
Citation: Sun, Y.; Hu, J.; Yun, J.; Liu,

Y.; Bai, D.; Liu, X.; Zhao, G.; Jiang, G.;

Kong, J.; Chen, B. Multi-Objective

Location and Mapping Based on

Deep Learning and Visual Slam.

Sensors 2022, 22, 7576. https://

doi.org/10.3390/s22197576

Academic Editors: Tao Peng and

Yanhua Shih

Received: 12 September 2022

Accepted: 3 October 2022

Published: 6 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Multi-Objective Location and Mapping Based on Deep
Learning and Visual Slam
Ying Sun 1,2,3, Jun Hu 1,2,*, Juntong Yun 1,2, Ying Liu 1,2, Dongxu Bai 1,2, Xin Liu 1,2, Guojun Zhao 1,2,
Guozhang Jiang 1,2,3, Jianyi Kong 1,2,3 and Baojia Chen 4

1 Key Laboratory of Metallurgical Equipment and Control Technology, Ministry of Education, Wuhan
University of Science and Technology, Wuhan 430081, China

2 Research Center for Biomimetic Robot and Intelligent Measurement and Control, Wuhan University of
Science and Technology, Wuhan 430081, China

3 Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of
Science and Technology, Wuhan 430081, China

4 Hubei Key Laboratory of Hydroelectric Machinery Design and Maintenance, China Three Gorges University,
Yichang 443002, China

* Correspondence: hujun1996@wust.edu.cn

Abstract: Simultaneous localization and mapping (SLAM) technology can be used to locate and build
maps in unknown environments, but the constructed maps often suffer from poor readability and
interactivity, and the primary and secondary information in the map cannot be accurately grasped.
For intelligent robots to interact in meaningful ways with their environment, they must understand
both the geometric and semantic properties of the scene surrounding them. Our proposed method
can not only reduce the absolute positional errors (APE) and improve the positioning performance of
the system but also construct the object-oriented dense semantic point cloud map and output point
cloud model of each object to reconstruct each object in the indoor scene. In fact, eight categories of
objects are used for detection and semantic mapping using coco weights in our experiments, and
most objects in the actual scene can be reconstructed in theory. Experiments show that the number of
points in the point cloud is significantly reduced. The average positioning error of the eight categories
of objects in Technical University of Munich (TUM) datasets is very small. The absolute positional
error of the camera is also reduced with the introduction of semantic constraints, and the positioning
performance of the system is improved. At the same time, our algorithm can segment the point cloud
model of objects in the environment with high accuracy.

Keywords: deep learning; target tracking; visual SLAM; multi-objective location; semantic mapping

1. Introduction

With the development of artificial intelligence and neural network, the status of
simultaneous localization and mapping technology has been growing, and now, it has
become a research hotspot in the field of computer vision and robotics, which has made
remarkable achievements in the scientific and academic fields [1–4]. SLAM has been
applied in many aspects of our lives, such as medical services, virtual/augmented reality,
drones, autonomous driving, etc. [5,6]. Due to the rapid development of computer vision
and deep learning, the use of semantic information in SLAM, which is called semantic
SLAM, has become a very promising and challenging topic [7–13]. Semantics and SLAM
seem to be two independent modules, but they are not. They influence and help each
other in many ways [14–16]. On the one hand, the mapping and positioning of the classical
SLAM system are mostly based on the geometric matching at the pixel level, lacking a priori
information to help the sensor locate the objects [17,18]. Data association can be improved
from the traditional pixel level to the object level with the help of semantic information,
which can help improve the positioning accuracy in complex scenes [19–21]. Compared

Sensors 2022, 22, 7576. https://doi.org/10.3390/s22197576 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22197576
https://doi.org/10.3390/s22197576
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s22197576
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22197576?type=check_update&version=2

Sensors 2022, 22, 7576 2 of 27

with the traditional physical geometric information, semantic information has consistency
and stability and is less affected by environmental transformations. Additionally, it is
suitable for image matching in both static and dynamic environments. On the other
hand, the semantic information obtained by the semantic segmentation algorithm for the
same object may be different at different times and from different angles, especially for
objects with similar shapes. The SLAM system can provide constraints for the extraction of
semantic information to improve the accuracy of semantic understanding [22]. In general,
it is computationally cheaper to accomplish data association and camera pose estimation
through objects than through feature points, as there are many fewer objects compared to
the number of 3D points in a map.

Existing SLAM systems can already construct traditional two-dimensional (2D) maps
of the environment, and many are capable of building 3D sparse point cloud maps and
dense point cloud maps of the scene. With these maps, robots can carry out low-level tasks,
such as localization and navigation [23,24]. However, sophisticated interactions between a
robot and the surroundings require three-dimensional (3D) semantic information about the
environments. The image processing methods based on deep learning, including target
detection, semantic segmentation and instance segmentation, are important and promising
steps to address this problem. Combined with semantic information, the SLAM system
can help mobile robotics locate itself more precisely and significantly improve the ability to
interact with the environment, which means that a task like “bring me an apple on the table”
can be performed effectively [25]. The concept of semantic maps was first introduced at the
beginning of the 21st century [26]. Most of the current semantic maps built by semantic
SLAM are scenario-oriented semantic maps. The scenario-oriented semantic maps belong to
pixel-level 3D semantic maps where each map point carries semantic information, making
it easier for robots to understand the scene, such as background, wall, table, door and
so on [27–29]. This way of building maps can construct a more expressive map of the
environment to assist the robot to better understand the environment as a whole, but it
is not good for the robot to recognize the individuals in the environment. Robots cannot
interact with individuals in the environment because they cannot distinguish between
different individuals in the environment, which limits the application of intelligent robots
to a certain extent [30–32]. The main contributions of this paper are as follows:

(1) Propose a method of target tracking combined with instance segmentation, which can
segment the objects in an image and track each object to establish data associations
for different frames.

(2) Propose a method for constructing objected-oriented semantic maps.
(3) Propose a method for reconstructing multiple objects in 3D space.
(4) Propose a method for optimizing the camera pose using object constraints.

In the rest of the paper, the second part is related works, the third part is the method
and theory, the fourth part is the experiment and analysis, and the last part is summary
and expectations.

2. Related Work
2.1. Image Segmentation Networks

Semantic segmentation goes further on the basis of target detection and needs to
distinguish each pixel point in the image to segment and distinguish different classes of
objects. Instance segmentation pursues more precise segmentation based on semantic
segmentation to distinguish each object of the same category. Starting from the proposal
of fully convolutional networks (FCN) in 2015, the classical neural-network-based image
segmentation algorithms start to appear. Long et al. propose FCN, which replaces the
full convolutional layer with the full connection layer in the convolutional neural network
(CNN) to build an end-to-end, pixel-to-pixel semantic segmentation network [33]. Wang
et al. propose RDS Net, which introduces three modules, including the target frame
auxiliary instance mask relationship module, the mask pruning module and the mask
refinement target positioning module, and it designs a dual flow network to overcome the

Sensors 2022, 22, 7576 3 of 27

low resolution of the instance mask to a great extent [34]. Cai et al. propose Cascade R-CNN,
which adds a split branch for each cascade stage, extending the cascade architecture to
instance segmentation tasks [35]. Jiang et al. introduce two branches on the basis of
Mask R-CNN [36] and propose a post-processing refinement module based on the overall
nested edge detection best possible recall (BPR) to improve the boundary quality of Mask
R-CNN [37]. Instance segmentation tasks are also widely used in remote-sensing images,
face detection and other scenes.

2.2. Visual SLAM

The research on visual SLAM includes the positioning of the camera and the con-
struction of an environmental map. Kerl et al. propose DVO-SLAM, a dense visual SLAM
method for RGB-D cameras that minimizes both the photometric and the depth error over
all pixels [38]. Endres et al. propose RGBD-SLAM v2, which calculates the camera motion
between two frames by feature matching and iterative closest point (ICP) methods in the
front end and performs pose graph optimization with loop detection in the back end,
and it can build 3D maps with high accuracy [39]. McCormac et al. propose Fusion++,
which is built from modules for image-based instance segmentation, truncated signed
distance function (TSDF) fusion and tracking and pose graph optimization, and create
a long-term map, which focuses on the most important object elements of a scene [40].
Mur-Artal et al. propose ORB-SLAM2, which is the excellent successor of parallel tracking
and mapping (PTAM) and achieves the first parallelization of three threads for real-time
tracking, local bundle adjustment (BA) optimization and global loop detection, and it uses
the Oriented FAST and Rotated BRIEF (ORB) features for feature point extraction, matching,
loop detection and relocalization [41]. Qin et al. propose the monocular visual-inertial
SLAM system called Vins-Mono, which belongs to the optimization-based tight-coupling
method [42]. Whelan et al. propose Elasticfusion, which adopts the mapping method of
continuously optimizing reconstruction to improve the accuracy of reconstruction, and
the map is represented by the surfel model [43]. Dou et al. propose Fusion4d, which uses
several depth cameras to reconstruct rapidly changing non-rigid bodies [44]. Muhammet
et al. adopt visual-inertial odometry (VIO), a low-cost sensor fusion method that integrates
inertial data with images using a deep-learning (DL) framework to predict the position of
an unmanned aerial system (UAS) [45]. Cao et al. propose GVINS, which tightly integrate
GNSS raw measurements with visual and inertial information to achieve real-time and
drift-free state estimation [46]. In general, the research direction of SLAM is more focused
on improving the positioning performance of the system.

2.3. Semantic Map

Some scholars proposed the concept of semantic maps at the beginning of the 21st
century and elaborated that building environment maps with semantic information could
enhance the perception and interaction capabilities of robots. In recent years, more and
more researchers have combined deep-learning methods with SLAM technology to extract
semantic information of the environment using target detection, semantic segmentation
and other algorithms. Then, they are integrated into the environment map to construct a
semantic map of the environment. Semantic maps can be broadly divided into scenario-
oriented semantic maps and object-oriented semantic maps.

The scenario-oriented semantic maps divide the environment into several semantic
parts in a holistic way. Li et al. combine the DeepLab network [47] with LSD-SLAM [48] to
build semi-dense semantic maps through pixel-level semantic segmentation without any
prior depth information. The semantic annotations are transferred into the 3D map and
regularized with a CRF process. However, the initialization of the system still needs to be
optimized [49]. McCorma et al. propose a method called SemanticFusion to construct pixel-
wise semantic maps in indoor scenes. This method optimizes the semantic segmentation
results of a single image based on the matching relationship of image feature points
output by the SLAM algorithm, but the improvement is very limited and requires great

Sensors 2022, 22, 7576 4 of 27

computational resources [50]. Brucker et al. propose a method to determine the room type
based on information such as the type and distribution of objects within the environment
and propose a method to calculate the degree of association between objects and rooms,
which helps improve the execution efficiency of robot interaction tasks [51]. Chen et al.
propose a probabilistic model to consider the semantic information of all frames to estimate
the semantics of each map point. In addition, the authors use temporal motion information
to argue whether a map point is dynamic or static [52]. Zhao et al. propose a pixel–voxel
network to obtain global context information by using PixelNet to exploit the RGB image
and, meanwhile, preserve accurate local shape information by using VoxelNet to exploit
the corresponding 3D point cloud. Subsequently, each point on the 3D map is identified
and semantically tagged [53]. CNN-SLAM naturally blends the dense depth map predicted
by CNN with the depth measurements obtained by direct monocular SLAM to obtain an
improved depth map, which is used to build a scene-oriented semantic map [54].

