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Abstract: Academics and the health community are paying much attention to developing smart
remote patient monitoring, sensors, and healthcare technology. For the analysis of medical scans,
various studies integrate sophisticated deep learning strategies. A smart monitoring system is needed
as a proactive diagnostic solution that may be employed in an epidemiological scenario such as
COVID-19. Consequently, this work offers an intelligent medicare system that is an IoT-empowered,
deep learning-based decision support system (DSS) for the automated detection and categorization of
infectious diseases (COVID-19 and pneumothorax). The proposed DSS system was evaluated using
three independent standard-based chest X-ray scans. The suggested DSS predictor has been used
to identify and classify areas on whole X-ray scans with abnormalities thought to be attributable to
COVID-19, reaching an identification and classification accuracy rate of 89.58% for normal images and
89.13% for COVID-19 and pneumothorax. With the suggested DSS system, a judgment depending
on individual chest X-ray scans may be made in approximately 0.01 s. As a result, the DSS system
described in this study can forecast at a pace of 95 frames per second (FPS) for both models, which is
near to real-time.

Keywords: chest X-ray scans; COVID-19; decision support system; deep leaning; pneumothorax

1. Introduction

COVID-19 has unexpectedly emerged as a worldwide epidemic [1]. Individuals with a
previously undiscovered lung ailment were discovered around the end of the year 2019 [2].
After the first sufferer was hospitalised, the identification of COVID-19 was verified in
more than 1975 additional people within a month. COVID-19 is triggered by a novel
coronavirus known as SARS-CoV-2 (severe acute respiratory syndrome coronavirus) [2,3].
The COVID-19 epidemic has intensified significant pressure on most nations’ healthcare
systems, essential services, and finances [4–6]. COVID-19 has killed people throughout
the world [7,8]. Real-time reverse-transcription polymerase chain reaction (RT-PCR) is the
most frequently utilized diagnostic technique for COVID-19 to date [9].

The primary screening methods for detecting and diagnosing pulmonary chest dis-
orders early in the diagnostic workup, along with COVID-19, are radiographic imaging
methods such as chest digitized X-ray (CXR) and computed tomography (CT) [1,10,11].
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CT has demonstrated superiority over CXR [12,13]. Radiology scans are employed for
diagnosis objectives in patients with pulmonary illness due to the inadequate specificity
of RT-PCR. Principal chest digitized X-ray technologies are still beneficial since they are
quicker, produce a reduced radiation dose, are less costly, and are widespread [4,10]. To in-
crease the accuracy of COVID-19 diagnosing, scans or X-rays must be performed frequently
in conjunction with RT-PCR data [10]. On the other hand, the considerable proportion of
persons that screened positive for COVID-19 makes regular testing difficult for clinicians.
As a result, authorities pushed specialists and investigators to use artificial intelligence (AI)
approaches to battle the COVID-19 outbreak [1].

Utilizing digitized X-ray scans, deep learning DSS implementations have effectively
predicted many health conditions, including breast cancer [14,15], skin cancer [16], and
pulmonary sickness [10]. The fast proliferation of the COVID-19 pandemic, which has
resulted in the life-loss of millions of people throughout the globe, necessitates the use of
deep learning technology to design a DSS architecture that can enhance diagnostic accuracy.
This has been the driving force behind the development of a deep learning DSS system for
diagnosing COVID-19 using digitalized X-ray scans.

Further, studies have indicated that individuals with COVID-19 infection might pro-
duce pneumothorax [17]. COVID-19 instances needing hospitalization have been known
to be complicated by pneumothorax. With several plausible processes behind this link,
establishing the association involving pneumothorax and COVID-19 is difficult [18]. Pneu-
mothorax has been considered an adverse prognostic indicator in COVID-19 illness [19,20].
As a result, physicians should know that a pneumothorax might be seen in the scans and
physiological symptoms of COVID-19 and that this can result in a rise in fatality or severity.
If a person has COVID-19 and is misdiagnosed as pneumothorax, he/she will not be in
quarantine anymore, which may result in another chain of people getting infected. In cases
when a person having pneumothorax is misdiagnosed as having COVID-19, he or she
will still develop COVID-19 by being in touch with other patients. In both cases, another
COVID-19 chain will start and will cause more COVID-19 patients, as well time and money
being wasted on misdiagnosed disease.

