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Abstract: After wars, some unexploded bombs remained underground, and these faulty bombs seri-
ously threaten the safety of people. The ability to accurately identify targets is crucial for subsequent
mining work. A deep learning algorithm is used to recognize targets, which significantly improves
recognition accuracy compared with the traditional recognition algorithm for measuring the mag-
netic moment of the target and the included geomagnetism angle. In this paper, a ResNet-18-based
recognition system is presented for classifying metallic object types. First, a fluxgate magnetometer
cube arrangement structure (FMCAS) magnetic field feature collector is constructed, utilizing an
eight-fluxgate magnetometer sensor array structure that provides a 400 mm separation between each
sensitive unit. Magnetic field data are acquired, along an east-west survey line on the northern side
of the measured target using the FMCAS. Next, the location and type of targets are modified to create
a database of magnetic target models, increasing the diversity of the training dataset. The experi-
mental dataset is constructed by constructing the magnetic flux density tensor matrix. Finally, the
enhanced ResNet-18 is used to train the data for the classification recognition recognizer. According
to the test findings of 107 validation set groups, this method’s recognition accuracy is 84.1 percent.
With a recognition accuracy rate of 96.3 percent, a recall rate of 96.4 percent, and a precision rate of
96.4 percent, the target with the largest magnetic moment has the best recognition impact. Experi-
mental findings demonstrate that our enhanced RestNet-18 network can efficiently classify metallic
items. This provides a new idea for underground metal target identification and classification.

Keywords: magnetic targets; ResNet-18; classification; magnetic dipole; cluster analysis

1. Introduction

In our daily life, the geomagnetic field is always around us. The Earth’s magnetic
field has its sources inside the Earth (internal contributions) and outside it (external con-
tributions). The predominant internal source is the core field (also called “main field”),
originating in the external fluid core, and the lithospheric field (also called “crustal field”),
caused by magnetic minerals in the crust and, to a lesser extent, the upper mantle. The
external sources originate in the ionosphere, the magnetosphere, and also from electrical
currents coupling the ionosphere and magnetosphere (named “field-aligned currents”, or
FAC). These external sources induce secondary fields in the Earth [1].

Maxwell established Maxwell’s equations, which essentially revealed the essential
relationship between electricity and magnetism. Khan et al. [2] investigated the Hall current
effect, entropy generation, Arrhenius activation energy, and binary chemical reactions in
Maxwell nanofluid heat and mass transfer biological convection. Khan et al. exposed
the deeper meaning of Maxwell’s equations. When a metal target (mostly iron, cobalt,
nickel, etc.) infiltrates the geomagnetic field, the target is magnetized by the geomagnetic
field, and a secondary field is formed in the space of the original magnetic field, distorting
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the surrounding magnetic field [3]. Detecting the magnetic field in space to identify
subsurface [4,5] or underwater metal targets [6] has several applications in the mine
detection field [7].

There are many technical techniques for detecting metal targets, with magnetic de-
tection being one of the most prevalent. Detecting the total magnetic field, the vector
magnetic field, the gradient magnetic field, and the gradient tensor magnetic field are
all popular methods for measuring magnetic fields in space [7]. Different techniques for
detecting the space magnetic field result in varying numbers of sensors, and sensors with
a sensible arrangement collect more information about the space magnetic field [8]. In
recent years, several researchers [9,10] have embraced the technical methods of multisensor
collaboration for metal target identification and localization studies.

Metal targets can have a variety of exterior forms. When the target is distant from
the observing location, it can be compared to a magnetic dipole model [11]. Jin et al. [12]
advocated using the equivalent approach of the simplest dipole model to replace the
target, which significantly simplifies the identification and inversion of metal targets.
Nara et al. [13] presented a simple algorithm and a compact sensor for the localization
of a magnetic dipole. They developed a sensor unit consisting of three orthogonal loop
coils, three orthogonal planar gradiometers, and three orthogonal coaxial gradiometers,
for measuring the magnetic field, nondiagonal, and diagonal components of the gradient
tensor, respectively. Localization experiments were conducted, where the maximum error
is about 7 mm when the source-sensor distance is from 80 to 140 mm. Kasatkin et al. [14]
studied the solution uniqueness analysis of the magnetic dipole location problem based on
the two-point known magnetic field intensity vector value. It was shown that the usage of
two triples (pairs) of sensors is sufficient to solve a 3D (2D) problem of arbitrary magnetic
dipole localization with a satisfactory number of crude errors. Birsan [15] proposed a
recursive method, which is expected to use the data collected by the gradiometer to
estimate the trajectory of the target and the magnetic moment component of the magnetic
dipole source model. In his study, the determination of target position, magnetic moment,
and velocity are formulated as a Bayesian estimation problem for dynamic systems, which
could be solved using a sequential Monte Carlo-based approach known as the “particle
filter”. Fan et al. [16] presented a fast linear algorithm for locating the target based on the
total magnetic field gradient. Compared with the optimization algorithms, the proposed
method provides good performance within a short time and can be used to locate the
target in real time. Based on the cube tensor measurement array from the STAR method,
Liu et al. [17] proposed a novel way to calculate the distance between the dipole and
the sensor array. Results of simulation experiments indicate that this method increases
the successful localization area by 43% compared with the traditional method, and the
baseline length of the sensor array dominates the performance of this method. Yin et al. [18]
presented a simple formula for the localization of a magnetic dipole. Numerical simulations
show that the proposed localization formula is correct and it can also localize the magnetic
dipole precisely for applications with measurement noise.

