowadays, multi-stable vibration energy harvesters (MEHs) are of particular interest
to researchers due to their wide application possibilities [38] and nonlinear properties, and
thus better energy harvesting efficiency. For this reason, newer and more efficient designs
are analyzed, which allow the conversion of mechanical vibrations into usable energy to
power small sensors and electronic devices [39,40]. The aim is to eliminate batteries or
extend their lives, which will allow the use of such sensors, for example in hard-to-reach
places, and will supply these sensors. Basic MEHs are bistable with two stable positions
and one unstable position. They have been widely tested, resulting in various proposed
designs [7,8,26,27,41–43]. In addition, theoretical models and experimental investigations
of a broadband piezoelectric-based vibration energy harvesters with tri-stable functions of
potential barriers were proposed and developed [44–47]. To enhance the performance of the
bistable and tri-stable energy harvesters, quad-stable and penta-stable energy harvesters
were designed by adding more fixed magnets presented in [48,49] or with combined
nonlinearity of cantilever-surface contact and magnetoelasticity [50].

It is worth noticing that the limit of increasing multistability naturally leads to de-
creasing the individual potential barriers. In that context, the quasi-zero stiffness case is
a simplified realization of multiple equilibria coming from the flattened series of many
potential wells [48,49] or case-characterized by the potential at the bifurcation point be-
tween monostable and bistable potentials [51] with respect to the control parameter. Such a
solution was also proposed and proven to be useful for energy harvesting [52,53].

On the other hand, an additional spring component can work as displacement ampli-
ficator acting effectively for the bistable harvester, as recently described by Liu at al. [54].
In our case, the extra spring in the harvester system coincides with the first stage of the
proposed composite beam. Consequently, the mechanical resonator system of the energy
harvester is effectively approximated by a 2DOF system. In this way, the above-mentioned
design solutions and examples of the use of 2DOF quasi-zero stiffness energy harvesters
were the motivation to analyze a new solution, which is an extension of single DOF struc-
tures proposed and published by the same authors [52,53]. Note also that the subject of the
model research contained in this paper is a new design of the energy generation system
with a two-stage flexible cantilever beam and a quasi-zero stiffness system. In Section 2
we proposed a model and method of operation, and in Section 3 we compared its energy
efficiency with the quasi-zero-stiffness energy harvester (QZEH), presenting the results in
the form of effective voltage values.
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2. Mathematical Model Formulation

The subject of the model tests presented in this paper is the energy harvesting system
with a two-stage composite flexible cantilever beam (Figure 1). A significant feature of
such a design solution is the possibility of designing them both on a micro and macro
scale. The considered energy harvester consists of flexible beams I and II, the ends of which
are loaded with inertial elements mi. The inertial element m1 is supported in the joint
by a mini shock absorber VI. Piezoelectric elements III were glued to the flat surfaces of
the first stage of the beam I, which under the influence of an external dynamic excitation
undergoes elastic deformation, as a result of which an electric charge is induced on the
piezoelectric electrodes. The elastic elements of the analyzed design solution of the system
were mounted in a rigid, non-deformable V frame, which was screwed by means of IV
bolts to the mechanically vibrating object.
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Figure 1. Schematic diagram of the energy harvester with a two-stage cantilever beam for proposed
inertial energy harvesting.

Based on the formulated phenomenological model, its mathematical representation
was derived. During its derivation, it was assumed that the mechanical properties of the
mini shock absorber were represented by the linear damping characteristic. Moreover,
when formulating the design assumptions, the same stiffness of the kCi compensation
springs was assumed. To estimate the elastic properties characterizing the individual
degrees of a cantilever beam, it is possible to identify it based on the equation of the elastic
curve. However, the dissipation properties are identified on the logarithmic decrement [55].
Additionally, we assume that the tested design of the energy harvesting system is influenced
by mechanical vibrations described by the harmonic function: y0 = Asin(ωW t). To derive
the set of mechanical equations (see below Equation (1)) we balance the forces caused by
linear springs of stiffness k1 and k2, linear dampers of camping coefficients c1, c2, and c3 and
use the inertial masses m1 and m2 in the inertial system (Figure 1). Additionally, suspension
(compensation) springs with the effective stiffness kz = 2kci were included. Note that the
spring will generate nonlinear force with respect to the displacement y1 as the spring
deformation is following the diagonal suspended on the rectangular of a0 and y1 sides. The
transversal orientation of these springs with respect to the displacement direction of y1
produces the geometrical nonlinearity during motion.
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Bearing in mind the adopted model and simplifying assumptions, the differential
equations of motion were written, in which the relative coordinates were taken into account:
q1 = y1 − y0 and q2 = y2 − y1:

m1
d2q1
dt2 + c1

dq1
dt + c3

dq1
dt − c2

dq2
dt + k1q1 + k2q2 + kZ

(
1− a0√

a2
0+q2

1

)
q1+

+kPu = −m1
d2y0
dt2 ,

m2
d2q2
dt2 + c2

dq2
dt + k2q2 = −m2

d2y0
dt2 −m2

d2q1
dt2 ,

CP
du
dt +

1
RZ

u− kP
dq1
dt = 0.

(1)

The electrical subsystem coefficients appearing in the mathematical model (1) repre-
sent, respectively: constant kP, piezoelectric capacity CP. The parameter RZ, on the other
hand, represents the equivalent resistance of the load and the electric circuit. In order to
efficiently carry out computer simulations, a dimensionless mathematical model was de-
rived. Such a representation is the formal basis for carrying out quantitative and qualitative
numerical simulations for new displacement variables x1 and x2 and voltage u:

..
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.
x1 − δ2

.
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(
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1+x2
1

)
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..
x2 +

1
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.
x2 +

η2
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x1,
.
u + σu− ϑ

.
x1 = 0.

(2)

where:
µ = m2

m1
, η1 = k1

kZ
, η2 = k2

kZ
, δ1 = c1+c3

ω0m1
, δ2 = c2

ω0m1
, ω2

0 = kZ
m1

,

x1 = q1
a0

, x2 = q2
a0

, ω = ωW
ω0

, τ = ω0t, p = A
a0

,
θ = kP

a0m1ω2
0
, ϑ = kPa0

CP
, σ = 1

ω0CPRZ
.

Based on such formulated mathematical model of the system, the results of model
tests are presented in the following part of the paper. The simulations were carried out
by using the MATHEMATICA differential equations solver with a variable time step and
high precision.

3. Research Results

Table 1 summarizes the numerical values of the physical and geometric parameters of
the tested design solution of the energy harvesting system.

The first stage of the research focused on assessing the impact of external load. The
results of numerical simulations were visualized in the form of bifurcation diagrams,
which were plotted against different values of the dimensionless excitation amplitude p.
Bifurcation diagrams can be generated in several ways. The most popular among them
is the identification of local minima and maxima of the time sequence. An analogous
geometric structure of the bifurcation diagram is obtained by identifying the intersection
points of the phase flow with the abscissa axis of the phase plane. Both approaches are
simple, but it is not always possible to precisely determine the periodicity of the solution
on their basis. For this reason, during the performed numerical experiments, we used an
alternative approach based on Poincaré cross-sections. As a result, we can precisely define
the periodicity of the solution in relation to control parameters.

In Figure 2 bifurcation diagrams are plotted against different levels of external dynamic
load acting on the energy harvesting system. Additionally, for each ω the spectra of the
responses are presented as functions of a frequency f. Based on the obtained results of the
numerical simulations, it was found that with the increase in the dimensionless amplitude p,
a shift of the areas of solutions with high periodicity towards higher values of the excitation
frequency ω is observed.
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Table 1. Geometric and physical parameters of the model.

Name Symbol Beam I Beam II

Length Li 0.13 m 0.06 m
Width bi 0.025 m 0.018 m
Height hi 0.0003 m 0.0002 m

Material E 210 GPa
Load mass mi 0.025 kg 0.026 kg

Stiffness ki 16 Nm−1 35 Nm−1

Energy dissipation ci 0.00013 Nsm−1 0.00019 Nsm−1

Length of the compensation springs a0 0.03 m
Stiffness of the compensation springs kCi 72 Nm−1