Remote sensing can be defined as rendering information about something, without
being physically present near that object. In medical fields, X-rays are generally used for
remote sensing. The subject of remote sensing, which is referred as medical imaging in
the medical field, is now a major topic being researched. It includes various methods such
as X-ray, CAT scans, MRI, ultrasound, and endoscopy. PET and SPECT also fall under
the medical remote sensing category. These various methods can produce “static” images
and can be viewed in real time to track “movements” within the body. Moreover, some
methods concentrate on skeletal parts, others on internal organs; others on circulation and
other functions. Most methods are used to detect abnormalities such as malignant growths,
bone breaks, and disease effects.

These days, researchers have created a variety of artificial intelligence (AI) algorithms
for analysing medical images, such as chest X-rays, to detect infectious illnesses [21,22].
These established methods might aid medical professionals or physicians, improve the
treatment test procedure, and reduce workload by automatically identifying the infection
in chest X-rays. With these advanced tools and approaches, early illness diagnosis can also
lower death rates. Thus, an intelligent, sensor-based health care system is proposed in the
current research to classify viral illnesses, such as COVID-19 and pneumothorax, in chest
X-rays, motivated by the enhanced performance outcomes of prior systems.

Contributions

The current research is intended to be a clinical study that examines how to distinguish
between COVID-19 and pneumothorax. This is motivated by the fact that a patient could
develop pneumothorax after recovering from COVID, leading to misdiagnosis. The overall
contribution of this paper is summarized as follows:
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• This research focuses on the fact that many COVID-19 patients, after getting treated,
are diagnosed with pneumothorax after a few days. Thus, an intelligent sensor-based
system is required to look at the X-ray and classify it as normal or abnormal. If the
X-ray contains some abnormalities, it requires further classification if the abnormality
is that of COVID-19 or pneumothorax.

• We explore a variety of pretrained deep learning models and present each re-
sult compared with the proposed model. In our method, we divide the prob-
lem into two major categories, which are normal/abnormal classification and
COVID-19/pneumothorax classification.

• We have proposed our final models for each classification to assist developers and
researchers in broadening their perspectives on deep learning (DL) techniques and
to use the models for a better purpose. Proposed DL models can be used to solve the
mentioned issue accordingly.

• Finally, we point out and discuss potential reasons for our model providing better
results and the future scope of this research.

The manuscript is further divided into various sections. Section 2 explores the state-
of-the-art concerning COVID-19 detection from X-ray scans. Section 3 briefs the motivation
behind the proposed model. Section 4 explains all the details related to the proposed
model. Section 5 highlights the experiments performed and the results achieved. Finally,
the research is concluded in Section 6.

2. Related Work

Confirmed the existence of COVID-19 in 2020, specific deep learning-based techniques
are often used to identify COVID-19 on electronic X-ray and CT scans. The findings of the
research performed by Kuo et al. [23] demonstrated that COVID-19 might be accurately
predicted using non-image data also. To further enhance predictive performance, it is
advised to add class imbalance and extraction of features while developing models for
the forecasting of COVID-19. However, the current study concentrates on applying deep
learning technologies to image data for the diagnosis of COVID-19 and pneumothorax. Ad-
ditionally, thorough studies of the use of AI in radiological image processing for COVID-19
are offered in Fusco et al. [24].

Oh et al. reported a patch-based deep learning DSS system comprising segmentation
and classification phases that would recognize COVID-19 from CXR scans in [25].

FCDenseNet103 has been used to split and identify the whole lung areas from the
total CXR scans in segmentation. Various unrelated patches (i.e., areas of concern) are
selected from such segregated lung areas and used as feed for the deep classifier network.
Researchers examined CXR scans from a diverse patient population, including those
who were normal and those with COVID-19-related bacterial meningitis, TB, and viral
pneumonia. For the F1-score and total accuracy, respectively, predictive accuracies of
84.40% and 88.9% have been obtained.

