
Citation: Tang, J.; Chien, Y.-R.

Research on Wind Power Short-Term

Forecasting Method Based on

Temporal Convolutional Neural

Network and Variational Modal

Decomposition. Sensors 2022, 22,

7414. https://doi.org/10.3390/

s22197414

Academic Editor: Antonio Guerrieri

Received: 23 August 2022

Accepted: 26 September 2022

Published: 29 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Research on Wind Power Short-Term Forecasting Method Based
on Temporal Convolutional Neural Network and Variational
Modal Decomposition
Jingwei Tang 1 and Ying-Ren Chien 2,*

1 College of Mechanical and Electrical Engineering, Hunan College of Information, Changsha 410200, China
2 Department of Electrical Engineering, National Ilan University, Yilan 260007, Taiwan
* Correspondence: yrchien@niu.edu.tw; Tel.: +886-3-9317396

Abstract: Wind energy reserves are large worldwide, but their randomness and volatility hinder wind
power development. To promote the utilization of wind energy and improve the accuracy of wind
power prediction, we comprehensively consider the influence of wind farm environmental factors and
historical power on wind power generation. This paper presents a short-term wind power prediction
model based on time convolution neural network (TCN) and variational mode decomposition (VMD).
First, due to the non-smooth characteristics of the wind farm environmental data, this paper uses
VMD to decompose the data of each environmental variable to reduce the influence of the random
noise of the data on the prediction model. Then, the modal components with rich feature information
are extracted according to the Pearson correlation coefficient and Maximal information coefficient
(MIC) between each modal component and the power. Thirdly, a prediction model based on TCN is
trained according to the preferred modal components and historical power data to achieve accurate
short-term wind power prediction. In this paper, the model is trained and tested with a public wind
power dataset provided by the Spanish Power Company. The simulation results show that the model
has higher prediction accuracy, with MAPE and R2 are 2.79% and 0.9985, respectively. Compared
with the conventional long short-term neural network (LSTM) model, the model in this paper has
good prediction accuracy and robustness.

Keywords: wind power short-term forecasting; temporal convolutional neural network; variational
modal decomposition; power system

1. Introduction

Wind energy, as a renewable energy source with abundant energy storage, is an important
part of the worldwide efforts to promote clean energy development and a sustainable energy
path [1,2]. In recent years, with the development of power generation technology, wind
power has become an important source of electric energy in various countries. However,
the fluctuating, intermittent, and random nature of wind energy leads to severe difficulties
in the grid-connected operation of a high percentage of wind power. These could cause the
wasting of wind energy and even lead to significant safety hazards in the power system [1–3].
Therefore, it is of great significance to accurately predict the wind power and reduce the
impact of randomness and intermittence of the wind farm on the power system in the
process of wind power grid connection. In such a way, we could promote the efficient
utilization of wind energy and ensure the safe operation of the power grid system.

Electricity power forecasting can be divided into long-term forecasting (annual scale),
medium-term forecasting (monthly scale), short-term forecasting (daily scale) and ultra-
short-term forecasting (hourly scale) according to the different forecasting time scales.
Among them, short-term power forecasting plays a crucial role in the unit commitment
and safety dispatching problems of power systems [4,5]. Currently, commonly used methods
for power forecasting can be classified into time series models based on statistical analysis
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and data-driven models based on artificial intelligence algorithms. The time series model
is a traditional method with good interpretability but poor learning ability on complex
nonlinear features compared to artificial intelligence methods. Affected by environmental
factors such as temperature, wind speed, and wind direction, wind power forecasting is
a complex nonlinear problem. Therefore, data-driven forecasting methods have become a
current research hotspot in the field of wind power short-term forecasting [6–12]. The litera-
ture [13] makes multi-scale analysis on the historical data of wind speed in time and frequency
domain firstly, and then forecasts the wind speed based on the long short-term neural
network (LSTM). This provides a new solution idea for wind power forecasting. In the
literature [14], considering the influence of weather factors on wind farms and a short-term
wind power prediction algorithm based on WD-IGFCM-LSTM was proposed. The litera-
ture [15] proposed extracting wind-power-sensitive climate data and power information
as training data from the external environment perspective and using the random forest
as a wind power short-term forecasting model. The literature [16] proposed a short-term
power forecasting model based on time convolutional network (TCN) and compared it
with the traditional intelligent algorithm. The research results showed that TCN has higher
forecasting accuracy because it can sense the historical feature information of longer time
scale. The literature [17] proposed a combined wind power prediction method based on the
gated recurrent unit (GRU) and TCN, which can reduce the influence of wind power noise
data on the model by predicting and reconstructing the high frequency and low frequency
components of wind power.