Billings et al. [19] considered the metal target a magnetic dipole and determined the
detection target by studying the dipole’s amplitude and direction. Orug [20] saw the metal
target as a dipole and utilized tensor invariants to perform tensor analysis to find metal
targets. In metal target location and identification research, these scholars identified the
position of metal targets using different algorithms. Nevertheless, it is difficult to identify
the metal target types due to algorithm limits.

Metal object recognition is a nonlinear problem that is challenging to solve. Model
outputs from one location at a site were used to train a PNN model, which could correctly
discriminate UXO from scrap at a different location of the same site [21]. Through careful
selection of the probability threshold cutoff, the UXO detection rate obtained was 95% with
a false alarm rate of only 37%. The ability to distinguish individual UXO types has been
demonstrated with correct classifications between 71% and 95%. The GEM-3 sensor is a
frequency-domain sensor with up to ten frequencies available for simultaneous measure-
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ment of the in-phase and quadrature response of the target. Working around a modified
GEM-3 sensor, Nelson et al. [22] designed a three-sensor array and demonstrated it at the
Standardized UXO Demonstration sites at Aberdeen Proving Ground and Yuma Proving
Ground. Shamatava et al. [23] presented the inversion and classification performance of
the advanced electromagnetic induction inversion, processing, and discrimination schemes
developed by the group when applied to the Environmental Security Technology Certifica-
tion Program Live-Site UXO Discrimination Study carried out at the former Camp Butner
in North Carolina. Bijamov et al. [24] demonstrated in detail a semisupervised scheme to
classify UXO by using as an example the data collected with a time-domain electromagnetic
towed array detection system during a live-site blind test conducted at the former Camp
Butner in North Carolina, USA.

Billings et al. [25] claimed that the kind of metal target might be determined by
measuring the angle between the target’s remanent magnetization and geomagnetism. This
approach is highly efficient, but its resolution is subpar. The metal target was derived by
Beran et al. [26] by solving the goal function. Due to the nonlinear nature of the forward
model, the outcome of calculating the loss function is a local minimum. Wigh et al. [27]
proposed a probabilistic approach for inferring metal objects from magnetic data. Various
iterative methods are utilized, as well as the multichain Markov chain Monte Carlo (MCMC)
method. The method is unaffected by the starting point of the inversion process, allowing
it to avoid several local minima in the highly nonlinear model space and iteration. This
technique does not, however, prevent the requirement to select a beginning value. When
there is no previous condition, it will be far more difficult to repeat.

Zhou et al. [28] proposed a region convolutional neural network-based (RCNN-based)
method for shallow magnetic target detection and classification in metal target recognition.
Zhou et al. tenderized the magnetic field to obtain the magnetic gradient tensor G in space.
The G, represents the gradient of the z-direction magnetic field along the z-direction.
Zhou et al. stated in the article that the z-axis points to the ground. The G,; component of
the magnetic gradient tensor was selected as the data source during the study procedure. To
identify the target, a mask region convolutional neural network (Mask-RCNN) algorithm
was developed. The study approach employs L-shaped, concave, spherical, and cuboid
detection targets. However, ambient magnetic field fluctuations are not factored into the
classification procedure. Therefore, the research conclusions are still theoretical. In addition,
the magnetic properties of the target are insufficient since Zhou et al. only used the G,
component to extract characteristics in their research.

Based on those mentioned above, this study proposed a technique for classifying metal
products based on the residual neural network 18 (ResNet-18) deep learning model. Using
the magnetic field data of a survey line, we accurately identify the kind of subsurface metal
targets by extracting the eight fluxgate magnetometer data on the north side of the target.

2. Methods
2.1. Space Magnetic Flux Density Acquisition

When the metal target is far from the observation point, the magnetization field model
of the metal target is nearly comparable to the magnetic dipole model [29]. The distribution
of the magnetic field of a magnetic dipole in space may be described by the following
formula [30]:

1 R
Baipotar (r) = %ifg[?’(m F)F —m], (1)

where m is the magnetic moment of the dipole [L?I], r denotes the distance between the
magnetic dipole’s center and the observation point, # denotes the unit vector between the
magnetic dipole’s center and the observation point, and yy denotes the vacuum permeability.