Ozturk et al. [10] introduced the DeepCovidNet, a deep learning network that can iden-
tify COVID-19 from digitized chest X-ray scans. They used 17 CNN layers in the system to
establish binary classifier (predicting COVID-19 and normal) as well as multi-class classifier
(predicting COVID-19, normal, and pneumonia) predictions. For the binary and multi-class
diagnoses, they attained total prediction accuracy of 98.08% and 87.02%, respectively.

Fan et al. [26] suggested Inf-Net, a deep learning network that could detect or split
dubious areas on chest CT scans that are symptomatic of COVID-19. They employed a
concurrent partial decoder to build the worldwide depiction of the significant patterns.
The divided borders have been enhanced using implicit reverse and edge attention. With
Dice and the increased aligning score, they attained segmentation accuracies of 73.90% and
89.40%, respectively.

Wang et al. [27] developed COVID-Net using a deep learning framework to discrimi-
nate COVID-19 individuals from pneumonia patients and normal people using X-ray scans.
Adopting the same set of X-ray scans, their model’s prediction results have been compared
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to that of VGG-19 and ResNet-50. COVID-Net beat VGG-16 and ResNet-50, according to
the investigators, with positive predictive values (PPVs) of 90.50, 91.30, and 98.90% for
normal, pneumonia, and COVID-19, respectively.

Based on 50 computerized chest X-ray scans, Hamdan et al. [28] proposed a deep
learning COVIDXNet framework that may be utilized to identify COVID-19 patients and
normal persons. Researchers evaluated the classifier performance of seven well-known
convolutional models as feature extractors. VGG-19 and DensNet201 achieved the greatest
analytical result of 90% compared to other classification models.

The capacity of five well-known deep learning architectures to identify COVID-19 on
electronic X-ray scans has been examined by Apostolopoulos et al. [29]. They evaluated
three major categories: healthy, pneumonia, and COVID-19, with the VGG-19 classification
achieving the highest accuracy rate of 93.48%. They also evaluated all the underlying
models as the binary classifier (for COVID-19 vs. normal) and concluded that VGG-19 had
the greatest accuracy of 98.75%. Ahuja et al. [30] presented a three-phase deep learning
prediction system for binary classification to identify COVID-19 from CT scans. They
employed ResNet18, ResNet50, ResNet101, and SqueezeNet as backend deep learning
algorithms for data augmentation, transfer learning, and abnormality localization. The
pre-trained ResNet18 using the transfer learning technique made the highest analytical
findings of 99.82% (in training), 97.32% (in validation), and 99.40% (in test).

Based on entire X-ray scans, Khan et al. [31] suggested a deep learning CNN model
(i.e., CoroNet) that can be employed to assess COVID-19 as a multi-class classification issue.
They could distinguish COVID-19 from bacterial pneumonia, viral pneumonia, and normal
pictures with a recognition rate of 89.6%.

Using chest X-ray scans, Narin et al. [32] contrasted the classifier accuracy of
three distinct deep learning CNN models (i.e., ResNet-50, InceptionV3, and InceptionRes-
NetV2). They tested the capacity of all those proposed theories to distinguish participants
with COVID-19 from those who did not have COVID-19, and ResNet-50 had the greatest
classifying accuracy of 98%.

Ardakani et al. [33] compared eleven well-known DL models for detecting COVID-19
in daily medical environments on CT scans. They used a binary classifier test to distinguish
between COVID-19 and non-COVID-19. ResNet-101 and Xception DL models produced the
highest detection performance, with the highest accuracy of 99.40%. However, Ardakani
et al. have not tested the underlying model on a diversified dataset. The current study
proposes a new model that showcased better accuracy on a diversified dataset, including
not only COVID-19 patients but also pneumothorax patients.