Total resistance RZ 1.1 × 106 Ω
Piezoelectric capacity CP 72 nF

Electromechanical constant of
piezoelectric converter kP 3.985 × 10−5 m/V

Moreover, periodic solutions with a periodicity of 1 T dominate in the images of
bifurcation diagrams. The dynamics of the energy harvesting system with a two-stage
cantilever beam in a wide range of variability shows a complex nature, because at a low
level of mechanical vibrations, relatively narrow zones of chaotic solutions appear in the
bifurcation diagram (Figure 2a). Increasing the amplitude of mechanical vibrations p shifts
the zones of chaotic solutions toward higher values of ω. Moreover, new zones of such
solutions are excited in terms of low values of the dimensionless excitation frequency. The
bands with periodicity doubling are very narrow. The only clear area in which this behavior
of the system is observed locating in the ω ∈ [1.05, 1.15] band (Figure 2b). At the same time,
it is worth paying attention to the fact that with an increase in the level of p, a narrowing or
even complete extinction of the periodicity doubling zones is observed. As a result, the
bifurcation diagrams show a rapid transition from the periodic solution to the chaotic one
(Figure 2c). The situation is analogous to that shown in the diagram (Figure 2d).

One of the standard numerical tools used in the study of nonlinear dynamical systems
is the Fast Fourier Transform [49,54]. It determines the nature of the solution we are dealing
with. In the case of chaotic solutions, the harmonic component dominates in the amplitude-
frequency spectra, which most often corresponds to the excitation frequency. Moreover, in
the case of unpredictable solutions, a wide spectrum of harmonic components is excited,
which are characterized by much lower amplitudes. Based on the drawn three-dimensional
graphic images of the amplitude-frequency spectra, no excitation of a wide spectrum of
harmonic components located in the vicinity of the excitation frequency ω was found.

The component representing the frequency of excitation prevails only in the case of
periodic solutions. In the case of solutions with a large or very large periodicity, the low
frequency dominates in the identified amplitude-frequency spectra. This character of the
harmonic distribution may indicate the existence of quasiperiodic solutions. A precise
answer to what nature of the solution we are dealing with is possible when additional
detailed studies of the phase flows, and in particular, the analysis of Poincaré cross-sections
are carried out. These issues are the subject of detailed analyzes included in Section 3.2.

3.1. Periodic Solutions

At this point, the focus was on the identification of periodic solutions that occur in the
tested structure of the energy harvesting system. Periodic solutions gain significant impor-
tance because when the response of the system changes from periodic to chaotic, a reduction
in the efficiency of energy harvesting is observed [53,56]. In our model tests, a numerical
procedure based on the estimation of the distinct Poincaré points was used. The essence is
to count the points of intersection of the phase flow with the control plane (Figure 3).
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the energy harvesting system: (a) p = 0.25, (b) p = 0.5, (c) p = 0.75, (d) p = 1. In the lower panels the
corresponding frequency spectra are plotted (in terms of f ) in 3D plots for each of ω.

In the case of the acting on the system of mechanical vibrations of low intensity
(Figure 3a), we are dealing with periodic solutions with a periodicity of 1 T. It is also
possible to distinguish periodic solutions characterized by higher periodicity. However,
the range of variability of ω, their occurrence is very narrow. A slightly wider band,
corresponding to solutions approximately equal to 10 T, occurs in the vicinity of the
frequency ω = 2. If the amplitude of the mechanical vibrations that affect the system
increases to p = 0.5, then additional solutions with a periodicity of 3 T appear in the band
ω ∈ [1.05, 1.2] and 5 T in the interval ω ∈ [1.7, 1.85] (Figure 3b). In this case, there are also
10 T periodic solutions, which are located at the end of the second zone of chaotic responses.

In the periodogram presented on the graph (Figure 3c) there is a separate area of
periodic solutions with a periodicity of 3 T in the ω ∈ [1.15, 1.2] band. These types of
responses also take place in the range of low values ω = 0.5. On the other hand, in relation
to 5 T-periodic solutions, a clear narrowing of the zones of their occurrence is observed.
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The 10 T periodic solution with respect to the case (Figure 3b) is absorbed by the very
high periodicity response region. When the energy harvesting system is affected by high
values of mechanical vibration amplitude p (Figure 3d), low-periodic responses are sporadic
and point-like. It should be noted that a large “richness” of periodic solutions occurs in
the range of low values. Examples of periodic solutions, illustrated in the form of phase
trajectories and time series, are presented in the graphs (Figure 4).
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In the range of low values of the dimensionless excitation frequency, there are periodic
solutions with a periodicity of 1 T. The displacement of the second step of the flexible
cantilever beam x2 is smaller in relation to the displacement of the first step x1 (Figure 4a).
This type of response is observed regardless of the value of the dimensionless amplitude
of mechanical vibrations p, affecting the energy harvesting system. The influence of the
p-parameter is visible in the form of a “refraction” of the phase trajectory at the moment of
a velocity sign change. On the other hand, in the time domain, the shape of the x1 signal
resembles a “flattened” sine wave. This “flattening” increases with increasing excitation
amplitude p (Figure 4a). The same behavior of the system also takes place regarding the x2
coordinate (Figure 4b). It is worth mentioning here that with high displacement values of
the second stage of the cantilever beam, it is possible to significantly improve the efficiency
of energy harvesting. This claim is also justified by the synchronization of displacements of
both steps of the cantilever beam. In the analyzed design, we also deal with asymmetric
images of phase flows (Figure 4c). This nature of the system’s responses suggests the
existence of a second solution with a similar efficiency of energy harvesting. Asynchronous
vibration of both stages of the flexible cantilever beam occurs when the excitation frequency
is close to unity (Figure 4d). In this case, it is also advisable to consider the possibility of
placing an additional piezoelectric transducer on the second stage of the beam.