Object-oriented semantic maps are composed of individual instances, which allows
the robot to manipulate and maintain each object in the map. Salas-Moreno et al. propose
SLAM++ to create a map with semantically defined objects, but it relies on a predefined
database and hand-crafted template models [55]. Hoang et al. propose Object-RPE to solve
the problem of constructing semantic maps when there are occlusions and environmental
clutter in the environment, and it has better robustness [56]. Sunderhauf et al. propose
an object-oriented semantic mapping method based on the combination of SSD [57] and
ORB-SLAM2, which maintains and updates the point cloud for each class of objects during
the runtime. However, it is not possible to maintain and update each object in the map
individually, which makes it difficult for the robot to distinguish between objects of the same
category in practical applications [58]. Grinvald et al. propose an online volume-instance-
aware semantic map building system based on RGB-D data, where the exact segmentation
of objects is obtained by joint inference of geometric and semantic cues, and finally, the
global object-level semantic map is obtained by fusing local information. However, the pose
estimation errors accumulate during the operation of the system, leading to an increased
impact on the map [59]. Li et al. directly use the mapping relationship between voxels and
pixels to obtain the semantic categories of voxels, thus reducing the computational effort
in semantic fusion and improving the real-time performance of the algorithm to a certain
extent, but the accuracy of the semantic map is slightly poor [60]. Liu et al. propose to
combine YOLO V4 [61] with RGB-DSLAM to perform dense mapping and object location,
but the boundaries of the constructed map are not perfect [62]. Runz et al. propose Mask-
Fusion, which is a method of semantic mapping based on instance segmentation in dynamic
scenes. This method combines instance segmentation and geometric segmentation to solve
the problem of rough edges, but the segmentation method used requires a large amount
of computational resources [63]. Dorian et al. propose a monocular SLAM system for
perceptible objects, which uses the binary bag of words (a database containing 500 3D
object models) to complete target recognition and construct 3D semantic maps, but the
system causes obvious errors in the maps when the initialization fails [64].

3. Method

Our method is divided into two main parts: semantic information extraction and se-
mantic mapping. In the section of semantic information extraction, the classical target track-
ing algorithm Deepsort [65] and the instance segmentation algorithm Mask R-CNN [36]
are combined to extract the 2D semantic information of the target object and establish
data associations between the images, which provide a priori information for subsequent
camera pose optimization and point cloud fusion. In the section of semantic mapping, the
RGB-D version of ORB-SLAM2 [41], an open-source SLAM system, is used for tracking and
mapping, which uses both RGB and depth information for sparse tracking. Semantic infor-
mation is added to the newly created semantic mapping thread of ORB-SLAM2 to build
object-oriented semantic maps, reconstruct the target objects in the maps and optimize the
camera pose, which is critical and applicable in the field of human–computer interaction.

Sensors 2022, 22, 7576 5 of 27

We are cautious about terming our method “semantic SLAM”, as its usual task consists of
two aspects: SLAM helping semantics and semantics helping SLAM. Our method contains
one of the two directions—semantics helping SLAM—including localization and mapping.

3.1. Target Tracking Based on Instance Segmentation

Mask R-CNN [36], an instance segmentation algorithm, is used to obtain 2D semantic
information in RGB images in our method, which is used as the observation data for the
target tracking algorithm to track the target objects to establish the data association in a
video sequence. The extracted 2D semantic information includes semantic label, tracked
identification (ID) and 2D pixel coordinates, where the 2D pixel coordinate information of
the objects will be recorded in txt files in a hierarchical manner according to the timestamp of
the image, the semantic classification and tracking ID of the object. These pixel coordinates
are extracted from the object’s mask, and the two coordinates of a point occupy one line of
the txt file. The frame diagram of Deepsort with Mask R-CNN is shown in Figure 1.

Sensors 2022, 22, 7576 5 of 29

3. Method

Our method is divided into two main parts: semantic information extraction and se-

mantic mapping. In the section of semantic information extraction, the classical target

tracking algorithm Deepsort [65] and the instance segmentation algorithm Mask R-CNN

[36] are combined to extract the 2D semantic information of the target object and establish

data associations between the images, which provide a priori information for subsequent

camera pose optimization and point cloud fusion. In the section of semantic mapping, the

RGB-D version of ORB-SLAM2 [41], an open-source SLAM system, is used for tracking

and mapping, which uses both RGB and depth information for sparse tracking. Semantic

information is added to the newly created semantic mapping thread of ORB-SLAM2 to

build object-oriented semantic maps, reconstruct the target objects in the maps and opti-

mize the camera pose, which is critical and applicable in the field of human–computer

interaction. We are cautious about terming our method “semantic SLAM”, as its usual

task consists of two aspects: SLAM helping semantics and semantics helping SLAM. Our

method contains one of the two directions—semantics helping SLAM—including locali-

zation and mapping.

3.1. Target Tracking Based on Instance Segmentation

Mask R-CNN [36], an instance segmentation algorithm, is used to obtain 2D semantic

information in RGB images in our method, which is used as the observation data for the

target tracking algorithm to track the target objects to establish the data association in a

video sequence. The extracted 2D semantic information includes semantic label, tracked

identification (ID) and 2D pixel coordinates, where the 2D pixel coordinate information

of the objects will be recorded in txt files in a hierarchical manner according to the

timestamp of the image, the semantic classification and tracking ID of the object. These

pixel coordinates are extracted from the object’s mask, and the two coordinates of a point

occupy one line of the txt file. The frame diagram of Deepsort with Mask R-CNN is shown

in Figure 1.

Mask R-CNN
Detections

Kalman Filter
Tracks

Predict

Unmatched

Tracks

Matching

Cascade

Unmatched

Detections

Matched

Tracks

Unmatched

Tracks

IOU

 Match

Unmatched

Detections

Matched

Tracks

Unconfirmed

Confirmed

Kalman Filter

Update

Confirmed

Unconfirmed

>max_age

<max_age

Unconfirmed

Deleted

New Tracks

(Unconfirmed)

3 consecutive hits: Unconfirmed Confirmed

Observation(detection + data association)

Prediction

Update

Figure 1. The frame diagram of Deepsort with Mask R-CNN.

Deepsort [65], a classical multi-objective tracking algorithm, is mainly used to track

and predict vehicles and pedestrians in combination with target detection. The core pro-

cesses of Deepsort include prediction, observation and update. The prediction thread per-

forms prediction for the next frame to obtain the prediction box of the target objects. The

observation thread performs target detection for the current frame to obtain the detection

box of the target objects and establish data association with the objects in the previous

frame. There is some error between the results generated by the above two threads and

Figure 1. The frame diagram of Deepsort with Mask R-CNN.

Deepsort [65], a classical multi-objective tracking algorithm, is mainly used to track
and predict vehicles and pedestrians in combination with target detection. The core
processes of Deepsort include prediction, observation and update. The prediction thread
performs prediction for the next frame to obtain the prediction box of the target objects. The
observation thread performs target detection for the current frame to obtain the detection
box of the target objects and establish data association with the objects in the previous
frame. There is some error between the results generated by the above two threads and
the real results. The update thread combines the results of the prediction thread and the
observation thread to update the results, making the final error smaller than that of the
single thread. The prediction thread and update thread of Deepsort can predict the position
of tracks at the next time and update the predicted location based on detections by using
Kalman filtering. Kalman filtering uses a linear homogeneous model, which means the
movement of the frame, the change in the size and deformation of the frame are considered
to change linearly and homogeneously. In Deepsort, the tasks of the prediction thread can
be expressed as the following formula.

x̂k = Ax̂k−1 (1)

Pk = APk−1 AT + Q (2)

where Formula (1) is used to compute the mean vector x̂k of the prediction box at frame k;
Formula (2) is used to compute the covariance matrix Pk of the prediction box at frame k;
A represents the motion matrix and is used to predict the state of the system at the next
time. The tasks of the update thread include computing the Kalman gain, updating the

Sensors 2022, 22, 7576 6 of 27

estimate via measurement and updating the error covariance, which can be expressed as
the following formula, respectively.

y = zk − Hx̂k (3)

S = HPk HT + R (4)

Kk = Pk HTS−1 (5)

x̂′k = x̂k + Kky (6)

Pk = (I − Kk H)Pk (7)

where zk = [m, n, l, h] represents the mean vector of the detection box at frame k; the four
parameters represent the horizontal and vertical coordinates of the upper left corner, length
and width of the detection box; y represents innovation; H represents the measurement
matrix; in Formula (4), R represents the noise matrix of the detector; in Formula (5), Kk
represents the Kalman gain at frame k and is used to estimate the importance of the error;
Formulas (6) and (7) are used to compute the updated mean vector and the covariance
matrix. The observation thread includes the results detected by Mask R-CNN and data
association. The results detected by Mask R-CNN, which include the box, mask, class and
score of each object in the picture, are regarded as the observed data of Kalman filtering
to match one by one with the prediction box in the previous frame. The match algorithm
includes the intersection-over-union (IOU) match and the cascade match, and the cost
function includes the Mahalanobis distance and cosine distance. If both distances are as
small as possible, and the boxes and features are similar, it is considered that the two boxes
are the same thing. The successful pairing of the detection box and the prediction box
means that the previous frame and the next frame are successfully tracked. Whether the
objects can be tracked successfully is greatly influenced by the detection results.

3.2. Improved Dense Mapping Based on ORB-SLAM2

ORB-SLAM2 [41], one of the very classic and practical systems in modern SLAM
work, which represents a peak of the mainstream feature point SLAM, is used to construct
semantic maps in our method. The whole system is computed around ORB features, with
fast computation speed, rotational invariance and scale invariance. We propose to add
a new point cloud mapping thread in ORB-SLAM2 to upgrade the original sparse map
to a dense semantic map. The prerequisite for mapping is to calculate the camera’s pose.
Therefore, the camera pose estimation problem needs to be solved first. In SLAM, the pose
of the camera can be initially estimated in the visual odometry, which may have some
errors. In order to optimize the camera pose x, SLAM is transformed into an optimization
problem. The equation of observation and motion in visual SLAM can be expressed as{

xi = f (xi−1, ui) + ωi
zi,j = h(yj, xi) + vi,j

i = 1, 2, , N, j = 1, 2, , M (8)

where xi represents the camera pose at frame i; yj represents the jth road sign; zi,j represents
the data generated by the jth road sign observed at frame i; uk represents the motion data
at frame i; wi and vi,j represent the motion noise and observation noise generated at frame
i. If there are no motion data, the camera pose can also be optimized by observing the data.
Considered in terms of least squares, then, the error of the observation can be expressed as

eij = zi,j − h(ξi, yj) (9)

After considering the observed data at other moments, the overall cost function of the
observed error to be optimized can be expressed as

1
2

m

∑
i=1

n

∑
j=1
||eij
∣∣∣∣2 =

1
2

m

∑
i=1

n

∑
j=1
||zij − h(ξi, yj)

∣∣∣∣2 (10)

Sensors 2022, 22, 7576 7 of 27

where zi,j represents the observed data of the jth road sign yj at frame i; ξi represents the
Lie algebra corresponding to the camera pose at frame i. eij represents the observation
error arising from the observation of road sign j at frame i. m denotes the number of
images involved in the calculation. n denotes the number of road signs involved in the
calculation. Solving this least-squares calculation is equivalent to making adjustments
to both the camera pose ξ and the road signs y, which is also known as BA. The point
cloud mapping thread converts the coordinates of all pixels with a depth value greater
than 0.01 on the key frame to 3D coordinates using the information of the corresponding
depth value, camera pose and camera internal parameter matrix. The transformation can
be divided into four steps:

(1) World coordinates to camera coordinates

→
PC =

 XC
YC
ZC

 = [R t]


XW
YW
ZW
1

 (11)

(2) Camera coordinates to the normalized coordinates PC

PC = [XC/ZC, YC/ZC, 1]T (12)

(3) The points in the normalized plane are distorted, and the distortion parameter is

D = (k1, k2, k3, p1, p2) (13)

(4) Normalized coordinates to pixel coordinates

Puv =

 u
v
1

 =

 fx 0 u0 0
0 fy v0 0
0 0 1 0

PC (14)

The total conversion formula is

 u
v
1

 =
1

ZC

 fx 0 u0 0
0 fy v0 0
0 0 1 0

[R t
→
0 1

]
XW
Y W
ZW
1

 (15)

where fx, fy, u0, v0 represent the internal parameters of the camera; R represents the ro-
tation matrix; t represents the translation matrix; ZC represents the depth value; (u, v)
represent the pixel coordinates; (XW , YW , ZW) represent the corresponding world coor-
dinates. (XC, YC, ZC) represent the corresponding camera coordinates. The point cloud
mapping thread can generate a dense point cloud of the environment using the key frame
according to the transformation relationship between the world coordinate system, the
camera coordinate system and the pixel coordinate system. The key frame is representative
of a series of local ordinary frames and is responsible for recording local information. The
mapping method based on the key frame can retain most of the mapping information,
which compensates for the shortage of carrying too little information in the sparse map, and
it can also avoid the problems of large amount of calculation and information redundancy
caused by calculating each image.

3.3. Semantic Mapping Based on Semantic SLAM

The contents of Sections 3.1 and 3.2 can be combined to build object-oriented semantic
maps. The frame diagram of the object-oriented semantic mapping system is shown in
Figure 2.