Pereira et al. [34] proposed a texture descriptor-based classifying strategy using a
CNN model. They employed a resampling approach to harmonize the training set for a
multi-class classifier. The prototype received a 65% F1-score. Furthermore, [33,35] give
detailed survey research on deep learning approaches relevant to COVID-19. COVID-19
has been diagnosed using deep learning approaches on complete X-ray scans. This is due
to a paucity of X-ray scans with identified areas of probable lesions. However, using the
whole X-ray scan to make an accurate COVID-19 classification is not practicable [36].

COVID-19 has been associated with pneumothorax in a limited population; however,
the relevance and prevalence of this connection are unknown. According to retrospective
investigations of COVID-19 cases, pneumothorax occurs in 1% of those needing hospital-
isation, 2% of those requiring ICU hospitalisation, and 1% of those passing away from
the illness [37,38]. It is more complicated to comprehend the link between these diseases.
Although cavitation was assumed to suggest pulmonary infarction in one case, radiology
typically revealed normal COVID-19 alterations. This association might be explained in
a variety of ways [39]. As a result, detecting worrisome areas related to pneumothorax
disorders is crucial for obtaining a more precise test since it may be employed to extract
more indicative deep aspects of the disorders.

Current research authors seek whether the patient is healed from COVID-29, has
COVID-19, or has acquired pneumothorax. Numerous research works have been published
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in the domain of diagnosing normal and abnormal X-rays. However, to the best of our
knowledge, no effort has been performed to classify COVID-19 from pneumothorax from a
collection of aberrant pictures. Thus, the authors used deep learning techniques to complete
the stated categorization assignment.

3. Motivation

Before discussing the suggested approach, we initially discuss the transfer learning
gridlock for COVID-19 diagnosis based on X-ray scans, which has prevented deep learning
investigators from obtaining the requisite accuracy. Let us refer to a deep neural structure
as D(n~N; £), where n is a sample of the image collection N and £ is the collection of model
parameters, often known as weights. The model’s training goal is to encode the range N,
which is accomplished by maximizing across a huge number of observations in N. When
the representative sample is limited, D has trouble accurately modelling N.

The following phase is to use transfer learning to compute the mapping Ω: Ð(y~Y;
¥)→D(n~N; £), where Ð(.) represents the pre-trained model learnt from a substantial
amount of Y observations while
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-£|| << ||¥-£|| and
we can also estimate a fair estimation of Ď(.) by transferring Ð(.) to it, since we can organize
for a higher number of observations of Z, . As a result, we use an interim model with a
lower displacement than the output model to decrease the distribution difference between
the pre-trained and the output models while also allowing for improved transfer of the
pre-trained model, given the abundance of additional training data. The detail of the
proposed model is provided in the next section.

4. Proposed Model

Authors attempt to determine if a patient who still suffers from COVID-19 has recov-
ered or has acquired a pneumothorax. We divided the assignment into two parts to make
it easier. To begin, the authors developed a model that can distinguish between normal
and diseased X-rays (Model #1). Then, if the scans are aberrant, we have trained a second
model for pneumothorax and COVID-19 classification (Model #2). The first model may
be used by a developer to determine whether a patient has recovered. If the patient’s
X-ray is abnormal, the scan can be sent to the second model, determining if the problem is
COVID-19 or pneumothorax. We demonstrate the proposed architecture in Figure 1 and
detail it further using the schematics given.
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Figure 1. Proposed Model.

Conv2d layer is used to obtain the feature maps of images. These maps are the 2d
matrix of values calculated according to the following formula: the input image is denoted
by a and our kernel by b. The number of rows in the kernel is denoted as Rrow and the
number of columns is denoted as Rcolumn. The indexes of rows and columns of the feature
map matrix are marked with i and j respectively. The equation of the map is given by:

Map[i][j] = a[i][j] × b[i][j] (1)

which gives,
map[i][j] = ∑Rrow

x=0 ∑Rcoloumn
y=0 b [x][y] a[i− x][j− y] (2)

Pooling layers are then used to decrease the size of feature maps as whole maps would
be time and space-consuming if used. We have used max pool as a function of the pooling
layer which stores the max value of each mXn sub-matrix across the feature map.

pool[i][j] == max



map[i− 0][j− 0] . . . . . . . . . . . . map[i− 0][j− n]
map[i− 1][j− 0] . . . . . . . . . . . . map[i− 1][j− n]

.