Scholars have shown that the variation of wind field energy is primarily related to
environmental factors, but there is significant uncertainty and randomness in these data.
With the development of signal analysis theory, empirical modal decomposition (EMD) and
variational modal decomposition (VMD) have become the main methods in the industrial
field to solve the degradation of model feature learning ability due to the randomness of
data [18–21]. Among them, the research results of some scholars showed [19,21] that VMD
can better solve the modal mixing and frequency adaption problems compared with EMD.

In summary, we considered the influence of wind farm environmental factors on wind
power forecasting in this paper. The main contributions of this work are listed as follows.
Firstly, we used VMD to analyze the environmental variable data, then selected the most
relevant modal components with wind power to reduce the influence of data randomness
on the model, according to MIC and Pearson correlation coefficient. Finally, the TCN model
was trained based on the optimal modal components and historical power data to achieve
short-term wind power forecasting. To verify the effectiveness of the model, we simulated
the model using the public dataset of wind power provided by the Spanish electricity
company and compared it with the VMD-LSTM, TCN, and LSTM models.

2. Mathematical Background
2.1. VMD

VMD is a processing method for analyzing the characteristic information of non-
smooth signals proposed by DRAGOMIRETSKIY et al. [22] in 2014. The VMD algorithm
can adaptively match each mode’s optimal center frequency and finite bandwidth based on
the demand of the number of modal decompositions, effectively reducing the complexity
of time series signals. Compared with EMD, VMD can achieve modal decomposition
adaptively and avoid the problem of modal mixing. In recent years, scholars at home and
abroad have conducted a series of studies on the decomposition of time-series signals with
VMD to reduce the influence of random noise in time-series signals on the time-series
prediction model [18–21].

For a given time-series signal x(t), assuming that it can be decomposed into K intrinsic
modal function (IMF) components by VMD, the following equation conditions are satisfied:

x(t) =
K

∑
i=1

ui(t), (1)
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where ui(t) represents the i-th IMF component and K is the total number of IMF, i.e., the
modal number.

The Hilbert transform is applied to each IMF, and the one-sided spectral frequency
is shifted to the corresponding center frequency of each mode, which can be expressed as
follows:

H fi ,i = [(δ(t) +
j
πt

) ∗ ui(t)]e−jωit = Hie−jωit, (2)

where Hi represents the Hilbert transform of ui(t); H fi ,i represents the Hilbert transform
expression that the center frequency of Hi shifts fi; and ωi is the center corner frequency
of the i-th modal component. Assuming that the K modal components are narrowband
signals concentrated at their respective center frequencies, the demodulated signal H fi ,i
with Gaussian smoothness satisfies the following constraint equation:

min
ui(t),ωi

K
∑

i=1

∥∥∥∂t(H fi ,i)
∥∥∥2

2
= min

ui(t),ωi

K
∑

i=1

∥∥∥∂t[(δ(t) +
j
πt ) ∗ ui(t)]e−jωit

∥∥∥2

2

s.t.x(t) =
K
∑

i=1
ui(t)

(3)

where ∂t represents the partial derivative of t; and the gradient squared norm of the
demodulated signal H fi ,i represents the bandwidth of ui(t). According to the convex
optimization theory, the above variational problem with constraints can be transformed
into the following unconstrained variational problem:

L({ui(t)}, {ωi}, λ(t)) = β
K
∑

i=1

∥∥∥∂t[(δ(t) +
j
πt ) ∗ ui(t)]e−jωit

∥∥∥2

2
+∥∥∥∥x(t)−

K
∑

i=1
ui(t)

∥∥∥∥2

+ < λ(t), x(t)−
K
∑

i=1
ui(t) >

(4)

where β and λ(t) represent the penalty coefficients and Lagrangian operators, respec-
tively. The alternating direction method of multipliers (ADMM) algorithm is used to solve
Equation (4) until the iteration termination condition is satisfied, as shown in Equation (5).