The specific steps of the system can be divided into three steps. The first step is the
extraction of semantic information carried out by Mask R-CNN and Deepsort. The input
RGB images are detected and segmented by Mask R-CNN, and the detected results are

Sensors 2022, 22, 7576 8 of 27

put into the Deepsort as observation data, including the box, class, mask and score of each
object. Deepsort tracks each target and assigns an ID to each tracking target. The 2D pixel
coordinates of each object on each image are recorded in txt files. These txt files contain
information such as the timestamp, class names, tracked ID and the pixel coordinates
corresponding to each ID and are put into ORB-SLAM2.

Sensors 2022, 22, 7576 8 of 29

0

0

 0 0

= 0 0

1 0 0 1 0

x

uv y C

f uu

P v f v P

  
  

=   
     

 (14)

The total conversion formula is

0

0

 0 0
 1

0 0
0 1

1 0 0 1 0
 1

W

x

W

y

C W

X
f uu

R t Y
v f v

Z Z

 
    

     =              
 

(15)

where
0 0, , ,x yf f u v represent the internal parameters of the camera; R represents the

rotation matrix; t represents the translation matrix;
CZ represents the depth value;

(,)u v represent the pixel coordinates; (, ,)W W WX Y Z represent the corresponding world

coordinates. (, ,)C C CX Y Z represent the corresponding camera coordinates. The point

cloud mapping thread can generate a dense point cloud of the environment using the key

frame according to the transformation relationship between the world coordinate system,

the camera coordinate system and the pixel coordinate system. The key frame is repre-

sentative of a series of local ordinary frames and is responsible for recording local infor-

mation. The mapping method based on the key frame can retain most of the mapping

information, which compensates for the shortage of carrying too little information in the

sparse map, and it can also avoid the problems of large amount of calculation and infor-

mation redundancy caused by calculating each image.

3.3. Semantic Mapping Based on Semantic SLAM

The contents of Sections 3.1 and 3.2 can be combined to build object-oriented seman-

tic maps. The frame diagram of the object-oriented semantic mapping system is shown in

Figure 2.

Semantic label,tracked ID,pixel

coordinates of each object
Camera pose

Depth images

Mask R-CNN

R 1

0 1
uv W

C

t
P K P

Z

 
=  

 

RGB images

Depth value

Pixel value

Local pointcloud of each

object

ORB-SLAM2

Detect results

Deepsort

Target tracking

Pointcloudmapping Tracking

ORB match

All point cloud of the environment

Global object-oriented semantic map

All pixel coordinates of

image(depth value > 0.01)

All pixel coordinates of each

object(depth value > 0.01)

Global pointcloud of each object

Same label and ID are

merged

 point cloud centroid of each object

 pcd files of each object

Same label, different ID and

small distance are merged

Centroid match

Figure 2. The frame diagram of the object-oriented semantic mapping system. Figure 2. The frame diagram of the object-oriented semantic mapping system.

The second step is the construction of a semantic map using the extracted semantic
information and ORB-SLAM2. When the ORB-SLAM2 system receives a key frame, the
pixel coordinates in the corresponding txt files are converted by the point cloud mapping
thread to 3D coordinates with semantic colors in the camera coordinate system, and the
other pixel coordinates in the key frame are transformed into 3D coordinates with the
original color. The map obtained in this way is a local semantic map that can be converted
to a point cloud map in the world coordinate system based on the current camera pose. In
order not to affect the running speed of SLAM, the RGB images, depth maps, local semantic
maps and camera poses corresponding to key frames are stored in separate containers, and
there is a separate calculation process of traversing information and building maps. After
filtering, all local maps are transformed into point cloud maps in the world coordinate
system according to the transformation matrix. Then, these maps are fused into a global
semantic map.

The third step is the reconstruction of the target object. In order to operate and
maintain each object in the map, we need to know the location of each object. A possible
method is to convert the coordinates of each object extracted in the first step into a 3D point
cloud and subsequently fuse the point clouds with the same ID at different moments to
construct a point cloud model of the target object. An obvious problem, however, is that
objects with different IDs may belong to the same object because the ID may change during
the process of target tracking. To collect point cloud information from multiple angles of an
object to reconstruct the object, the point cloud of the same object with different IDs needs
to be fused according to the theory of multi-view geometry. In this paper, we calculate the
centroids of the point clouds and calculate the Euclidean distance between the centroids of

Sensors 2022, 22, 7576 9 of 27

the point clouds; then, the two point clouds are considered as the same point clouds if the
distance of the two centroids is less than 0.1 m. The calculation formulas are as follows.

xc, yc, zc =
n

∑
i=1

xi,
n

∑
i=1

yi,
n

∑
i=1

zi (16)

d12 =

√
(x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2 (17)

where (xc, yc, zc) is the centroid of the point cloud; (xi, yi, zi) is the 3D coordinate of the ith
point. n represents the number of points in the point cloud.d12 represents the Euclidean
distance between two centroids.x1, y1, z1 and x2, y2, z2 represent the 3D coordinates of the
two centroids. There will be outlier points in the actual calculation process. For example,
the boundary information extracted by semantic segmentation is not perfect and contains
some points that do not belong to the object, which are converted into 3D points with a
large distance from the 3D points of the object and should be eliminated; otherwise, the
calculated centroid is inaccurate. In this paper, the point clouds are filtered by using the
filtering method of rejecting outlier points. The general idea is as follows:

(1) For each point in the point cloud, we calculate the average distance d from it to all the
points in its K-neighborhood.

(2) The distances calculated above are assumed to obey a Gaussian distribution. The
corresponding points with distance values outside the standard range (defined by
the mean and variance of the sample) are defined as outliers and should be removed
from the datasets.

The threshold for the outlier judgment is calculated as

t = m + k ∗ s (18)

where t is the judgement threshold, m represents the mean value of the distance sample,
s represents the standard deviation of the distance sample. k represents the parameter used
to adjust the size of the threshold. The smaller the k, the smaller the threshold and the more
obvious the filtering effect. However, this does not mean that the smaller the k, the better
the filtering effect. When k decreases, the boundary points of the objects will be filtered out,
which is not the desired result. As the local maps of the objects are fused, a large number
of duplicate or very close points will be added to the point cloud, which will eventually
result in a very dense point cloud and take up a lot of memory space. Too dense point
clouds are not meaningful for object reconstruction and need to be filtered. In this paper,
the point clouds are filtered by using the voxel filtering method. The core idea is to divide
the point cloud into multiple voxels (three-dimensional cubes) and use the points nearest
the center of the voxel to represent all the point clouds within the voxel. This filtering
method allows for a significant reduction in the number of 3D points within the point cloud
while preserving the shape characteristics of the point cloud. In addition, the instance
segmentation algorithm has a misdetection in the process of detection because the features
of the same object from different angles are not the same. For example, in the detection
process, teddy bears are sometimes detected as people, and mouses are sometimes detected
as cups. To solve this problem, we consider that the object can be correctly detected when
its corresponding ID appears at least 3 times, and we consider this object to be an object
that needs to be reconstructed. The point clouds of the correctly detected objects are saved,
and whenever the objects carrying the same ID or with a distance of less than 0.1 m from
the centroids of the existing point clouds reappear, the newly transformed point clouds are
added to the corresponding existing point clouds. Finally, we can obtain the point cloud
models of all objects. The position of an object in a three-dimensional space is represented
by the centroid of the corresponding point cloud.

Sensors 2022, 22, 7576 10 of 27

3.4. Camera Pose Optimization Based on Semantic SLAM

In addition to using geometric features, our approach uses detected semantic objects
as landmarks and tracks and matches objects in different images, which elevates the
data association problem in SLAM from the traditional pixel level to the object level and
provides object constraints for camera pose estimation, thus optimizing the camera pose.
After obtaining the pixel coordinates of the object, the pixel coordinates are transformed
into 3D coordinates under the camera coordinate system by the camera internal reference,
and thus, the 3D point cloud of the object is obtained. The centroid of the object’s point
cloud is used to represent the object’s position in the 3D space. In Section 3.1, we use
the target tracking algorithm to establish data association between different images and
assign tracking IDs to the objects, so that objects carrying the same ID in different images
are considered as the same object and are used for object matching. Our approach uses
the point cloud centroid of an object to represent its position in a three-dimensional space
and is used for object matching. Compared with feature matching, object matching is
less influenced by the environment and has better robustness. The 3D to 3D method of
calculating the poses is the ICP algorithm. The goal remains to calculate the camera pose x.
The camera pose can also be expressed using the Lie algebra ξ. Suppose there are a set of
well-matched 3D point cloud centroids, which are as follows:

P = {p1, p2 · · · , pn}, P′ =
{

p′1, p′2 · · · , p′n
}

(19)

When expressing the camera pose in terms of the Lie algebra ξ, the objective function
can be written as follows:

f (ξ) =
1
2

n

∑
i=1
||(pi − exp(ξ∧)pi

′)||22 (20)

where pi, pi
′ represent a pair of centroids matching the 3D coordinates; exp(ξ∧) represents

the left multiplication perturbation model of the Lie algebra. n signifies that there are n
pairs of matching points. The goal is to find the ξ that minimizes f (ξ). Object matching
can provide more stable observation data. Correct centroid matching can add constraints
to the pose estimation and optimize the camera pose, while incorrect centroid matching
can do the opposite, so more correct centroid matching is needed for pose optimization.
This paper proposes a method to calculate the probability that two point clouds are point
clouds of the same object, which is used to select the correct centroid matching.

Suppose there are two sets of point clouds A, B; first, transform the two point clouds
into the same coordinate system by the estimated transformation matrix of the two images
and build A as an octree; then, iterate through all points in B and query whether this point
exists in the corresponding voxel of A (i.e., whether the point clouds of A and B exist in
the same voxel); if it does exist, the point is the overlapping point cloud of B. The above
method can obtain the overlapping point clouds in A and B. The degree of overlap of the
two point clouds can be expressed as the following equation.

M =
AB

A + B−AB
(21)

where AB represents the overlap of point cloud A and point cloud B; M represents the
degree of overlap. There are several ways to evaluate whether A and B are point clouds of
the same object.

(1) Both have the same ID.
(2) The distance between the two centroids in the same coordinate system is less than

0.1 m.
(3) The degree of overlap between the two, M, is greater than 0.8.

In practice, although the target tracking algorithm provides a priori information for
object matching, it still has limitations. Since the IDs will switch during target tracking,

Sensors 2022, 22, 7576 11 of 27

objects with different IDs may belong to the same object. Likewise, objects with the same
ID may not be the same object due to the matching error problem. Moreover, two point
clouds with small centroid distance or high degree of overlap do not necessarily belong to
the same object. Therefore, it is necessary to consider the above three conditions together.
The formula to determine whether two point clouds belong to the same object is as follows.

P = w(PID, D, M)T (22)

where w represents the weight vector. PID represents whether two objects have the same
ID, which equals 1 if they are the same and 0 if they are different. D represents the
distance between the two centroids. M represents the degree of overlap of two point clouds.
P represents the probability that two point clouds belong to the same object. The larger the
P, the higher the probability that two point clouds belong to the same object. We choose a
probability threshold K. When P > K, this indicates that the two point clouds belong to the
same object. The centroids of the two matching point clouds are added to the calculation of
pose estimation to optimize the camera pose.

4. Experiments and Analysis

All the experiments in this paper are completed under the Ubuntu20.04 system. The
semantic information extraction part adopts Mask R-CNN and Deepsort based on the deep-
learning framework of keras-2.1.5 and tensorflow_gpu-1.13.2, completed by python. The
semantic mapping part adopts the ORB-SLAM2 system based on opencv-3.4.16, pcl-1.9.0,
pangolin-0.6, eigen-3.3.8, vtk-7.1.1 and other dependency libraries, completed by C++.
The computing power of the computer is 5.2. The experiments use cuda-10.0 and cudnn-
7.4.1.5 for gpu acceleration, opencv for image data feature extraction and matching, pcl for
mapping, point cloud segmentation, point cloud fusion, point cloud storage, pangolin for
visual interface. Eigen provides a large number of linear algebras of matrices, matrices,
vector operation functions, etc. G2o is a graph optimization solver, and the DBoW3 is used
for camera relocalization and loop detection in the visual SLAM. The computer parameters
of the experiments are shown in Table 1.

Table 1. The computer parameters of the experiments.