.

.

.
map[i−m][j− 0] . . . . . . . . . . . . map[i−m][j− n]


(3)

Dimension of feature map:
fr × fc (4)

Output after pooling:
(fr −m + 1) × (fr − n + 1) (5)
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The flattened layer flattens the 2D array into a one-dimensional array. The output of
the flattening matrix “arr” is given by:

arr[c] = pool [floor (c/n)] [c%n] (6)

4.1. Pre-Processing Model

The model first looks for any abnormalities in the input chest X-ray scan. The training
dataset is first down-sampled to avoid data disparity and then processed by the pre-
processing model. The input X-ray images are pre-processed for classification using the
pre-processing model. All X-ray scan data have been treated using conventional TCIA
curation methods at the first layer of the pre-processing model. TCIA de-identifies data
saved as per the Digital Imaging and Communications in Medicine (DICOM) protocol using
a standards-based technique. The DICOM scans are then processed by converting them to
PNG format. The photos are then downsized to 224 × 224 × 3 on the following layer. Data
augmentation is used in the final layer of the pre-processing model to boost the effectiveness
of deep learning techniques for limited datasets and to generate a balanced dataset. The
pictures are created using three image augmentation techniques (sheer, magnification, and
horizontal flip).

4.2. Pre-Trained Model

The real scans are utilized as the input space for the fundamental transfer learning
job, which is a typical method. This model served as the foundation for the rest of the
models, which were all given a new uneducated brain. This model is a CNN structure
featuring two convolution filtering layers plus an additional pooling layer performed in
triplicate. Then, three convolution filtering layers and one pooling layer were used twice.
Finally, the design’s brain is made up of three completely linked layers, with the SoftMax
outcome. The models are pre-trained using 1 million ImageNet [40] tagged pictures, with
224 × 224 × 3 colour pictures, mapped to 1000 target classes. As our pre-trained model,
we have taken the top seven layers of this architecture.

4.3. Interim Model #1

We initially add small structural alterations to the pre-trained model while retaining its
fundamental weights because our target dataset of X-ray scans contains ’large 3-channeled
pictures’. We specifically changed the last levels of the original model with our own
customized layers. Our technique is to employ three filters to generate a 3-channel feature
map while keeping the hyper-parameters of kernel size and duration comparable to the
first convolutional layer of the initial formulation. When the initial design is employed,
we use the authentic activation function. To obtain the interim model, we intend to train
and develop the layers as well as fine-tune the original version for an “intermediary” zone.
We use chest radiology scans as our intermediary zone because they allow large-scale,
Chest-Xray14 [42] categorization of normal and pathological conditions. Because they are
huge medical pictures, they are more like X-ray scans, so the final layer of the interim
model is changed to forecast those categories. The output of this model is the same as
previous dense layer input with random nodes converted to zero value. We will consider
this output as O11.

4.4. Outcome Model #1

We employ 224 × 224 × 3 inputs received from pre-processing the X-ray pictures to
transfer the intermediate model to the outcome sphere of X-ray scans, a final dense layer
with a “softmax” activation function. Aside from the benefit of transferring a model of
diagnostic pictures to the X-ray sphere, we can also employ a greater input size. This is
advantageous since bigger visuals carry richer data, resulting in more distinct patterns.
With the 3-channeled pictures from the outcome region, we have a pre-trained model after
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fine-tuning the interim model for 100 epochs. This outcome model 1 gives output as a
normal or abnormal X-ray. Consider the output of this model as O12.

O12(O11)i = ezi / ∑2
j=1 ezi, (7)

where, zi = input vector, ez = exponential function

O12(O11)i = ezi/ez1 + ez2 (8)

Thus, Output1 = index of (max (O12)), i.e., class 1 or 2.