Periodic solutions with 3 T periodicity are in a relatively narrow range of variability
of the dimensionless excitation frequency ω ∈ [1, 1.5]. Depending on the level of vibrations
affecting the energy harvesting system, it is possible to distinguish two types of response.
Similarly, to the 1 T-periodic solutions, this division is related to the vibration level of
individual beam steps. From the point of view of topology, there are also two geometri-
cal structures of the phase flows: symmetrical (Figure 4e) and asymmetrical (Figure 4f).
Asymmetric 3 T-periodic solutions were identified in the range of low values of the di-
mensionless excitation frequency. It is worth mentioning here that the time responses of
the displacement signals at higher levels of mechanical vibrations acting on the energy
harvesting system are essentially synchronized.

In the tested model, periodic solutions with a higher periodicity T > 5 are very rare
(Figure 4g). They are in very narrow bands between the zones of solutions with very high
periodicity ω ∈ [1.5, 2] (Figure 2b). In the time domain, signals corresponding to the 5 T
periodic solutions are synchronized in phase. Graphical images of phase trajectories of
periodic solutions with a periodicity of 9 T are presented in the graphs (Figure 4h). The
coordinate time series of the mathematical model also show the synchronous nature of the
work. The system has a 12 T periodic response (Figure 4i), which is the only solution to
have an even periodicity.

3.2. Chaotic and Quasiperiodic Solutions

The subject of considerations in this subchapter are issues related to chaotic and
quasiperiodic solutions. Based on the drawn bifurcation diagram, distinguishing a chaotic
solution from a quasiperiodic solution is a difficult task. To give an unambiguous answer,
additional numerical simulations are necessary, which boil down to plotting Poincaré
sections and estimating the correlation dimension DC, by means of which the complexity
of the plotted geometric structure of the Poincarè map is estimated. In the case of periodic
solutions, the correlation dimension takes values close to zero. If we are dealing with
quasiperiodic responses, then the values of DC ≈ 1. This value in the diagrams is marked
with a straight line in red. With a view to reaching a compromise between the accuracy
and time of numerical calculations, the values of the correlation dimension diagrams were
identified in 100 cross-sections of solution zones characterized by very high periodicity.
Moreover, the values of the DC coefficients were identified in relation to 5000 intersection
points of the phase flow with the control plane. Such a large number of intersections was
assumed due to the accuracy of the estimation of the correlation dimension. The next
part presents the results of numerical simulations, which were visualized in the form of
bifurcation diagrams drawn in magnification and many times greater resolution, and a
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diagram of the correlation dimension (Figure 5). As a result of this approach, we have a
direct insight into the dynamics of the energy harvesting system, and above all, we have
the ability to distinguish quasiperiodic solutions from chaotic ones.
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The distribution of the correlation dimension indicates that in the analyzed zones
characterized by very high periodicity, quasiperiodic solutions dominate (Figure 5a). These
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solutions are separated by very narrow areas in which we deal with periodic motion. We
deal with such dynamics of the energy harvesting system in the range of low values of the
dimensionless excitation frequency ω. On geometric structures plotted on cross-sections,
this manifests itself in the form of smooth curves. The presence of the occurring bends
and distortions causes the correlation dimension to reach values of DC ∈ [1, 1.5]. In the
plotted diagrams of the correlation dimension, DC < 1 values are noticeable. In these
cases, the Poincarè sections are mapped with a point (Figure 6). Homogeneous zones
of chaotic solutions occur when the energy harvesting system is affected by mechanical
vibrations with amplitude p = 0.5 (Figure 5b) and p = 0.75 (Figure 5c). In these cases, the
correlation dimension reaches values equal to approximately 2. If the mechanical vibrations
affecting the tested energy harvesting system reach a high level, then in the frequency range
ω < 1.5 we deal with periodic and quasiperiodic solutions (Figure 5d). Chaotic solutions
occurring at such a level of mechanical vibrations affecting the system occur in the range of
high values of the dimensionless excitation frequency ω > 1.5. Examples of graphic images
of Poincaré cross-sections, representing the dynamics of the system, are presented in the
graphs (Figure 6).
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and dependencies necessary for identification (lower panels).