Name Model Remarks

Operating System Ubuntu 20.04 /
Graphic Processing Unit (GPU) NVIDIA Quadro M2000 4G
Central Processing Unit (CPU) Intel® Xeon(R) CPU E5-1620 v4 3.5 GHz * 8

Random Access Memory (RAM) DDR4 32G
Hard Disk SSD256G + HDD 1000G Samsung

The semantic mapping algorithm in this paper is applicable to indoor office scenes.
In all SLAM datasets, the TUM dataset is a classic indoor SLAM dataset, including the
static scene, dynamic scene, object reconstruction scene and other scenes [66]. This paper
conducts experiments and tests on six datasets in TUM using the semantic mapping
algorithm, where, some images in the freiburg2_dishes datasets are used for labeling and
training to generate the self-training weight, which is used to predict and generate the mask
and label of the objects. Meanwhile, the other five datasets use the coco weight trained
in advance to predict on the images. The task of our method is to optimize the camera
pose, construct object-oriented semantic maps and reconstruct the multi-objective objects
detected by the instance segmentation algorithm in the indoor scene.

4.1. Experiments on Self-Training Weight

The RGBD datasets of freiburg2_dishes in TUM are selected as the datasets of the
experiments. The datasets contain 3007 color images and 3005 depth images. The main
detection objects are three types of tableware in the image, including two bowls, one cup

Sensors 2022, 22, 7576 12 of 27

and one plate. The detection task is to complete the instance segmentation of four objects
in the images, generate the detection box, semantic label and mask of each object, and
obtain the pixel coordinates of the four objects according to the corresponding mask. In
total, 750 images are selected from freiburg2_dishes for annotation to generate json files,
which will be converted to voc format and put into Mask R-CNN for training. The specific
parameters for training in Mask R-CNN are shown in Table 2.

Table 2. The specific parameters for training in Mask R-CNN.

Parameters Quantity

backbone Resnet101
Epoch 50

Number of pictures 750
Training ratio 0.8

Validation ratio 0.1
Test ratio 0.1
Bach size 1

Training time(s/epoch) 2917
class_names bowl, plate, cup

In total, 750 images are selected for annotation and training in a dataset containing
3000 images. It is now common practice to divide the dataset into a training set, a validation
set and a test set. Empirically, the training ratio is 0.8, the validation ratio is 0.1, and the test
ratio is 0.1. In addition, the model terminates the experiment early if there is no decrease
in validation loss for five consecutive epochs during training. The training set is used to
train the parameters of the model, and the test set is used to evaluate the goodness of the
model. The validation set is used to validate the model training effect in the training phase
and is used to select the hyperparameters. Resnet101 is selected as the backbone of the
model, and this network is used as the backbone in many instance segmentation networks
due to its performance advantages, such as Mask R-CNN [36], Cascade Mask R-CNN [35],
etc. The epoch and Bach size are set according to the performance of the computer. The
training time for each epoch in the training is 2917 s. Overall, the parameters of our model
are chosen empirically or with reference to the work of others and are not necessarily the
best options. There is not a lot of difference in the overall performance and no major impact
on subsequent tasks.

To ensure the accuracy of the pixel coordinates of the extracted objects, the detection
performance of the Mask R-CNN needs to be verified. The mean average precision (mAP) is
selected as the evaluation indicator to evaluate the detection performance of Mask R-CNN.
The two important parameters of the instance segmentation network are precision and
recall, and the calculation formula of the two parameters is

precision =
TP

TP + FP
recall =

TP
TP + FN

(23)

where TP (true positives) signifies that the object is divided into positive samples and is
correct. TN (true negatives) signifies that the object is divided into negative samples and is
correct. FP (false positives) signifies that the object is divided into positive samples and is
incorrect. FN (false negatives) signifies that the object is divided into negative sample and
is incorrect. The average precision (AP) in fact refers to the area under the precision and
recall curve. The mAP refers to the mean value of the AP for all classes. The higher the
mAP, the better the detection performance of the network. The training results of Mask
R-CNN on freiburg2_dishes are shown in Figure 3.

It can be seen that the value loss basically converges when the epoch approaches 50.
The detection results of freiburg2_dishes using self-training weight are shown in Figure 4.

As shown in Figure 4, each object on the image has its own ID after the target tracking
algorithm is added to Mask R-CNN. After instance segmentation and target tracking, the
RGB images, depth images and the txt files with the pixel coordinates of each object on

Sensors 2022, 22, 7576 13 of 27

each key frame are input to the ORB-SLAM2 system to obtain the semantic map of the
environment and the dense point cloud model of each object. The results of dense mapping
and dense semantic mapping on freiburg2_dishes using self-training weight are shown in
Figure 5.

As shown in Figure 5, the algorithm works well for objects with obvious features, such
as a bowl and a plate, but not for objects with no obvious features, such as a cup. The
reason is that the measured depth of the edge of the object is usually inaccurate, and the
positioning of orbslam2 also has errors, and the mask obtained by Mask R-CNN is not
perfect, which causes the point cloud of each object to be not fine enough.

Sensors 2022, 22, 7576 14 of 29

Figure 3. The training results of Mask R-CNN on freiburg2_dishes. The left image is the value loss

diagram, and the right is the precision–recall diagram.

It can be seen that the value loss basically converges when the epoch approaches 50.

The detection results of freiburg2_dishes using self-training weight are shown in Figure

4.

Figure 4. The detection results of freiburg2_dishes using self-training weight. From left to right, the

first image is the original RGB image. The second is the detection result of Mask R-CNN. The third

is the detection result of Mask R-CNN with Deepsort.

As shown in Figure 4, each object on the image has its own ID after the target tracking

algorithm is added to Mask R-CNN. After instance segmentation and target tracking, the

RGB images, depth images and the txt files with the pixel coordinates of each object on

each key frame are input to the ORB-SLAM2 system to obtain the semantic map of the

environment and the dense point cloud model of each object. The results of dense map-

ping and dense semantic mapping on freiburg2_dishes using self-training weight are

shown in Figure 5.

Figure 3. The training results of Mask R-CNN on freiburg2_dishes. The left image is the value loss
diagram, and the right is the precision–recall diagram.

Sensors 2022, 22, 7576 14 of 29

Figure 3. The training results of Mask R-CNN on freiburg2_dishes. The left image is the value loss

diagram, and the right is the precision–recall diagram.

It can be seen that the value loss basically converges when the epoch approaches 50.

The detection results of freiburg2_dishes using self-training weight are shown in Figure

4.

Figure 4. The detection results of freiburg2_dishes using self-training weight. From left to right, the

first image is the original RGB image. The second is the detection result of Mask R-CNN. The third

is the detection result of Mask R-CNN with Deepsort.

As shown in Figure 4, each object on the image has its own ID after the target tracking

algorithm is added to Mask R-CNN. After instance segmentation and target tracking, the

RGB images, depth images and the txt files with the pixel coordinates of each object on

each key frame are input to the ORB-SLAM2 system to obtain the semantic map of the

environment and the dense point cloud model of each object. The results of dense map-

ping and dense semantic mapping on freiburg2_dishes using self-training weight are

shown in Figure 5.

Figure 4. The detection results of freiburg2_dishes using self-training weight. From left to right, the
first image is the original RGB image. The second is the detection result of Mask R-CNN. The third is
the detection result of Mask R-CNN with Deepsort.

Sensors 2022, 22, 7576 15 of 29

Green
(0,255,0) Bowl

Magenta1
(255,0,255) Cup

Blue
(0,0,255) Plate

(a) The color information corresponding to three categories of objects in semantic map

(b) The dense point cloud map (left) and the dense semantic point cloud map (right)

(c) The dense point cloud model of each object of freiburg2_dishes (bowl, bowl, cup, plate)

Figure 5. The results of semantic mapping of freiburg2_dishes using self-training weight. Figure (a)
is the color information corresponding to three categories of objects in semantic map. Fig-
ure (b) is the dense point cloud map (left) and the dense semantic point cloud map (right). Figure
(c) is the dense point cloud model of each object of freiburg2_dishes (bowl, bowl, cup, plate).

As shown in Figure 5, the algorithm works well for objects with obvious features,
such as a bowl and a plate, but not for objects with no obvious features, such as a cup. The
reason is that the measured depth of the edge of the object is usually inaccurate, and the
positioning of orbslam2 also has errors, and the mask obtained by Mask R-CNN is not
perfect, which causes the point cloud of each object to be not fine enough.

4.2. Experiments on Coco Weight
The experiments are conducted on five RGBD datasets in TUM using the coco weight,

including freiburg1_desk, freiburg1_room, freiburg2_desk, freiburg3_office, frei-
burg3_teddy. The mask_rcnn_coco.h5, which was already trained on the coco datasets, is
selected as the weight used for detection. Eight categories of objects in the coco datasets
are selected for detection in our method, including chair, cup, TV monitor, teddy bear,
bottle, book, keyboard and mouse. The detection task is to complete the instance segmen-
tation in each image and target tracking of the objects in an image sequence and record
the pixel coordinates of each object in the corresponding txt files. The results of target
tracking and instance segmentation on TUM datasets using the coco weight are shown in
Figure 6.

Figure 5. Cont.

Sensors 2022, 22, 7576 14 of 27

Sensors 2022, 22, 7576 15 of 29

Green
(0,255,0) Bowl

Magenta1
(255,0,255) Cup

Blue
(0,0,255) Plate

(a) The color information corresponding to three categories of objects in semantic map

(b) The dense point cloud map (left) and the dense semantic point cloud map (right)

(c) The dense point cloud model of each object of freiburg2_dishes (bowl, bowl, cup, plate)

Figure 5. The results of semantic mapping of freiburg2_dishes using self-training weight. Figure (a)
is the color information corresponding to three categories of objects in semantic map. Fig-
ure (b) is the dense point cloud map (left) and the dense semantic point cloud map (right). Figure
(c) is the dense point cloud model of each object of freiburg2_dishes (bowl, bowl, cup, plate).

As shown in Figure 5, the algorithm works well for objects with obvious features,
such as a bowl and a plate, but not for objects with no obvious features, such as a cup. The
reason is that the measured depth of the edge of the object is usually inaccurate, and the
positioning of orbslam2 also has errors, and the mask obtained by Mask R-CNN is not
perfect, which causes the point cloud of each object to be not fine enough.

4.2. Experiments on Coco Weight
The experiments are conducted on five RGBD datasets in TUM using the coco weight,

including freiburg1_desk, freiburg1_room, freiburg2_desk, freiburg3_office, frei-
burg3_teddy. The mask_rcnn_coco.h5, which was already trained on the coco datasets, is
selected as the weight used for detection. Eight categories of objects in the coco datasets
are selected for detection in our method, including chair, cup, TV monitor, teddy bear,
bottle, book, keyboard and mouse. The detection task is to complete the instance segmen-
tation in each image and target tracking of the objects in an image sequence and record
the pixel coordinates of each object in the corresponding txt files. The results of target
tracking and instance segmentation on TUM datasets using the coco weight are shown in
Figure 6.

Sensors 2022, 22, 7576 15 of 29

Green
(0,255,0) Bowl

Magenta1
(255,0,255) Cup

Blue
(0,0,255) Plate

(a) The color information corresponding to three categories of objects in semantic map

(b) The dense point cloud map (left) and the dense semantic point cloud map (right)

(c) The dense point cloud model of each object of freiburg2_dishes (bowl, bowl, cup, plate)

Figure 5. The results of semantic mapping of freiburg2_dishes using self-training weight. Figure (a)
is the color information corresponding to three categories of objects in semantic map. Fig-
ure (b) is the dense point cloud map (left) and the dense semantic point cloud map (right). Figure
(c) is the dense point cloud model of each object of freiburg2_dishes (bowl, bowl, cup, plate).

As shown in Figure 5, the algorithm works well for objects with obvious features,
such as a bowl and a plate, but not for objects with no obvious features, such as a cup. The
reason is that the measured depth of the edge of the object is usually inaccurate, and the
positioning of orbslam2 also has errors, and the mask obtained by Mask R-CNN is not
perfect, which causes the point cloud of each object to be not fine enough.

4.2. Experiments on Coco Weight
The experiments are conducted on five RGBD datasets in TUM using the coco weight,

including freiburg1_desk, freiburg1_room, freiburg2_desk, freiburg3_office, frei-
burg3_teddy. The mask_rcnn_coco.h5, which was already trained on the coco datasets, is
selected as the weight used for detection. Eight categories of objects in the coco datasets
are selected for detection in our method, including chair, cup, TV monitor, teddy bear,
bottle, book, keyboard and mouse. The detection task is to complete the instance segmen-
tation in each image and target tracking of the objects in an image sequence and record
the pixel coordinates of each object in the corresponding txt files. The results of target
tracking and instance segmentation on TUM datasets using the coco weight are shown in
Figure 6.