4.5. Interim Model #2

The interim model #2 receives pre-processed scans of input pictures that have been
classified as abnormal by outcome model #1. The goal of this model is to differentiate
between COVID-19 and pneumothorax. The resulting sphere of X-ray scans has been pro-
cessed using VGG16 layers in a pre-trained model and additional layers with a predefined
configuration as interim model 2. When it comes to distinguishing COVID-19 from pneu-
mothorax, transfer learning performs better in comparison to classifying normal/abnormal.
This is due to large number of abnormalities in abnormal sections. We have also used a
huge picture size. This is advantageous since bigger pictures contain richer data, resulting
in more distinct patterns. The pooling layer, also known as the subsampling layer, is a
crucial component of CNN. The pooling layer functions autonomously on each feature
map derived by the convolution layer. It reduces the geographical size of the feature map
and delivers the essential components to reduce overfitting and the density of feature sets.
In the CNN model, pooling might be the maximum, mean, or aggregate. Since others will
not be able to spot the acute characteristics as readily as max pooling, it was employed in
this investigation. To balance the input layer and accelerate the learning operation among
hidden layers, the approach modifies the scale and activation. Consider the output of this
model as O21.

O21(z)i = ezi / ∑128
j=1 ezi, (9)

4.6. Outcome Model #2

The loss function employed is categorical cross-entropy, and the optimizer is “Adam.”
For the final result, we used the “softmax” activation function. This last layer is the
secondary target component since it identifies the type of abnormality (i.e., COVID-19 or
pneumothorax in our case). After flattening, the vector data (from interim model #2) are
fed into the CNN’s subsequent layers, known as fully connected or dense layers. Every
neuron in the preceding layers is directly linked to each of the neurons in the following
layer in a completely connected structure. Dense layers’ main role is to accept the flattened
outcome of the convolution and pooling layers as input and categories the picture to a
specified class label.

O22(O21) = 1/1 + e−O21 , (10)

Output2 = 1, if O22 > 0.5, else Output2 = 0

5. Experimental and Results Section
5.1. Dataset

The experimental analysis of the proposed model has been conducted using a blend
of three datasets, i.e., NIH chest X-ray dataset [42], SIIM dataset [43], and CDI COVID-
19 dataset [44]. The dataset crafted using the “NIH chest X-ray dataset” distinguishes
normal and abnormal X-rays. Anyone with no abnormalities has been classified as normal,
whereas scans with exhibiting abnormalities have been classified as abnormal. A total of
1265 aberrant scans were chosen at random for training, and 67 aberrant scans were selected
at random for testing. The authors acquired 1448 scans for training and 77 images for testing
for normal. Further, the authors used two distinct datasets to diagnose COVID-19 and



Sensors 2022, 22, 7474 9 of 16

pneumothorax. For training, the authors selected 900 random scans from the “SIIM dataset”
and “CDI COVID-19 dataset,” which includes scans for pneumothorax and COVID-19,
respectively, and 100 scans for testing. Figure 2 depicts the distribution of data belonging
to distinct classes.
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5.2. Performance Evaluation Metrics

To investigate the categorization of COVID-19 and pneumothorax sufferers, the au-
thors use the datasets supplied for X-ray scans to evaluate the performance of the pro-
posed models. The authors highlight four outcomes that are characteristic of CNNs for
every framework:

• Accuracy Curve.
• Loss Curve.
• Confusion Matrix.
• Area Under Curve (AUC).

The model’s training and validation accuracy curves illustrate how effectively the
model is learning/summarising. Overfitting is measured by the difference in training and
validation accuracy. The loss curve depicts the learning phase and the orientation of the
model. The learning scope with training is depicted by a large gap between the training
and validation arcs. A confusion matrix is a tool that describes a classifier’s effectiveness
in a collection of the testing dataset for which the actual values are previously known.
Every confusion matrix has four fundamental words linked with it [45]. (i) True Positives
(TP): these are situations when it is forecast “yes”, and, indeed, the affected person had the
condition. (ii) True Negatives (TN): it is estimated “no,” and they are not infected. (iii) False
Positives (FP): It is anticipated a “yes” for the condition, but the sufferers do not have it.
This is sometimes referred to as a Type I error. (iv) False Negatives (FN): When the model
suggests “no,” people nonetheless have the condition. Type II errors are what they are
labelled. It is often used to depict essential prediction statistics, making it simpler to analyse
and obtain useful experimental patterns. AUC is a composite performance indicator that
considers all possible categorization levels. The likelihood that the model rates an arbitrary
favourable instance higher than a random counter example is one approach to analyse
AUC. The AUC represents the likelihood of an arbitrary favourable instance being placed
to the right of a randomized counter-example. The AUC value varies from 0 to 1. The AUC
of a model for whom forecasts are 100% incorrect is 0.0, whereas the AUC of a model where
forecasts are 100% accurate is 1.0.
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5.3. Environmental Setup