The presented examples of chaotic solutions are characterized by very high values
of the correlation dimension DC ≈ 2, indicating a strongly non-linear behavior of the
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dynamical system. We are dealing with such solutions only when the energy harvesting
system is influenced by external mechanical vibrations of the dimensionless amplitude
p = 0.5 (Figure 5b) and p = 0.75 (Figure 5c). The identified Poincaré cross-sections of chaotic
solutions show topological similarity, and the element that distinguishes them is the blur
of the points of intersection of the phase flow with the control plane, which is visible in
relation to the maps drawn for higher excitation frequencies. A direct comparison of the
drawn maps clearly shows that the value of the DC increases with the blurring of the
cross-section. The increase in the value of the correlation dimension is also directly related
to the Fourier spectrum, which is characterized by the excitation of a wide spectrum of
harmonics. For each case, the Fourier frequency amplitude spectrum was plotted.

Regardless of the characteristics of the input source that affect the energy harvesting
system, the harmonic components dominate the Fourier spectra, which are a combination
of the input frequency and two additional components ω1 and ω2. On their basis, causal
relationships between them were identified. The analytical relationships constitute a formal
basis for estimating the dominant frequency harmonics in the spectra. Note that in the
case of “sharp” geometrical structures of Poincaré cross-sections, the distribution of the
dominant bands in the amplitude–frequency spectrum is described by an analogous scheme
representing the cause-and-effect relations between them. On the other hand, “blurred”
Poincaré cross-sections, it is possible to identify only clearly dominant harmonics, since the
entire spectrum is excited.

The evolution of quasiperiodic solutions is presented below. The results of numerical
calculations were visualized in the form of phase flows and Poincaré cross-sections plotted
on them. To improve the legibility of the graphs, phase trajectories were drawn with
colored dotted lines (Figure 7).
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If the energy harvesting system is influenced by external mechanical vibrations with
a dimensionless amplitude p = 0.25, then in the bands characterized by high periodicity
of solutions, quasiperiodic responses dominate. There are two types of quasiperiodic
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attractors (Figure 7a). The first type occurs in the range of low values of the excitation
frequency ω < 0.5, which resembles a deformed oval. On the other hand, the second one,
an inclined letter T composed of closed curves, dominates in the field of high excitation
frequencies. The highest number of quasiperiodic attractors is observed when the system is
influenced by an external dynamic excitation with a dimensionless amplitude p = 0.5. The
diagrams (Figure 7b) are limited only to illustrating the diversity of geometric forms, while
the geometric structures of attractors occurring in the range of high excitation frequency
values have been omitted. This was necessary because the graphic images of Poincaré
cross-sections that appear there show topological similarity to the values of the excitation
amplitude p presented in the graphs. In the example presented in the graphs (Figure 7c), we
deal with four types of quasiperiodic attractors. The structures mapped with a deformed
oval appear in the range of low values of ω. As it increases (ω = 1.33), bifurcation occurs,
and the geometric structure of the attractor is mapped with two deformed ovals. A further
increase in frequency forces bifurcation sequences, as a result of which at ω = 1.74 one of the
more complex Poincare cross-sections is observed. It is worth mentioning here that in the
vicinity of such quasiperiodic attractors, we deal with chaotic solutions. These attractors
can, de facto, be treated as the basis of chaotic attractors.

In the graphic images of the attractors, which were plotted for the amplitude p = 1,
in principle, qualitatively new structures of the attractors do not appear. This situation
occurs because we are dealing with basically the same bands of occurrence of solutions
with high or very high periodicity but shifted in relation to the axis ω. As was the case with
chaotic solutions, this time selected examples of quasiperiodic attractors were presented,
with reference to which the harmonic distribution in the amplitude–frequency spectrum
was analyzed (Figure 8).