Figure 5. The results of semantic mapping of freiburg2_dishes using self-training weight. Figure (a) is
the color information corresponding to three categories of objects in semantic map. Figure (b) is the
dense point cloud map (left) and the dense semantic point cloud map (right). Figure (c) is the dense
point cloud model of each object of freiburg2_dishes (bowl, bowl, cup, plate).

4.2. Experiments on Coco Weight

The experiments are conducted on five RGBD datasets in TUM using the coco weight,
including freiburg1_desk, freiburg1_room, freiburg2_desk, freiburg3_office, freiburg3_teddy.
The mask_rcnn_coco.h5, which was already trained on the coco datasets, is selected as the
weight used for detection. Eight categories of objects in the coco datasets are selected for
detection in our method, including chair, cup, TV monitor, teddy bear, bottle, book, keyboard
and mouse. The detection task is to complete the instance segmentation in each image and
target tracking of the objects in an image sequence and record the pixel coordinates of each
object in the corresponding txt files. The results of target tracking and instance segmentation
on TUM datasets using the coco weight are shown in Figure 6.

As shown in Figure 6, the detection result of Mask R-CNN includes the semantic
label, score, detection box and mask. The detection result of Mask R-CNN with Deepsort
includes the semantic label, score, detection box, mask and tracked ID. Multiple objects
in the image are tracked to establish the data association between different images. It can
be seen from (a) and (b) that only using Mask R-CNN for detection may result in partial
missed detection, such as the book with ID 13 in (a) and the book with ID 49, the cup with
ID 59 in (d). Mask R-CNN with Deepsort can predict the state of the system in the next
frame according to the detection results of Mask R-CNN and the motion model of the
system. Therefore, there will be less missed detection in the converged system, which will
make the point cloud model of the object more complete in the subsequent point cloud
mapping. Moreover, instance segmentation will produce some wrong results. For example,
windows are detected as TV monitors, cups are detected as mice, which eventually leads to
some errors in semantic mapping. The target tracking algorithm can reduce wrong results
through data associations.

The above semantic information extracted by instance segmentation and target track-
ing are input to the ORB-SLAM2 system along with the RGB images and depth images to
obtain the dense point cloud map, the dense semantic point cloud map of the environment
and the dense point cloud model of each object. The results of dense point cloud mapping

Sensors 2022, 22, 7576 15 of 27

and dense semantic point cloud mapping of the five datasets in TUM using the coco weight
are shown in Figure 7.

Sensors 2022, 22, 7576 16 of 29

 (a) The detection results of the back of freiburg3_office

 (b) The detection results of the front of freiburg3_office

 (c) The detection results of freiburg3_teddy

 (d) The detection results of freiburg2_desk

 (e) The detection results of freiburg1_desk

Sensors 2022, 22, 7576 16 of 29

 (a) The detection results of the back of freiburg3_office

 (b) The detection results of the front of freiburg3_office

 (c) The detection results of freiburg3_teddy

 (d) The detection results of freiburg2_desk

 (e) The detection results of freiburg1_desk

Sensors 2022, 22, 7576 16 of 29

 (a) The detection results of the back of freiburg3_office

 (b) The detection results of the front of freiburg3_office

 (c) The detection results of freiburg3_teddy

 (d) The detection results of freiburg2_desk

 (e) The detection results of freiburg1_desk

Sensors 2022, 22, 7576 16 of 29

 (a) The detection results of the back of freiburg3_office

 (b) The detection results of the front of freiburg3_office

 (c) The detection results of freiburg3_teddy

 (d) The detection results of freiburg2_desk

 (e) The detection results of freiburg1_desk

Figure 6. Cont.

Sensors 2022, 22, 7576 16 of 27
Sensors 2022, 22, 7576 17 of 29

 (f) The detection results of freiburg1_room

Figure 6. The results of target tracking and instance segmentation on TUM datasets using coco
weight. From left to right, the first figure is the original RGB image. The second is the detection
result of Mask R-CNN. The third is the detection result of Mask R-CNN with Deepsort. Figure (a–
f) are the detection results of the back of freiburg3_office, the front of freiburg3_office, frei-
burg3_teddy, freiburg2_desk, freiburg1_desk and freiburg1_room respectively.

As shown in Figure 6, the detection result of Mask R-CNN includes the semantic
label, score, detection box and mask. The detection result of Mask R-CNN with Deepsort
includes the semantic label, score, detection box, mask and tracked ID. Multiple objects in
the image are tracked to establish the data association between different images. It can be
seen from (a) and (b) that only using Mask R-CNN for detection may result in partial
missed detection, such as the book with ID 13 in (a) and the book with ID 49, the cup with
ID 59 in (d). Mask R-CNN with Deepsort can predict the state of the system in the next
frame according to the detection results of Mask R-CNN and the motion model of the
system. Therefore, there will be less missed detection in the converged system, which will
make the point cloud model of the object more complete in the subsequent point cloud
mapping. Moreover, instance segmentation will produce some wrong results. For exam-
ple, windows are detected as TV monitors, cups are detected as mice, which eventually
leads to some errors in semantic mapping. The target tracking algorithm can reduce
wrong results through data associations.

The above semantic information extracted by instance segmentation and target track-
ing are input to the ORB-SLAM2 system along with the RGB images and depth images to
obtain the dense point cloud map, the dense semantic point cloud map of the environment
and the dense point cloud model of each object. The results of dense point cloud mapping
and dense semantic point cloud mapping of the five datasets in TUM using the coco
weight are shown in Figure 7.

Blue
(0,0,255) Keyboard

LightGreen
(144,238,144) Bottle

Green
(0,255,0) Tvmonitor

Red
(255,0,0) Chair

Magenta1
(255,0,255) Cup

DeepPink
(255,20,147) Mouse

Cyan
(0,255,255) Book

Yellow
(255,255,0) Teddybear

(a) The color information corresponding to eight categories of objects in semantic map

Figure 6. The results of target tracking and instance segmentation on TUM datasets using coco
weight. From left to right, the first figure is the original RGB image. The second is the detection result
of Mask R-CNN. The third is the detection result of Mask R-CNN with Deepsort. Figure (a–f) are
the detection results of the back of freiburg3_office, the front of freiburg3_office, freiburg3_teddy,
freiburg2_desk, freiburg1_desk and freiburg1_room respectively.

Sensors 2022, 22, 7576 17 of 29

 (f) The detection results of freiburg1_room

Figure 6. The results of target tracking and instance segmentation on TUM datasets using coco

weight. From left to right, the first figure is the original RGB image. The second is the detection

result of Mask R-CNN. The third is the detection result of Mask R-CNN with Deepsort. Figure (a–

f) are the detection results of the back of freiburg3_office, the front of freiburg3_office, frei-

burg3_teddy, freiburg2_desk, freiburg1_desk and freiburg1_room respectively.

As shown in Figure 6, the detection result of Mask R-CNN includes the semantic

label, score, detection box and mask. The detection result of Mask R-CNN with Deepsort

includes the semantic label, score, detection box, mask and tracked ID. Multiple objects in

the image are tracked to establish the data association between different images. It can be

seen from (a) and (b) that only using Mask R-CNN for detection may result in partial

missed detection, such as the book with ID 13 in (a) and the book with ID 49, the cup with

ID 59 in (d). Mask R-CNN with Deepsort can predict the state of the system in the next

frame according to the detection results of Mask R-CNN and the motion model of the

system. Therefore, there will be less missed detection in the converged system, which will

make the point cloud model of the object more complete in the subsequent point cloud

mapping. Moreover, instance segmentation will produce some wrong results. For exam-

ple, windows are detected as TV monitors, cups are detected as mice, which eventually

leads to some errors in semantic mapping. The target tracking algorithm can reduce

wrong results through data associations.

The above semantic information extracted by instance segmentation and target track-

ing are input to the ORB-SLAM2 system along with the RGB images and depth images to

obtain the dense point cloud map, the dense semantic point cloud map of the environment

and the dense point cloud model of each object. The results of dense point cloud mapping

and dense semantic point cloud mapping of the five datasets in TUM using the coco

weight are shown in Figure 7.

Blue

(0,0,255)
Keyboard

LightGreen

(144,238,144)
Bottle

Green

(0,255,0)
Tvmonitor

Red

(255,0,0)
Chair

Magenta1

(255,0,255)
Cup

DeepPink

(255,20,147)
Mouse

Cyan

(0,255,255)
Book

Yellow

(255,255,0)
Teddybear

(a) The color information corresponding to eight categories of objects in semantic map

Sensors 2022, 22, 7576 18 of 29

(b) The front of the dense semantic point cloud map of freiburg3_office

(c) The back of the dense semantic point cloud map of freiburg3_office

(d) The dense semantic point cloud map of freiburg3_teddy

(e) The dense semantic point cloud map of freiburg2_desk

Figure 7. Cont.

Sensors 2022, 22, 7576 17 of 27

Sensors 2022, 22, 7576 18 of 29

(b) The front of the dense semantic point cloud map of freiburg3_office

(c) The back of the dense semantic point cloud map of freiburg3_office

(d) The dense semantic point cloud map of freiburg3_teddy

(e) The dense semantic point cloud map of freiburg2_desk

Sensors 2022, 22, 7576 19 of 29

(f) The dense semantic point cloud map of freiburg1_desk

(g) The dense semantic point cloud map of freiburg1_room

Figure 7. The results of semantic mapping of five datasets in TUM using coco weight. Figure (a)
shows the color corresponding to the objects. Figures (b–g) show the dense point cloud map (left)
and the dense semantic point cloud map (right) of the 5 datasets.

As shown in Figure 7, the dense point cloud map is added as a comparison to make
the results of semantic mapping look clearer. There is a lot of noise in the boundary of the
object when it is converted to 3D point cloud due to the imperfect boundary segmentation
of the object in semantic segmentation, which can be mitigated by adjusting the parame-
ters of the outpoint filtering algorithm. It can be seen that the semantic maps do not change
in the overall scene but add colors to each target object to distinguish and facilitate scene
understanding. The object to be reconstructed is the object marked with a color. The dense
point cloud model of the eight categories of objects obtained by matching and fusion be-
tween point clouds is shown in Figure 8.

(a) chair

Figure 7. The results of semantic mapping of five datasets in TUM using coco weight. Figure (a) shows
the color corresponding to the objects. Figures (b–g) show the dense point cloud map (left) and the
dense semantic point cloud map (right) of the 5 datasets.

As shown in Figure 7, the dense point cloud map is added as a comparison to make
the results of semantic mapping look clearer. There is a lot of noise in the boundary of the
object when it is converted to 3D point cloud due to the imperfect boundary segmentation

Sensors 2022, 22, 7576 18 of 27

of the object in semantic segmentation, which can be mitigated by adjusting the parameters
of the outpoint filtering algorithm. It can be seen that the semantic maps do not change
in the overall scene but add colors to each target object to distinguish and facilitate scene
understanding. The object to be reconstructed is the object marked with a color. The
dense point cloud model of the eight categories of objects obtained by matching and fusion
between point clouds is shown in Figure 8.

Sensors 2022, 22, 7576 19 of 29

(f) The dense semantic point cloud map of freiburg1_desk

(g) The dense semantic point cloud map of freiburg1_room

Figure 7. The results of semantic mapping of five datasets in TUM using coco weight. Figure (a)

shows the color corresponding to the objects. Figures (b–g) show the dense point cloud map (left)

and the dense semantic point cloud map (right) of the 5 datasets.

As shown in Figure 7, the dense point cloud map is added as a comparison to make

the results of semantic mapping look clearer. There is a lot of noise in the boundary of the

object when it is converted to 3D point cloud due to the imperfect boundary segmentation

of the object in semantic segmentation, which can be mitigated by adjusting the parame-

ters of the outpoint filtering algorithm. It can be seen that the semantic maps do not change

in the overall scene but add colors to each target object to distinguish and facilitate scene

understanding. The object to be reconstructed is the object marked with a color. The dense

point cloud model of the eight categories of objects obtained by matching and fusion be-

tween point clouds is shown in Figure 8.