∑
k

∥∥∥un+1
k − un

k

∥∥∥2

2
/‖un

k ‖
2

2

< ε, (5)

where ε represents the noise tolerance of the signal.

2.2. TCN

Convolutional neural networks have been widely used and promoted in the field of
deep learning. However, due to the limitation of convolutional kernel size, CNN cannot
extract the dependency information between temporal data well. Thus, the conventional
CNN networks are not well used in the field of temporal prediction. To solve the above
problem, Shaojie Bai et al. proposed the TCN algorithm [23], which mainly consisted of
a dilated causal convolutional kernel and a residual neural network structure, with the
features of no future-to-past information “leakage” and constant length of input and output
sequences [24,25]. Since the TCN uses residual connections, its network depth can be
adjusted arbitrarily according to the requirements.

2.2.1. Dilated Causal Convolution (DCC)

For the input time series data {x0, x1, . . . , xn}, in order to make the convolutional
neural network feel only the historical information while guaranteeing the constant num-
ber of input and output sequences, the TCN uses a one-dimensional full convolutional
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network and a causal convolutional kernel in the form of convolutional operations. The
mathematical model of the TCN algorithm is shown as follows:

ŷ0, ŷ1, · · · , ŷn = f (x0, x1, · · · , xn), (6)

where {ŷ0, ŷ1, · · · , ŷn} represents the predicted data output by the model and ŷn depends
only on the causal constraints of {x0, x1, . . . , xn}. However, since the simple causal con-
volution can only sense a piece of history information with linear size, Shaojie Bai et al.
proposed to choose the dilated causal convolution as the convolutional kernel of TCN
to improve the history length of the convolutional operation to sense the field. Figure 1
illustrates the structure of the dilated causal convolution kernel, and d represents the ex-
pansion factor of each layer. The structure of Figure 1 shows that the length of the historical
information that can be acquired by the model sensory field depends on the network depth
l, the convolutional kernel size p, and the dilated factor d.
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Figure 1. Dilated Causal Convolution kernel.

2.2.2. Residual Connections

Deeper network layers can effectively increase the size of the sensory field of TCN.
In order to eliminate the problem of training difficulties caused by the too deep network
structure, the TCN algorithm uses the residual connections as the model training structure.
Figure 2 depicts the network structure of TCN. Among them, to ensure that the input and
output of the residual module have the same dimensionality, the dimensionality change is
adaptively adjusted by adding a 1 × 1 convolutional layer.

2.3. Short-Term Wind Power Forecasting Model Based on VMD-TCN

In order to improve the accuracy of wind power short-term prediction, this paper inte-
grates the influence of wind farm environmental factors on wind turbine power generation
and proposes a wind power short-term prediction model based on VMD-TCN from the
perspective of feature correlation analysis and prediction model construction, respectively.
Figure 3 shows the flow chart of the model in this paper. Firstly, data pre-processing is per-
formed on the original data. Then the modal components of each environmental variable
with correlation to wind power are extracted based on VMD and MIC, and Pearson correla-
tion coefficients to reduce the influence of the randomness of environmental data on the
prediction model. Finally, the preferred modal components and historical power data are
used to train the TCN to achieve wind power prediction.
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Figure 3. Flow chart of wind power short-term forecasting model based on VMD-TCN. 
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3. Example Simulation Design