The experimentation was split into two possibilities. The authors employed a modified
VGG16 in the first case (for interim model #1) and another modified VGG16 in the latter
(for interim model #2). Over the first setting, scans of normal subjects were combined
with scans of patients with anomalies to create a classification engine. In the later trial, the
authors developed a model to distinguish COVID-19 from pneumothorax in patients with
aberrant X-ray scans. Python language has been used to simulate these two situations. The
authors utilized an open-source deep learning approach to build the systems, methods,
modules, and materials of TensorFlow 2.0 (plus Keras, Google, Mountain View, CA, USA).
The analyses have been carried out with the help of Python. All tests have been performed
on Google Collaboratory with a Tesla K80 GPU graphics card(NVIDIA, Santa Clara, CA,
USA), an Intel (Santa Clara, CA, USA) i7-core @3.6 GHz CPU, and 16 GB RAM on a 64-bit
Windows 11 operating system (Microsoft, Redmond, Washington, DC, USA). To evaluate
the performance of the proposed model, the authors performed a series of tests on the
identical datasets, feeding them into the two most adopted pre-trained CNN models:
InceptionV3 and Resnet50, including a different configuration of VGG16 of fixed layers and
learnable convolution modules. Additionally, the authors selected each model’s excellent
score independently and then assessed every model on a testing dataset.

5.4. Results
5.4.1. Model Forecasting Normal/Abnormal

The effectiveness of the various pre-trained CNN models (as recommended in [32])
and the proposed model is summarized in Table 1. It is observed that almost all of the
tested pre-trained models did an excellent job of categorizing normal and abnormal photos.
While the findings of the other CNNs appeared only somewhat different, the proposed
model showcased the best accuracy of 89.58%. In terms of accuracy and AUC, the proposed
model beat alternative models.

Table 1. Performance of various models for forecasting Normal/Abnormal.

Model Accuracy (with 95% CI) AUC (with 95% CI) Loss

InceptionV3 [32] 86.2 ± 0.052 0.95 ± 0.0955 0.34
Resnet50 [32] 88.4 ± 0.05 0.92 ± 0.1188 0.28

Proposed Model 89.58 ± 0.049 0.95 ± 0.0955 0.25

The confusion matrix for two-class classification with normal/abnormal is shown
in Figure 3. The suggested model’s training and validation accuracy, loss, and AUC are
shown in Figure 4. The model converges successfully, as can be noticed because the gap in
both the train and validation arcs is minimal.
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5.4.2. Model Forecasting COVID-19/Pneumothorax

Table 2 summarises the effectiveness of each of the several pre-trained CNN models.
Almost all the examined pre-trained models performed admirably in identifying COVID-19
and pneumothorax scans. While the results of the other CNNs appeared to differ slightly,
the suggested model had the highest accuracy of 99.5%. The presented model outperformed
competing models in terms of accuracy.

Table 2. Performance of various models for forecasting COVID-19/pneumothorax.