(a)

Sensors 2022, 22, 7576 20 of 29

(b) TV monitor

(c) keyboard

(d) bottle

(e) teddy bear

Figure 8. Cont.

Sensors 2022, 22, 7576 19 of 27

Sensors 2022, 22, 7576 20 of 29

(b) TV monitor

(c) keyboard

(d) bottle

(e) teddy bear

Sensors 2022, 22, 7576 21 of 29

(f) book

(g) cup

(h) mouse

Figure 8. The dense point cloud model of the eight categories of objects. Figure (a–h) are the point
clouds of the chair, TV monitor, keyboard, bottle, teddy bear, book, cup, mouse respectively.

As shown in Figures 7 and 8, the algorithm works well for objects with obvious fea-
tures, such as a TV monitor, book, teddy bear and keyboard, but not for objects with no
obvious features, such as a cup, bottle, mouse and chair. This is partly because the depth
data of the object edge in the depth map collected by the RGB-D camera are inaccurate.
Another reason is that there are errors in the camera pose estimated by ORB-SLAM2,
which leads to ghosting of the map after fusion, such as the bottle, keyboard and cup

Figure 8. Cont.

Sensors 2022, 22, 7576 20 of 27

Sensors 2022, 22, 7576 21 of 29

(f) book

(g) cup

(h) mouse

Figure 8. The dense point cloud model of the eight categories of objects. Figure (a–h) are the point
clouds of the chair, TV monitor, keyboard, bottle, teddy bear, book, cup, mouse respectively.

As shown in Figures 7 and 8, the algorithm works well for objects with obvious fea-
tures, such as a TV monitor, book, teddy bear and keyboard, but not for objects with no
obvious features, such as a cup, bottle, mouse and chair. This is partly because the depth
data of the object edge in the depth map collected by the RGB-D camera are inaccurate.
Another reason is that there are errors in the camera pose estimated by ORB-SLAM2,
which leads to ghosting of the map after fusion, such as the bottle, keyboard and cup

Figure 8. The dense point cloud model of the eight categories of objects. Figure (a–h) are the point
clouds of the chair, TV monitor, keyboard, bottle, teddy bear, book, cup, mouse respectively.

As shown in Figures 7 and 8, the algorithm works well for objects with obvious
features, such as a TV monitor, book, teddy bear and keyboard, but not for objects with no
obvious features, such as a cup, bottle, mouse and chair. This is partly because the depth
data of the object edge in the depth map collected by the RGB-D camera are inaccurate.
Another reason is that there are errors in the camera pose estimated by ORB-SLAM2, which
leads to ghosting of the map after fusion, such as the bottle, keyboard and cup shown in
Figure 8c,d,g. In addition, the mask obtained by Mask R-CNN is not perfect. In the process
of mapping, only when the camera rotates 360 degrees around the object can we obtain a
complete point cloud model of the object. Otherwise, the point cloud model will be missing
somewhere. For example, when we view the point cloud model from another angle, it
may be missing a piece. Adding a target tracking algorithm to the process of extracting
semantic information can provide a priori information for matching and fusing objects in
a 3D space, thus optimizing the camera poses and constructing globally consistent point
clouds of objects.

The centroid of the dense point cloud can be calculated after obtaining the point cloud
model of each object. There are two ways to evaluate the accuracy and effectiveness of the
algorithm. The first method is to compare the number of detected objects (the number of
final point cloud models, expressed by D) with the number of actual objects (the ground
truth value, expressed by GT) in the five datasets, and the results are shown in Table 3 (only
the above eight categories of objects are calculated).

Table 3. The number of detected objects and actual objects.

Datasets The Number of Detected Objects (D) The Number of Actual Objects (GT) Error

fr3_office 36 30 20.0%
fr3_teddy 1 1 0.0%
fr2_desk 18 16 12.5%
fr1_desk 16 15 6.7%
fr1_room 21 20 5.0%

The difference between D and GT can be used to express the accuracy of the algorithm,
and the formula of the difference can be expressed as

error =
abs(D− GT)

GT
× 100% (24)

The smaller the error, the more accurate the algorithm. It is worth mentioning that D is
always greater than GT because the IDs of objects always switch in target tracking, despite
the point cloud models with the same label and close distance being merged. As shown
in Table 3, the number of detected objects (D) is greater than or equal to the number of
actual objects in all datasets. This is because an object may correspond to multiple tracking

Sensors 2022, 22, 7576 21 of 27

IDs, or some detection areas that are not target objects are detected as objects. The more
objects in the environment, the greater the error of the algorithm. It can be seen from the
results of the error that our algorithm can segment the point cloud model of objects in the
environment with a high accuracy.

The second method is to compare the objects’ centroids computed by the mapping
algorithm with the ground truth of the objects’ centroids. The TUM datasets do not provide
the true position of each object but the ground truth pose, which is measured by an external
(very advanced) motion capture device. The ground truth pose can be regarded as a
standard answer to calculate the ground truth of the objects’ centroids in a 3D space. The
estimated camera pose takes the camera pose of the first frame as the origin of the world
coordinate system, and the ground truth camera pose takes a fixed point in space as the
origin of the world coordinate system. Therefore, the ground truth camera pose needs to
be converted to the estimated world coordinate system. The objects’ centroids calculated
by the estimated pose and the ground truth pose are shown in Table 4 (take fr3_office,
for example).

Table 4. The objects’ centroids calculated by the estimated pose and the ground truth.

Objects Tracked ID Method Centroids Error (m)

chair 6
estimated [0.585, 0.343, 2.32]

0.0237ground truth [0.591, 0.352, 2.34]

TV monitor 389
estimated [0.592, −0.713, 3]

0.00823ground truth [0.593, −0.705, 3]

keyboard 513
estimated [0.565, −0.614, 3.24]

0.0116ground truth [0.576, −0.612, 3.24]

bottle 3
estimated [−0.513, −0.78, 2.4]

0.00828ground truth [−0.511, −0.773, 2.4]

teddy bear 188
estimated [0.778, −0.966, 3.81]

0.0131ground truth [0.776, −0.953, 3.81]

book 11
estimated [−0.203, −0.0962, 2.28]

0.00997ground truth [−0.198, −0.0899, 2.29]

cup 41
estimated [−1.37, 0.143, 2.92]

0.0098ground truth [−1.37, 0.147, 2.93]

mouse 402
estimated [0.252, −0.701, 3.41]

0.00312ground truth [0.254, −0.7, 3.4]

The error represents the distance of the estimated centroid and the ground truth
centroid. The smaller the error, the higher the accuracy of the algorithm. It can be seen from
Table 4 that the average error of the position of the object calculated for the eight categories
of objects in the fr3_office dataset is 0.0109 m, which means that the positioning algorithm
has a high accuracy. It can be seen from the table that the larger the volume of the object,
the worse the positioning accuracy, which is consistent with our common sense. Moreover,
the higher the positioning accuracy of the algorithm, the more accurate the positioning of
the object. Fortunately, the positioning accuracy of orbslam2 is very high, and the absolute
pose error is 0.0094 m in the fr3_office dataset. In order to further verify the effectiveness of
the algorithm, the average positioning error of each dataset is calculated and is shown in
Table 5.

The average positioning error of objects refers to the distance of the objects’ three-
dimensional centroids calculated by using the estimated and true values of the camera
pose. The maximal average positioning error (m) of objects is 0.347 m and the minimal is
0.00375 m. Why can some objects have such large errors? The reason is that the observation
angles of each object in each picture are different. Similarly, the pose errors of each different
key frame are different, and each object with different angles will generate a point cloud.
Finally, when the point cloud is fused, some redundancy may occur, resulting in a certain
degree of offset of the object’s centroid. However, it can be seen in general that, from the

Sensors 2022, 22, 7576 22 of 27

above data, the algorithm has a high accuracy for small objects and a poor accuracy for
large objects. Overall, the system has a high positioning accuracy.

Table 5. The average positioning error (m) of objects in five datasets.

Objects fr3_Office fr3_Teddy fr2_Desk fr1_Room fr1_Desk

chair 0.0235 / 0.146 0.266 0.232
TV monitor 0.00927 / 0.266 0.347 0.0839
keyboard 0.0118 / 0.0908 0.347 0.123

bottle 0.0154 / 0.0557 0.0347 0.00387
teddy bear 0.0177 0.00186 0.133 0.189 /

book 0.00972 / 0.0238 0.161 0.00946
cup 0.0167 / 0.0199 0.0539 0.0366

mouse 0.00656 / 0.00375 0.0979 0.0846

If collision and path planning are not considered, other map information in the en-
vironment is redundant, except for the map information of objects. The number of point
clouds of each dataset is shown in Table 6. The number of point clouds of each dataset is
reduced by 45.3%, 59.8%, 57.6%, 61.5% and 54.3%, respectively, after segmenting the objects
from the environment, which effectively reduces the system memory usage and removes
the redundant information from the environment.

Table 6. The number of point clouds of five datasets.

Datasets Number of Original Point Clouds Number of Point Clouds with Objects Only Reduction

fr3_office 4,814,372 2,635,597 45.3%
fr3_teddy 8,451,663 3,395,009 59.8%
fr2_desk 3,090,597 1,195,625 57.6%
fr1_room 2,581,204 993,299 61.5%
fr1_desk 364,226 166,546 54.3%

4.3. Comparison with Existing Methods

Quantitative comparison. In the study of SLAM systems, the absolute trajectory error
(ATE) or relative pose error (RPE) are generally used to evaluate the merits of a SLAM
system, and both evaluation criteria revolve around the pose estimation results of SLAM
systems. In this paper, the absolute positional error is used to evaluate the performance
of SLAM systems. The following Table 7 shows the comparison of our method with the
existing methods.

Table 7. Comparison of the localization performance of our method with existing SLAM systems.
RMSE (m).

Sequence ORB-SLAM2 [41] Elastic-Fusion [43] DVO-SLAM [38] Fusion++ [40] Ours

fr3_office 0.0121 0.017 0.035 0.1082 0.0115
fr3_teddy 0.0225 0.048 0.046 0.1535 0.0259
fr2_desk 0.0095 0.071 0.017 0.1144 0.0086
fr1_room 0.0474 0.068 0.043 0.2356 0.0452
fr1_desk 0.0163 0.020 0.021 0.0499 0.0153

As can be seen from the above table, our method shows better performance in most
of the datasets. Compared with the ORB-SLAM2 system, our approach has an overall
performance improvement with the addition of semantic constraints. It is worth noting
that our system is not yet up to the real-time requirement, which requires further tight
integration of semantics and SLAM to further improve the performance of the system.

Functional comparison. There are no recognized reliable evaluation criteria for map
construction effects. Some classical semantic slam systems are selected for comparison

Sensors 2022, 22, 7576 23 of 27

with the proposed approach in this paper, mainly around the implemented functions. The
comparison results are shown in Table 8.

Table 8. Comparison of the function of our method with existing semantic SLAM systems.

Semantic SLAM
System Semantics

Scenario-
Oriented
Semantic

Maps

Object-
Oriented
Semantic

Maps

Semantic
Help SLAM
Positioning

Objects
Location

Objects
Reconstruction

SLAM++ [55]
√ √

Meaningful maps [58]
√ √

CNN-SLAM [54]
√ √

SemanticFusion [50]
√ √ √

MaskFusion [63]
√ √ √ √

Ours
√ √ √ √ √

Most of the current semantic SLAM systems focus on semantic mapping and semantic-
assisted localization while ignoring the individual entities in the scene. The method
proposed in this paper constructs an object-oriented semantic map of the scene while
completing the reconstruction and localization of multi-target objects and optimizing the
camera pose with semantic constraints, which has certain implications for the subsequent
development of semantic SLAM.

Specifically, a beautiful object-based semantic map is constructed by using prior
information in SLAM++, but the 3D model of the object needs to be known in advance,
and the real scene cannot be restored [55]. CNN-SLAM combines the depth map predicted
by CNN with the depth map estimated by monocular SLAM to obtain a more accurate
depth map and uses this to build a scenario-oriented semantic map, but the system is more
concerned with depth estimation than with semantic maps [54]. Sunderhauf combines
SSD with ORB-SLAM2 to construct object-based semantic maps, but the experiment only
includes four objects, and the mapping results perform well only for square objects, such
as monitors, books and keyboards [58]. SemanticFusion can construct a dense surfel
reconstruction from a video sequence but not to the level of a single object [50]. Mask-
Fusion combines Mask R-CNN with Elastic-fusion to construct a real-time, object-aware,
semantic and dynamic RGB-D SLAM system, which can reconstruct each object in the
environment [63]. However, two GPUs with very good performance are required to
accelerate in the actual running process in Mask-Fusion, and even so, the running speed
is still very slow, which is difficult to meet the real-time performance requirement, and
the map effect is poor. In our system, the process of extracting semantic information
is the process of pre-processing, and the main running tasks are optimizing the camera
pose, constructing semantic maps and reconstructing multi-target objects. In fact, eight
categories of objects are used for detection and semantic mapping using coco weights in
the experiments, and most objects in the actual scene can be reconstructed. In addition, our
system can construct the dense semantic point cloud map and output point cloud model of
each object to reconstruct each object with a high accuracy and small positioning error.