Electricity power forecasts can be classified into long-term, medium-term, short-term,
and ultra-short-term forecasts according to different time scales, among which the accuracy
of short-term forecasts is of great significance for unit commitment and safety dispatching of
the power system. The dataset in this paper is derived from wind power data provided by
a Spanish power company from 1 January 2015 to 31 December 2018, with a sampling period
of one hour and a total of 35,065 data. The data set in this paper comprise the temperature,
humidity, wind speed, the angle between wind direction and turbine position, weather, and
wind farm power [26], in which the weather data are numerically processed in the form of
Table 1. Figure 4 shows a graph of the initial data in this paper. Note that the outliers in
the wind speed data, which need to be preprocessed, can be obviously found in Figure 4c.
Short-term forecasting can range from one day to one week, and the forecast target in this
paper is wind power in the next week. Thus, the first 34,897 data items are selected as the
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training and validation set for the model, and the last 168 data items are used as the test
samples for the model.

Table 1. Numerical coding of weather data.

Weather Clear Clouds Drizzle Fog Haze Mist Rain Smoke Thunderstorm

Code 0 1 2 3 4 5 6 7 8

Sensors 2022, 22, x FOR PEER REVIEW 8 of 16 
 

 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

 

Figure 4. The initial data curves: (a) temperature data curve; (b) humidity data curve; (c) wind speed 
data curve; (d) angle data curve; (e) weather data curve; and (f) wind power data curve. 

3.1. Data Pre-Processing 
3.1.1. Data Cleaning 

For the missing data in the original dataset, this paper uses the mean values of time-
scale similar data to fill in [27]. Furthermore, to avoid the influence of outliers in the orig-
inal dataset on the model, this paper uses isolation forests (iForest) to process the original 
data and replaces the outliers with the mean of similar time-scale data. 

Commented [M23]: Please use commas to sepa-
rate thousands for numbers with five or more dig-
its (not four digits) in the picture, e.g., “10000” 
should be “10,000”. 
 

Commented [y24R23]: Rely: Thank you for your 
comments. 
We have corrected the representation of the num-
bers in this figures. 

Commented [M25]: We moved explanations to 
caption since only subfigure labels are allowed 
under the subfigures. Please confirm. 
Rely: Thank you for your comments. 
I confirm it, and it is right (some wording have 
been changed). 

Commented [M26]: We changed to level-3 subsec-
tion. Please confirm. 
 

Commented [y27R26]: Rely: Thank you for your 
comments. 
I confirm it. Such representation is better. 

Commented [M28]: Please state the name of the 
manufacturer, city, and country from where the 
equipment/software was sourced. 
 
 

Commented [y29R28]: Rely: Thank you for your 
comments. 
'iForest' is an abbreviation for 'isolation forests', 
which is the name of an algorithm not the name of 
equipments. 
 

Figure 4. The initial data curves: (a) temperature data curve; (b) humidity data curve; (c) wind speed
data curve; (d) angle data curve; (e) weather data curve; and (f) wind power data curve.
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3.1. Data Pre-Processing
3.1.1. Data Cleaning

For the missing data in the original dataset, this paper uses the mean values of time-
scale similar data to fill in [27]. Furthermore, to avoid the influence of outliers in the original
dataset on the model, this paper uses isolation forests (iForest) to process the original data
and replaces the outliers with the mean of similar time-scale data.

iForest is an unsupervised anomaly detection method suitable for continuous data.
Thus, it does not need labeled samples for training. Firstly, multiple feature values are
randomly selected from the data set to form the feature space. Secondly, the isolated tree
is constructed by randomly dividing the values between the maximum and minimum
values in the selected features. Then, the constructed isolated tree is composed of an iForest.
Finally, the outlier score of each samples is calculated, and the outliers are determined
according to the score of the sample points [27].

As shown in Equation (7), the processing method for outliers and missing data can be
expressed as follows:

∼
x(t) =

l
∑

i=1
x(t− i)−

l
∑

i=1
x(t + i)

2l
, (7)

where
∼
x(t) represents the preprocessed data; x(t− i) and x(t + i) represent the original

data moved forward and backward by i hours; l represents the number of offset hours.
Considering that the wind power data have strong continuity in a small time interval, l is
usually chosen as two [27].