Model Accuracy (with 95% CI) AUC (with 95% CI) Loss

InceptionV3 [32] 99.1 ± 0.0975 0.995 ± 0.0112 0.02
Resnet50 [32] 98.4 ± 0.0980 0.994 ± 0.0126 0.01

Proposed Model 99.5 ± 0.0970 0.995 ± 0.0112 0.01

Figure 5 depicts the confusion matrix for COVID-19/pneumothorax two-class catego-
rization. Figure 6 shows the recommended model’s training and validation accuracy, loss,
and AUC. The model converges well, as evidenced by the small gap between the train and
validation arcs.
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5.4.3. Comparison with Existing Classifiers

The primary motivation behind the current research is to pioneer the deep learning
application for pneumothorax patients. The existing literature [10,31,46] demonstrates
three class classifiers for COVID-19, Normal, and Pneumonia classification. Focusing
on the aim of the current research, we adapted the three class classifiers suggested in
references [10,31,46] with the diversified dataset constituting scans for normal, COVID-19,
and pneumothorax patients. The accuracy achieved from the underlying three classifiers
is presented in Table 3 and Figure 7. The proposed model exhibits the highest accuracy,
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i.e., 99.5% (Stage 2: COVID-19/pneumothorax) of 89.58% (Stage 1: Normal/Abnormal),
which equals 89.13%.

Table 3. Accuracy and speed comparison with state-of-the-art classifiers.

Model Accuracy FPS

DarkCOVID-Net [10] 84.2% 99
MobileNet v2 [46] 86.1% 97

CoroNet [31] 88.7% 94
Proposed Model 89.13% 95
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Further, it has been observed that the proposed model produces the results at a speed
of 95 frames per second (FPS) for both models, which is near to real-time (as depicted in
Table 3.). The proposed model’s speed is recorded slightly lower than other models under
consideration due to adopting two-stage classifiers instead of a single three-class classifier.
However, the slight speed difference in speed can be compromised to attain better accuracy.

6. Discussion

The suggested approach automatically identifies COVID-19 and pneumothorax in
X-ray scans without needing customized feature extraction methods. Experts at treatment
centres can use the proposed methodology to obtain a consultation. It can considerably
reduce clinician effort while also assisting them in making correct diagnoses in their
everyday activities. Since the suggested method saves time (the diagnosis procedure is
quick), professionals may devote their attention to more urgent situations.
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Initially, the model is tested for classifying normal and abnormal scans on a batch
of 144 scans with equal amounts of each classification. The proposed model has been
able to distinguish normal and abnormal chest X-rays with an accuracy of 89.58%. A test
set of 200 scans has been used to test the model’s capability to identify COVID-19 and
pneumothorax, which uses abnormal scans as input. It correctly classified COVID-19 and
pneumothorax with an accuracy of 99.5%. As a result, the accuracy of accurately identifying
normal pictures is 89.58%, while correctly predicting COVID-19 and pneumothorax is 99.5%
of 89.58% or 89.13%.

This work showed that deep learning combined with X-ray scans could identify
important biological indicators linked to COVID-19 and pneumothorax illness. However,
there are certain flaws in this research. Since a unified dataset for this job is still unavailable,
several datasets have been blended to create a single dataset to discriminate between
COVID-19 and pneumothorax. However, we employed DICOM pictures, which is a
standard format. The scans for the two classes may have been conditioned differently
because the goals for both original datasets are separate. A more in-depth investigation
may be carried out if a dataset is created for this specific work, which would considerably
enhance the task and make it more dependable. The presented work can be extended to
other fields, such as the classification of land cover types [47–50].

7. Conclusions

Various pre-trained deep learning models were used in this research to select the
optimum deep learning strategy for differentiating normal from abnormal X-rays and
COVID-19 from pneumothorax. Using the aforementioned dataset, several tests were
carried out to determine which layer is capable of extracting the greatest characteristics
and achieving the best results. Deep networks outperformed other systems in all measures
when it came to identifying normal from abnormal X-rays, as well as COVID-19 and
pneumothorax, especially the proposed model, which was constructed employing transfer
learning by VGG16 and outperformed other models (Resnet50 and InceptionV3) in all
parameters. The classification accuracy, loss, and AUC of normal and abnormal X-rays are
89.58%, 0.25, and 95%, respectively. The classification accuracy, loss, and AUC of COVID-19
and pneumothorax X-rays are 99.5%, 0.01, and 99.5%, respectively. As a result, the accuracy
of accurately identifying normal scans is 89.58%, whereas for forecasting COVID-19 and
pneumothorax is 99.5% of 89.58%, i.e., 89.13%.
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