Overall, the method proposed in the paper has clear advantages. First, with the
introduction of semantic information, the camera poses of the traditional SLAM system
are optimized, which indicates that the robot is positioned more accurately in the scene.
Second, the introduced semantic information can convert the traditional point cloud map
into an object-oriented point cloud map, which allows the robot to interact with individuals
in the environment. For example, tasks such as asking the robot to pick up a book on a
table can be achieved because the map clearly shows the location of each object, and the
system has sufficient localization accuracy, except for individual errors. Again, our system
is able to output point cloud maps of each object in the environment, and these point
cloud maps can be used for subsequent 3D reconstruction tasks, such as using TSDF-based
surface reconstruction, which can result in beautiful object models. Of course, our proposed

Sensors 2022, 22, 7576 24 of 27

method also has some disadvantages. First, the system is currently not real time because it
contains a pre-processing step for instance segmentation, and the mask R-CNN is slow in
detection, although it has a high accuracy. In order to make the system run in real time,
both detection accuracy and detection speed must be considered. Second, when optimizing
the camera pose, we only track and match the center of the mass of the target point cloud
without using the full semantic information. If the full semantic information could be used,
the camera pose could be further optimized.

5. Conclusions

Inspired by image processing methods, such as deep-learning, target detection and
instance segmentation algorithms, we propose a method for constructing object-oriented
semantic maps that maintains individual objects as the key entities in the map, which
builds on SLAM, instance segmentation and target tracking. Experiments show that the
3D semantic point cloud map, which only contains objects, reduces the number of points
by about 50% compared with the dense point cloud map of the complete environment.
The average positioning error of the eight categories of objects in TUM datasets is very
small, which means that the positioning algorithm has a high accuracy. In the tests on
the five TUM datasets, the absolute positional error of the camera is also reduced with
the introduction of semantic constraints, and the positioning performance of the system is
improved. At the same time, our algorithm can segment the point cloud model of objects
in the environment with a high accuracy, which is of great practical importance in practical
engineering applications.

Unfortunately, there are some shortcomings in the methodology of this paper, which
need to be improved. Our method uses semantic information to improve the accuracy of
SLAM localization and complete semantic map building but does not currently meet the
real-time requirements, nor does it use data association to improve the accuracy of semantic
information extraction. Our future work will focus on the above two issues.

Author Contributions: Conceptualization, Y.S. and J.Y.; methodology, Y.S.; software, Y.L.; validation,
G.J., J.K. and B.C.; formal analysis, D.B.; investigation, J.Y.; resources, X.L.; data curation, J.H.;
writing—original draft preparation, J.H.; writing—review and editing, J.H.; visualization, Jun Hu;
supervision, J.Y.; project administration, Y.S.; funding acquisition, G.Z. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Huang, L.; Chen, C.; Yun, J.; Sun, Y.; Tian, J.; Hao, Z.; Yu, H.; Ma, H. Multi-scale Feature Fusion Convolutional Neural Network

for Indoor Small Target Detection. Front. Neurorob. 2022, 16, 881021. [CrossRef]
2. Huang, L.; Fu, Q.; He, M.; Jiang, D.; Hao, Z. Detection Algorithm of Safety Helmet Wearing Based on Deep Learning. Concurr.

Comput. Pract. Exp. 2021, 33, e6234. [CrossRef]
3. Jiang, D.; Zheng, Z.; Li, G.; Sun, Y.; Kong, J.; Jiang, G.; Xiong, H.; Tao, B.; Xu, S.; Yu, H.; et al. Gesture Recognition Based on

Binocular Vision. Clust. Comput. 2019, 22 (Suppl. 6), 13261–13271. [CrossRef]
4. Jiang, D.; Li, G.; Sun, Y.; Hu, J.; Yun, J.; Liu, Y. Manipulator Grabbing Position Detection with Information Fusion of Color Image

and Depth Image Using Deep Learning. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 10809–10822. [CrossRef]
5. Li, G.; Xiao, F.; Zhang, X.; Tao, B.; Jiang, G. An Inverse Kinematics Method for Robots after Geometric Parameters Compensation.

Mech. Mach. Theory 2022, 174, 104903. [CrossRef]
6. Sun, Y.; Zhao, Z.; Jiang, D.; Tong, X.; Tao, B.; Jiang, G.; Kong, J.; Yun, J.; Liu, Y.; Liu, X.; et al. Low-illumination Image Enhancement

Algorithm Based on Improved Multi-scale Retinex and ABC Algorithm Optimization. Front. Bioeng. Biotechnol. 2022, 10, 865820.
[CrossRef] [PubMed]

http://doi.org/10.3389/fnbot.2022.881021
http://doi.org/10.1002/cpe.6234
http://doi.org/10.1007/s10586-018-1844-5
http://doi.org/10.1007/s12652-020-02843-w
http://doi.org/10.1016/j.mechmachtheory.2022.104903
http://doi.org/10.3389/fbioe.2022.865820
http://www.ncbi.nlm.nih.gov/pubmed/35480971

Sensors 2022, 22, 7576 25 of 27

7. Bai, D.; Sun, Y.; Tao, B.; Tong, X.; Xu, M.; Jiang, G.; Chen, B.; Cao, Y.; Sun, N.; Li, Z. Improved Single Shot Multibox Detector
Target Detection Method Based on Deep Feature Fusion. Concurr. Comput. Pract. Exp. 2022, 34, e6614. [CrossRef]

8. Liu, X.; Jiang, D.; Tao, B.; Jiang, G.; Sun, Y.; Kong, J.; Tong, X.; Zhao, G.; Chen, B. Genetic Algorithm-based Trajectory Optimization
for Digital Twin robots. Front. Bioeng. Biotechnol. 2022, 9, 793782. [CrossRef] [PubMed]

9. Liu, Y.; Jiang, D.; Yun, J.; Sun, Y.; Li, C.; Jiang, G.; Kong, J.; Tao, B.; Fang, Z. Self-tuning Control of Manipulator Positioning Based
on Fuzzy PID and PSO Algorithm. Front. Bioeng. Biotechnol. 2022, 9, 817723. [CrossRef]

10. Liu, Y.; Xiao, F.; Tong, X.; Tao, B.; Xu, M.; Jiang, G.; Chen, B.; Cao, Y.; Sun, N. Manipulator Trajectory Planning Based on Work
Subspace Division. Concurr. Comput. Pract. Exp. 2022, 34, e6710. [CrossRef]

11. Liu, Y.; Li, C.; Jiang, D.; Chen, B.; Sun, N.; Cao, Y.; Tao, B.; Li, G. Wrist Angle Prediction Under Different Loads Based on GAELM
Neural Network and sEMG. Concurr. Comput. Pract. Exp. 2022, 34, e6574. [CrossRef]

12. Liu, Y.; Jiang, D.; Tao, B.; Qi, J.; Jiang, G.; Yun, J.; Huang, L.; Tong, X.; Chen, B.; Li, G. Grasping Posture of Humanoid Manipulator
Based on Target Shape Analysis and Force Closure. Alex. Eng. J. 2022, 61, 3959–3969. [CrossRef]

13. Liu, Y.; Jiang, D.; Xu, C.; Sun, Y.; Jiang, G.; Tao, B.; Tong, X.; Xu, M.; Li, G.; Yun, J. Deep Learning Based 3D Target Detection for
Indoor Scenes. Appl. Intell. 2022, 1–14. [CrossRef]

14. Wu, X.; Jiang, D.; Yun, J.; Liu, X.; Sun, Y.; Tao, B.; Tong, X.; Xu, M.; Kong, J.; Liu, Y.; et al. Attitude Stabilization Control of
Autonomous Underwater Vehicle Based on Decoupling Algorithm and PSO-ADRC. Front. Bioeng. Biotechnol. 2022, 10, 843020.
[CrossRef] [PubMed]

15. Zhao, G.; Jiang, D.; Liu, X.; Tong, X.; Sun, Y.; Tao, B.; Kong, J.; Yun, J.; Liu, Y.; Fang, Z. A Tandem Robotic Arm Inverse Kinematic
Solution Based on an Improved Particle Swarm Algorithm. Front. Bioeng. Biotechnol. 2022, 10, 832829. [CrossRef] [PubMed]

16. Zhang, X.; Xiao, F.; Tong, X.; Yun, J.; Liu, Y.; Sun, Y.; Tao, B.; Kong, J.; Xu, M.; Chen, B. Time Optimal Trajectory Planing Based on
Improved Sparrow Search Algorithm. Front. Bioeng. Biotechnol. 2022, 10, 852408. [CrossRef] [PubMed]

17. Yun, J.; Jiang, D.; Liu, Y.; Sun, Y.; Tao, B.; Kong, J.; Tian, J.; Tong, X.; Xu, M.; Fang, Z. Real-time Target Detection Method Based on
Lightweight Convolutional Neural Network. Front. Bioeng. Biotechnol. 2022, 10, 861286. [CrossRef]

18. Yun, J.; Jiang, D.; Sun, Y.; Huang, L.; Tao, B.; Jiang, G.; Kong, J.; Weng, Y.; Li, G.; Fang, Z. Grasping Pose Detection for Loose
Stacked Object Based on Convolutional Neural Network with Multiple Self-Powered Sensors Information. IEEE Sens. J. 2022.
[CrossRef]

19. Feng, Q.; Huang, L.; Sun, Y.; Tong, X.; Liu, X.; Xie, Y.; Li, J.; Fan, H.; Chen, B. Substation Instrumentation Target Detection Based
on Multi-scale Feature Fusion. Concurr. Comput. Pract. Experience 2022, e7177. [CrossRef]

20. Wang, S.; Huang, L.; Jiang, D.; Sun, Y.; Jiang, G.; Li, J.; Zou, C.; Fan, H.; Xie, Y.; Xiong, H.; et al. Improved Multi-Stream
Convolutional Block Attention Module for sEMG-Based Gesture Recognition. Front. Bioeng. Biotechnol. 2022, 10, 909023.
[CrossRef] [PubMed]

21. Shi, K.; Huang, L.; Jiang, D.; Sun, Y.; Tong, X.; Xie, Y.; Fang, Z. Path Planning Optimization of Intelligent Vehicle Based on
Improved Genetic and Ant Colony Hybrid Algorithm. Front. Bioeng. Biotechnol. 2022, 10, 905983. [CrossRef] [PubMed]

22. Tao, B.; Wang, Y.; Qian, X.; Tong, X.; He, F.; Yao, W.; Chen, B.; Chen, B. Photoelastic Stress Field Recovery using Deep Convolutional
Neural Network. Front. Bioeng. Biotechnol. 2022, 34, e7177. [CrossRef] [PubMed]

23. Tao, B.; Liu, Y.; Huang, L.; Chen, G.; Chen, B. 3D Reconstruction Based on Photo Elastic Fringes. Concurr. Comput. Pract. Exp.
2022, 34, e6481. [CrossRef]

24. Tao, B.; Huang, L.; Zhao, H.; Li, G.; Tong, X. A Time Sequence Images Matching Method Based on the Siamese Network. Sensors
2021, 21, 5900. [CrossRef] [PubMed]

25. Han, J.; Zhang, D.; Cheng, G.; Liu, N.; Xu, D. Advanced Deep-learning Techniques for Salient and Category-specific Object
Detection: A Survey. IEEE Signal Process. Mag. 2018, 35, 84–100. [CrossRef]

26. Vasudevan, S.; Gächter, S.; Nguyen, V.; Siegwart, R. Cognitive Maps for Mobile Robots-an Object Based Approach. Robot. Auton.
Syst. 2007, 55, 359. [CrossRef]

27. Li, T.; Wang, F.; Ru, C.; Jiang, Y.; Li, J. Keypoint-Based Robotic Grasp Detection Scheme in Multi-Object Scenes. Sensors 2021, 21,
2132. [CrossRef] [PubMed]

28. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual Learning for Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

29. Andreas, P.; Marcus, G.; Kate, S.; Robert, P. Grasp Pose Detection in Point Clouds. Int. J. Robot. Res. 2017, 36, 1455–1473.
30. Asif, U.; Bennamoun, M.; Sohel, F. RGB-D Object Recognition and Grasp Detection using Hierarchical Cascaded Forests. IEEE

Trans. Robot. 2017, 33, 547–564. [CrossRef]
31. Hao, Z.; Wang, Z.; Bai, D.; Tong, X. Surface Defect Segmentation Algorithm of Steel Plate Based on Geometric Median Filter

Pruning. Front. Bioeng. Biotechnol. 2022, 10, 945248. [CrossRef]
32. Rogowski, A.; Bieliszczuk, K.; Rapcewicz, J. Integration of Industrially-oriented Human-robot Speech Communication and

Vision-based Object Recognition. Sensors 2020, 20, 7287. [CrossRef] [PubMed]
33. Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Net-works for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach.