Having in mind the most accessible analysis of the distribution of dominant harmonics
in the amplitude-frequency spectrum, colored rectangles were used. For each rectangle,
its width was defined, which was made dependent on the selected frequencies occurring
in the Fourier spectrum. As a result, we could limit ourselves to providing only the
characteristic frequencies occurring in the spectrum. In the case when the system is affected
by the excitation with the characteristics p = 0.25 and ω = 0.283, the dominant harmonic
components are in the vicinity of frequencies whose values are equal to the multiples of the
excitation frequency ω. In the remaining examples, the values of the dominant harmonics
are a combination of two or three excited harmonics in the spectrum. As was the case with
chaotic solutions, the graphs also present the dependencies necessary for identification of
these parameters.

3.3. Efficiency of Energy Harvesting

Efficient energy harvesting is significantly dependent on the value of the voltage
induced on the piezoelectric electrodes. In our investigation, the effective voltage value
was adopted as the effectiveness indicator. For this purpose, a numerical procedure was
developed to draw a diagram of the effective value of the voltage uRMS recorded on the
piezoelectric in a wide range of variability of the dimensionless frequency of mechanical
vibrations ω affecting the energy harvesting system. The plotted diagrams provide infor-
mation on the efficiency of energy harvesting in relation to the set ω values. Considering
the assessment of the impact of the solution on the efficiency of energy harvesting, the
diagrams of RMS voltage values were referred to bifurcation diagrams (Figure 9).

The results of the obtained numerical simulations indicate that the highest effective
voltage values occur in the range of low frequencies of mechanical vibrations affecting the
energy harvesting system. It is worth noting that in the bands of occurrence of quasiperiodic
solutions, a better efficiency of energy recovery is observed in relation to the neighboring
periodic solutions. Greater efficiency of energy generation determined by the size of phase
flows reflecting solutions in the zones of quasiperiodic responses. The limitation of the
efficiency of energy harvesting in a system with quasi-zero stiffness is determined by the
presence of a zone of chaotic solutions [53].
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The next part presents the results of numerical simulations showing the efficiency of
energy generation of the considered structural solution in relation to the system without an
additional step of the cantilever beam. The difference in the RMS voltage ∆URMS recorded
on the electrodes of their piezoelectric elements was adopted as a measure of the evaluation
of the energy recovery capacity of two different design solutions. The results of the model
tests were illustrated in the form of diagrams (Figure 10), where positive values indicate
a better energy harvesting efficiency of the analyzed design solution (DBQZEH). On the
other hand, negative values show that the single-stage cantilever beam (QZEH) system
shows better energy harvesting efficiency. If ∆URMS = 0, then both design solutions are
characterized by similar efficiency of energy generation.
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Figure 10. The difference of the effective values of the voltage induced on the piezoelectric electrodes
mounted on the first stage of a flexible cantilever beam: (a) p = 0.25, (b) p = 0.5, (c) p = 0.75, (d) p = 1.
DBQZEH–double-beam quasi-zero-stiffness energy harvester, original QZEH–quasi-zero-stiffness
energy harvester (see [53]).

The results clearly show that in the range of low frequency values ω < 0.5 of mechanical
vibrations that affect the energy harvesting system, the solution with a two-stage cantilever
beam is more efficient. It should be noted that this statement applies to all external excitation
amplitudes p. In the band located between the resonances of the system with a two-stage
cantilever beam, the design solution with a single stage shows a much better efficiency
of energy generation. At this point, we do not precisely define the width of the band
located between the resonances, because its position moves toward higher values of ω with
increasing amplitude of the external excitation p.