Taking wind speed data as an example, Figure 5 shows the comparison curve before
and after processing by using iForest algorithm and Equation (7).
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Figure 5. Sample of raw wind speed data curve and the cleaned data curve: (a) raw wind speed data
curve; (b) The cleaned wind speed data curve.

3.1.2. Data Normalization

Due to the large order of magnitude differences between the values of different feature
parameters in the data set, direct use in training the model not only leads to inefficient
neural network training but also makes the algorithm’s feature extraction performance
worse. Therefore, this paper uses the normalization of min-max [27,28].

xi,j =
xi,j − jmin

jmax − jmin
, (8)

where xi,j represents the value of the i-th sample on the j-th dimensional feature; jmax and
jmin represent the maximum and minimum values of the j-th dimensional feature in the
data set, respectively.
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3.2. Model Performance Evaluation Indexes

To compare the effects of different forecasting models on wind power short-term
forecasting, we adopt Mean Absolute Error (MAE), Mean Absolute Percentage Error
(MAPE), Root Mean Squared Error (RMSE), and the determination coefficient R2 as the
performance evaluation index of the model. The formulas are shown as follows:

MAE =

∣∣∣∣∣∣∣∣∣
N
∑

i=1
(yi − ŷi)

N

∣∣∣∣∣∣∣∣∣, (9)

MAPE =
1
N

N

∑
i=1

|yi − ŷi|
|yi|

(10)

RMSE =

√√√√√ N
∑

i=1
(yi − ŷi)

2

N
(11)

R2 =

N
∑

i=1
(ŷi − y)2

N
∑

i=1
(yi − y)2

(12)

In the above equations, N represents the number of samples, yi is the real value, ŷi is
the model prediction value, and y is the average of the actual values.

4. Simulation and Result Analysis

After preprocessing the original data according to Section 3.1, we first decompose
the temperature, humidity, wind speed, the angle between wind direction and turbine
position, and weather data in the dataset using VMD. According to the MIC and Pearson
correlation coefficient value between each modal component and historical power data,
the modal components with a certain correlation with wind power are selected [29], which
are used as the feature parameters of environmental factors in the dataset for this paper.
After repeatedly testing the decomposition of environmental data, the best decomposition
effect is achieved when the modal number K is set to 15, and the frequency centers are
confounded when K > 15. In this section, MIC [8] and Pearson coefficient [30] between 15
modal components of temperature, humidity, wind speed, and angle between wind direction
and turbine position are solved in turn, and the results are plotted as a graph. Figure 6 shows
the MIC and Pearson correlation coefficient curves between each modal component of the
environmental variables, and the wind power data are plotted. The curves in the figure
show that the IMF0 components of temperature, humidity, wind speed, wind direction,
and the angle between the turbine position have large Pearson correlation coefficients and
MIC values with the wind power data. Therefore, these model components are used as
the feature parameters of the data set in this paper so that the model in this paper can
further improve the model prediction accuracy by learning the feature information of
environmental factors.

Based on the above preferred modal components and historical power data, the
training set is constructed with an interval of 168 as one time-series sample data. According
to the flowchart in Figure 3, the training of the model in this paper is realized, where
the convolution kernel size p is (16, 8, 8) and the dilated factor d is (1, 4, 8). To verify the
effectiveness of the model, we compare our model with the LSTM network and evaluate the
impact of different data processing methods on the performance improvement of the model.
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As shown in Table 2, it is the performance evaluation index statistics of the model
prediction results. The model in this paper has the smallest errors in the one-week short-
term wind power prediction, with MAE, MAPE, and RMSE of 64.91 W, 2.79%, and 74.13 W,
respectively. The data in Table 2 show that compared with the VMD-LSTM, the MAE, MAPE,
and RMSE of the proposed model are reduced by 3.99 W, 0.34%, and 6.42 W, respectively,
and the R2 is improved by 0.0057, which illustrates the superiority of the performance of the
model in this paper, while VMD-TCN and VMD-LSTM, compared with TCN and LSTM,
the MAE, MAPE, and RMSE are reduced by 16.45 W, 0.88% and 19.74 W and 59.27 W, 2.34%,
and 64.4 W, respectively. These show that the modal components with good correlation
obtained by the VMD algorithm are effective in improving the prediction performance of
TCN and LSTM.