Intell. 2015, 39, 640–651.
34. Wang, S.; Gong, Y.; Xing, J.; Huang, L.; Huang, C.; Hu, W. RDSNet: A New Deep Architecture for Reciprocal Object Detection and

Instance Segmentation. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February
2020; Volume 34, pp. 12208–12215.

http://doi.org/10.1002/cpe.6614
http://doi.org/10.3389/fbioe.2021.793782
http://www.ncbi.nlm.nih.gov/pubmed/35083202
http://doi.org/10.3389/fbioe.2021.817723
http://doi.org/10.1002/cpe.6710
http://doi.org/10.1002/cpe.6574
http://doi.org/10.1016/j.aej.2021.09.017
http://doi.org/10.1007/s10489-022-03888-4
http://doi.org/10.3389/fbioe.2022.843020
http://www.ncbi.nlm.nih.gov/pubmed/35295652
http://doi.org/10.3389/fbioe.2022.832829
http://www.ncbi.nlm.nih.gov/pubmed/35662837
http://doi.org/10.3389/fbioe.2022.852408
http://www.ncbi.nlm.nih.gov/pubmed/35392405
http://doi.org/10.3389/fbioe.2022.861286
http://doi.org/10.1109/JSEN.2022.3190560
http://doi.org/10.1002/cpe.7177
http://doi.org/10.3389/fbioe.2022.909023
http://www.ncbi.nlm.nih.gov/pubmed/35747495
http://doi.org/10.3389/fbioe.2022.905983
http://www.ncbi.nlm.nih.gov/pubmed/35845413
http://doi.org/10.3389/fbioe.2022.818112
http://www.ncbi.nlm.nih.gov/pubmed/35387296
http://doi.org/10.1002/cpe.6481
http://doi.org/10.3390/s21175900
http://www.ncbi.nlm.nih.gov/pubmed/34502791
http://doi.org/10.1109/MSP.2017.2749125
http://doi.org/10.1016/j.robot.2006.12.008
http://doi.org/10.3390/s21062132
http://www.ncbi.nlm.nih.gov/pubmed/33803673
http://doi.org/10.1109/TRO.2016.2638453
http://doi.org/10.3389/fbioe.2022.945248
http://doi.org/10.3390/s20247287
http://www.ncbi.nlm.nih.gov/pubmed/33353038

Sensors 2022, 22, 7576 26 of 27

35. Cai, Z.; Vasconcelos, N. Cascade R-CNN: High Quality Object Detection and Instance Segmentation. IEEE Trans. Pattern Anal.
Mach. Intell. 2021, 43, 1483–1498. [CrossRef] [PubMed]

36. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision,
Venice, Italy, 22–29 October 2017; pp. 2961–2969.

37. Jiang, S.; Qi, S.; Wang, L.; Jia, H. Instance Segmentation Modal Based on Mask R-CNN and Multi-feature Fusion. Comput. Technol.
Dev. 2020, 30, 65–70.

38. Kerl, C.; Sturm, J.; Cremers, D. Dense Visual SLAM for RGB-D Cameras. In Proceedings of the 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 2100–2106.

39. Endres, F.; Hess, J.; Sturm, J.; Cremers, D.; Burgard, W. 3D Mapping with an RGB-D Camera. IEEE Trans. Robot. 2014, 30, 177–187.
[CrossRef]

40. McCormac, J.; Clark, R.; Bloesch, M.; Davison, A.; Leutenegger, S. Fusion++: Volumetric Object-level Slam. In Proceedings of the
2018 International Conference on 3D Vision (3DV), Verona, Italy, 5–8 September 2018; pp. 32–41.

41. Mur-Artal, R.; Tardos, J.D. ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras. IEEE Trans.
Robot. 2017, 33, 1255–1262. [CrossRef]

42. Qin, T.; Li, P.; Shen, S. VINS-Mono: A Robust and Versatile Monocular Visual- inertial State Estimator. IEEE Trans. Robot. 2018, 34,
1004–1020. [CrossRef]

43. Whelan, T.; Salas-Moreno, R.F.; Glocker, B.; Davison, A.J.; Leutenegger, S. ElasticFusion: Real-time Dense SLAM and Light Source
Estimation. Int. J. Robot. Res. 2016, 35, 1697–1716. [CrossRef]

44. Dou, M.; Khamis, S.; Degtyarev, Y.; Davidson, P.; Fanello, S.R.; Kowdle, A.; Escolano, S.O.; Rhemann, C.; Kim, D.; Taylor, J.; et al.
Fusion4d: Real-time Performance Capture of Challenging Scenes. ACM Trans. Graph. (TOG) 2016, 35, 114. [CrossRef]

45. Muhammet, F.A.; Akif, D.; Abdullah, Y.; Alper, Y. HVIOnet: A Deep Learning based Hybrid Visual-Inertial Odometry Approach
for Unmanned Aerial System Position Estimation. Neural Netw. 2022, 155, 461–474.

46. Cao, S.; Lu, X.; Shen, S. GVINS: Tightly Coupled GNSS-Visual-Inertial Fusion for Smooth and Consistent State Estimation. In
Proceedings of the IEEE Transactions on Robotics: A publication of the IEEE Robotics and Automation Society, Hongkong, China,
5 August 2022; pp. 38–40.

47. Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with Atrous Separable Convolution for Semantic
Image Segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September
2018; pp. 801–818.

48. Engel, J.; Schöps, T.; Cremers, D. LSD-SLAM: Large-scale Direct Monocular SLAM. In Proceedings of the European Conference
on Computer Vision, Zurich, Switzerland, 6–12 September 2014; Springer: Cham, Switzerland, 2014; pp. 834–849.

49. Li, X.; Belaroussi, R. Semi-Dense 3D Semantic Mapping from Monocular SLAM. arXiv 2016, arXiv:1611.04144.
50. McCormac, J.; Handa, A.; Davision, A.; Leutenegger, S. SemanticFusion: Dense 3D Semantic Mapping with Convolutional Neural

Networks. In Proceedings of the IEEE International Conference on Robotics and Automation, Singapore, 29 May–3 June 2017; pp.
4628–4635.

51. Brucker, M.; Durner, M.; Ambrus, R.; Márton, Z.C.; Wendt, A.; Jensfelt, P.; Arras, K.O.; Triebel, R. Semantic Labeling of Indoor
Environments from 3D RGB Maps. In Proceedings of the 2018 EEE International Conference on Robotics and Automation (ICRA),
Brisbane, Australia, 21–25 May 2018; pp. 1871–1878.

52. Chen, W.; Fang, M.; Liu, Y.H.; Li, L. Monocular Semantic SLAM in Dynamic Street Scene based on Multiple Object Tracking. In
Proceedings of the 2017 IEEE International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on
Robotics, Automation and Mechatronics (RAM), Ningbo, China, 19–21 November 2017; pp. 599–604.

53. Zhao, C.; Sun, L.; Purkait, P.; Duckett, T.; Stolkin, R. Dense RGB-D Semantic Mapping with Pixel-voxel Neural Network. Sensors
2018, 18, 3099. [CrossRef]

54. Tateno, K.; Tombari, F.; Laina, I.; Navab, N. Cnn-slam: Real-time Dense Monocular Slam with Learned Depth Prediction. In
Proceedings of the IEEE conference on computer vision and pattern recognition, Honolulu, HI, USA, 21–26 July 2017; pp.
6243–6252.

55. Salas-Moreno, R.; Newcombe, R.; Strasdat, H.; Kelly, P. SLAM++: Simultaneous Localization and Mapping at the Level of Objects.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp.
1352–1359.

56. Hoang, D.C.; Stoyanov, T.; Lilienthal, A.J. Object-rpe: Dense 3d Reconstruction and Pose Estimation with Convolutional Neural
Networks for Warehouse Robots. In Proceedings of the 2019 European Conference on Mobile Robots (ECMR), Prague, Czech
Republic, 4–6 September 2019; pp. 1–6.

57. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single Shot Multibox Detector. In Proceedings of
the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Cham, Switzerland,
2016; pp. 21–37.

58. Sunderhauf, N.; Pham, T.; Latif, Y.; Milford, M.; Reid, I. Meaningful Maps with Object-oriented Semantic Mapping. In Proceedings
of the 2017 IEEE/RSJ International Conference on Intellient Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September
2017; pp. 5079–5085.

59. Grinvald, M.; Furrer, F.; Novkovic, T.; Chung, J.J.; Cadena, C.; Siegwart, R.; Nieto, J. Volumetric Instance-aware Semantic Mapping
and 3D object discovery. IEEE Robot. Autom. Lett. 2019, 4, 3037–3044. [CrossRef]

http://doi.org/10.1109/TPAMI.2019.2956516
http://www.ncbi.nlm.nih.gov/pubmed/31794388
http://doi.org/10.1109/TRO.2013.2279412
http://doi.org/10.1109/TRO.2017.2705103
http://doi.org/10.1109/TRO.2018.2853729
http://doi.org/10.1177/0278364916669237
http://doi.org/10.1145/2897824.2925969
http://doi.org/10.3390/s18093099
http://doi.org/10.1109/LRA.2019.2923960

Sensors 2022, 22, 7576 27 of 27

60. Li, W.; Gu, J.; Chen, B.; Han, J. Incremental Instance-oriented 3D Semantic Mapping via RGB-D cameras for unknown indoor
scene. Discret. Dyn. Nat. Soc. 2020, 2020, 2528954. [CrossRef]

61. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934.
62. Liu, Y.; Xu, M.; Jiang, G.; Tong, X.; Yun, J.; Liu, Y.; Chen, B.; Cao, Y.; Sun, N.; Liu, Z. Target Localization in Local Dense Mapping

Using RGBD SLAM and Object Detection. Concurr. Comput. Pract. Exp. 2022, 34, e6655. [CrossRef]
63. Runz, M.; Buffier, M.; Agapito, L. MaskFusion: Real-time Recognition, Tracking and Reconstruction of Multiple Moving Objects.

In Proceedings of the 2018 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Munich, Germany, 16–20
October 2018; pp. 10–20.

64. Gálvez-López, D.; Salas, M.; Tardós, J.D.; Montiel, J.M.M. Real-time Monocular Object SLAM. Robot. Auton. Syst. 2015, 75,
435–449. [CrossRef]

65. Wojke, N.; Bewley, A.; Paulus, D. Simple Online and Realtime Tracking with a Deep Association Metric. In Proceedings of the
2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 3645–3649.

66. Sturm, J.; Engelhard, N.; Endres, F.; Burgard, W.; Cremers, D. A Benchmark for the Evaluation of RGB-D SLAM systems. In
Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Algarve, Portugal, 7–12 October
2012; pp. 573–580.

http://doi.org/10.1155/2020/2528954
http://doi.org/10.1002/cpe.6655
http://doi.org/10.1016/j.robot.2015.08.009

	Introduction
	Related Work
	Image Segmentation Networks
	Visual SLAM
	Semantic Map

	Method
	Target Tracking Based on Instance Segmentation
	Improved Dense Mapping Based on ORB-SLAM2
	Semantic Mapping Based on Semantic SLAM
	Camera Pose Optimization Based on Semantic SLAM

	Experiments and Analysis
	Experiments on Self-Training Weight
	Experiments on Coco Weight
	Comparison with Existing Methods

	Conclusions
	References