A legitimate question is how the location of the piezoelectric element affects the
efficiency of energy harvesting. For this reason, the results of numerical experiments
comparing the efficiency of energy generation when the piezoelectric was mounted on the
first and second stages of a flexible cantilever beam are presented below. The results of the
numerical experiments were visualized in the form of diagrams of the difference of the
RMS values ∆URMS. In the plotted diagrams, the subscript value represents the attachment
point of the element that transforms mechanical energy into electrical energy. The value 1 is
assigned to the first stage and 2 to the second. The obtained results of computer simulations
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showing the magnitude of the voltage induced at individual stages were visualized in
graphs (Figure 11).
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Figure 11. The difference of the effective values of the voltage induced on the piezoelectric elec-
trodes mounted on the first or second stage of a flexible cantilever beam: (a) p = 0.25, (b) p = 0.5,
(c) p = 0.75, (d) p = 1. DBQZEH1–double-beam quasi-zero-stiffness energy harvester (piezoelectric on
the first beam), DBQZEH2–double-beam quasi-zero-stiffness energy harvester (piezoelectric on the
second beam).

The results of numerical simulations (Figure 11a) show that in the range of low p
amplitudes, it is more efficient to obtain energy by installing a piezoelectric on the first
stage of the cantilever beam. Installing a piezoelectric on the second stage is characterized
by a better energy efficiency in relatively narrow bands ω ∈ [0.3, 0.4], ω ∈ [0.6, 0.9] and
in the vicinity of ω = 2. With the increasing value of the dimensionless amplitude p, the
amount of energy generated on the second stage of the beam is increased, and regardless of
the value of p, it is more advantageous to install a piezoelectric on the second stage in the
range of very high excitation frequencies ω > 2.5. Increasing the amplitude p to the level of
0.5 (Figure 11b) broadens the effective energy generation in the ω ∈ [0.5, 1.1] zone, with the
amount of energy harvested essentially remaining constant.

Only in the vicinity of the second resonance is an improvement in the efficiency of
energy recovery in relation to the middle part of the band. When the amplitude p reaches the
value of 0.75 (Figure 11c), the first two bands defining the efficient energy harvesting of the
piezoelectric elements mounted on the second stage are combined. With the further increase
in mechanical vibrations affecting the energy harvesting system, the situation basically
does not change. The only important elements distinguishing the diagrams (Figure 11c,d)
are the values of the effective voltage registered on the piezoelectric electrodes.

The last element of the research was the assessment of the efficiency of energy gen-
eration in a system with piezoelectric elements mounted on both steps of the cantilever
beam. The identified RMS voltage values were related to the system with a single-stage
cantilever beam (Figure 12). It is worth noting that regardless of the level of vibrations
affecting the energy harvesting system, there are still ω zones in which the system with a
single-stage cantilever beam demonstrates better energy harvesting efficiency. However,
in terms of higher values of ω, we are dealing with an increase in the efficiency of energy
generation. In relation to the results presented in the diagram (Figure 9), the efficiency
in the vicinity of the second resonance is limited. Such a situation should be seen with
asynchronous vibrations of both steps of the cantilever beam. Asynchronous movement of
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individual stages can be minimized by applying voltage signals to rectifier bridges, and
only then summing.
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Figure 12. The difference of the effective values of the voltage induced on the piezoelectric electrodes
mounted on the first and second stage of a flexible cantilever beam: (a) p = 0.25, (b) p = 0.5, (c) p = 0.75,
(d) p = 1. DBQZEH1–double-beam quasi-zero-stiffness energy harvester (piezoelectric on the first
beam), DBQZEH2–double-beam quasi-zero-stiffness energy harvester (piezoelectric on the second
beam), QZEH–quasi-zero-stiffness energy harvester.

4. Final Conclusions

The results of numerical simulations show that the considered levels of mechanical
vibrations, periodic and quasiperiodic solutions dominate, while chaotic responses are rare.
In the zones of quasiperiodic responses, an increase in the effective value of the voltage
recorded on the piezoelectric electrodes is observed. In the tested system, a sharp reduction
in the efficiency of energy harvesting in some bands is determined by the second stage of a
flexible cantilever beam, which acts in the first stage as a dynamic vibration eliminator.

Note that, taking the composite two-stage beam, we extended the results with respect
to the previous studies on simple single-stage quasi-zero-stiffness energy harvesters. In the
limit of the composite beam uniformity, the new results coincide with previous study for
the harvester with a single-state beam resonator.

Considering effective energy harvesting, it is advisable to attach piezoelectric energy
transducers to each step of the flexible cantilever beam. However, this conclusion is the
product of a case study. Therefore, in the next step of our research, we plan to manipulate
the system parameters to provide conditions for the displacement amplifier proposed
in [54]. Moreover, coexisting solutions will be studied more carefully by sampling the
initial conditions to estimate their stability. We are also planning experimental verification
of the numerical results.
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