Table 2. Statistical table of the prediction results.

Evaluation Indicators VMD-TCN VMD-LSTM TCN LSTM

MAE (W) 64.91 68.90 81.36 128.17
MAPE 2.79% 3.13% 3.67% 5.47%

RMSE (W) 74.13 80.55 93.87 144.95
R2 0.9985 0.9928 0.9950 0.9938

As shown in Figure 7, the prediction results of these models about the test set are
plotted, where VMD-LSTM indicates that the feature parameters of the dataset use the
modal components of environmental variables with high correlation; TCN and LSTM
indicate that they directly use the original environmental variable features. Intuitively
comparing the prediction result plots of different models in Figure 4, LSTM has the worst
fit, and there is a significant deviation between the predicted and true values.

Figure 8 shows a histogram of prediction bias for different models. Note that the
deviation of VMD-TCN is slightly less than VMD-LSTM; both VMD-TCN and VMD-LSTM
have a certain degree of reduction in prediction deviation compared to TCN and LSTM. This
illustrates that using VMD and MIC, and Pearson correlation coefficients to preferentially
select the modal components of environmental variables as the dataset feature parameters
can effectively reduce the impact of data randomness on the prediction model, compared
with directly using the original dataset features, which plays an important role in improving
the model prediction accuracy.
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Shown in Table 2 are the performance evaluation index statistics of the model predic-
tion results. The model in this paper has the smallest errors in the one-week short-term
wind power prediction, with MAE, MAPE, and RMSE of 64.91 W, 2.79%, and 74.13 W,
respectively. The data in Table 2 show that compared with the VMD-LSTM, the MAE,
MAPE, and RMSE of the proposed model are reduced by 3.99 W, 0.34%, and 6.42 W, and the
R2 is improved by 0.0057, which illustrates the superiority of the performance of the model
in this paper. While VMD-TCN and VMD-LSTM, compared with TCN and LSTM, the
MAE, MAPE, and RMSE are reduced by 16.45 W, 0.88% and 19.74 W and 59.27 W, 2.34%,
and 64.4 W, respectively. These show that the modal components with good correlation
obtained by the VMD algorithm are effective in improving the prediction performance of
TCN and LSTM.

To better illustrate the model’s short-term wind power prediction effectiveness, we plot
the scatter diagram of the actual wind power values against the model prediction values,
as shown in Figure 9. Note that the more the scattered point distribution is concentrated
near the red line, the more it reflects the model’s superior prediction performance; thus,
the larger values of the R2. The results in Figure 9 have shown that the scatter distribution
of VMD-TCN is more concentrated around the red straight line than VMD-LSTM, TCN,
and LSTM, and the R2 achieves the maximum value, which indicates that the prediction
accuracy of this model is higher.
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5. Conclusions

In this paper, the wind power forecasting model considered the influence of environ-
mental factors and evaluated the modal components with the correlation between envi-
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ronmental variables and wind power load using the VMD, MIC, and Pearson correlation
coefficients to reduce the influence of data randomness on the forecasting model. To verify
the validity of the model, we tested the model using a publicly available wind power load
dataset provided by the Spanish electricity company. Furthermore, we compared it with
VMD-LSTM, TCN, and LSTM. The main conclusions were drawn as follows:

1. The proposed model in this paper had the highest one-week short-term load
forecasting accuracy compared to VMD-LSTM, TCN, and LSTM, with MAE, MAPE, RMSE,
and R2 of 64.91 W, 2.79%, 74.13 W and 0.9985, respectively.

2. In this paper, VMD, MIC, and Pearson correlation coefficients were used to analyze
the environmental variables data to obtain the modal components with correlation with
wind power, effectively reducing the influence of data randomness on the prediction model.
Compared with TCN and LSTM, VMD-TCN and VMD-LSTM have higher prediction
accuracy, with MAE, MAPE and RMSE reduced by 16.45 W, 0.88%, 19.74 W, and 59.27 W,
2.34%, 64.4 W, respectively.
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