To obtain more data on spatial magnetic anomalies and ensure that the distance
between each fluxgate sensitive unit is 400 mm, we adopted an array structure arrangement
of 8 three-axis fluxgate magnetometers (model HSF923-2H5-AA Xi’an Huashun). The
performance parameters of the fluxgate magnetometer are shown in Table 1. The fluxgate
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magnetometer has three sensitive units corresponding to three vertical magnetic fields,
and the measurement range of each sensitive unit is —100,000 nT to 100,000 nT. We carried
out experiments in Nanjing, where the local geomagnetic field is 50,000 nT £ 1000 nT.
After placing the metal target, the maximum magnetic anomaly in the area does not exceed
60,000 nT. This type of fluxgate magnetic magnetometer can correctly estimate the magnetic
field of the experimental area during the experiment. We call this structure the fluxgate
magnetometer cube arrangement structure (FMCAS), as shown in Figure 1. Each fluxgate
magnetometer obtains xyz three-axis magnetic flux data, so FMCAS obtains 8 xyz three-axis
magnetic flux data, for a total of 24 groups of data.

Table 1. The performance parameters of the fluxgate.

Performance Name Range Bandwidth Noise
Parameter —100 uT~+100 uT DC~30 Hz <15 pT@1 Hz

® Fluxgate Magnetometer X 8

.

Figure 1. FMCAS diagram.

We gather an east-west magnetic field data measurement line north of the detection
target. As illustrated in Figure 2, we attach the FMCAS to the sliding block with copper
bolts and position it on an aluminum-alloy sliding track. The laser distance sensor (type
L-GAGE) captures information on the distance between the FMCAS and the sensor. The
material of the sliding block is wood; we put oil on the sliding track to promote sliding.
We obtain experimental data on a measuring line every time the assistant pulls the sliding
track with the rope.

Through the above experimental method, we can obtain the magnetic field data of
a survey line every time we slide the sliding block, which contains the target magnetic
anomaly. We intercept the middle part of the survey line (the data at both ends fluctuate
greatly when sliding starts and ends), divide the intercepted part of the survey line into
100 equal parts, and obtain 101 position coordinates. Corresponding FMCAS magnetic flux
density data for each position obtain a set of 101 x 24 size magnetic flux data about the
position information.
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Sliding Track FMCAS

Laser Distance Sensor

Detection Target

Sliding Block

Figure 2. Schematic diagram of measuring line magnetic flux density acquisition.

We might also define the pseudo total field xyz; of the fluxgate magnetometer (because
the fluxgate magnetometer has not been calibrated) as follows:

xyzi = /x> + Y2 +22(i=12,---,8) (2)

The pseudo total field of the ith fluxgate magnetometer is represented by xyz; in the
formula. The ith fluxgate magnetometer’s x-axis magnetic field output is x;j, the ith fluxgate
magnetometer’s y-axis magnetic field output is y;, and the ith fluxgate magnetometer’s
z-axis magnetic field output is z;.

We construct the magnetic flux tensor matrix as shown in Figure 3; the matrix size is
[101, 8, 4]. The first dimension includes the 101 position information, the second dimension
includes the label information of 8 fluxgate magnetometers, the third dimension includes
the xyz pseudo total field, the x-axis magnetic field, the y-axis magnetic field, and the
component information of the z-axis magnetic field.

sl s2 s3 s8

Dim 3

distance

. 101

Dim 2
Dim 1

Figure 3. Schematic diagram of the magnetic flux tensor matrix structure.

Later, we train the recognition algorithm using the magnetic flux tensor matrix.
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2.2. ResNet-18

Four Chinese researchers, including Microsoft Research Institute’s Kaiming He, pro-
posed the residual neural network (ResNet). With an error rate of 3.57% on the top 5,
a 152-layer neural network was successfully trained and won the championship in the
ILSVRC2015 competition utilizing the ResNet unit. ResNet’s topology allows for rapid
neural network training while considerably improving model accuracy.

As the neural network is expanded, the gradient explosion and disappearance problem
arises. In addition, we employ normalized initialization [31-33] and intermediate normal-
ization layers [34] to address this issue. Each input-to-output process is almost irreversible
(information loss) due to the existence of the nonlinear ReLU activation function [35]. It is
difficult to reverse the whole input from the output, which makes it highly unlikely that
the features will be fully retained throughout layer-by-layer forward propagation. The
residual learning module is incorporated into the deep neural network, the output before
the previous layer (or layers) is added to the output calculated by this layer by jumping,
and the summation result is input into the activation function as a function of the output of
this layer [36]. Thus, the network’s depth can be significantly expanded. Table 2 depicts
the principal ResNet structure.

Table 2. ResNet architectures with different layers.

Layer Name Output Size 18-Layer 50-Layer
convl 112 x 112 7 x 7,64, stride 2
conv2. x 56 x 56 3 x 3 max pool, stride 2
33, 64 1x1, 64
3x3 64 X2 3x3,64 | x2
1x1, 256
3 x 3, 128] 1x1,128
conv3_x 28 x 28 3x3 128 2 3%3 128 | x4
- B 1x1,512
[3 % 3, 256] 11,256
conv4_x 14 x 14 3% 3, 256 <2 3% 3, 256 %6
- B 1x1, 1024
3 x 3, 512] 1x1, 512
conv5_x 7x7 3% 3 512 ) 3% 3 512 %3
- B 1x1, 2048
1x1 average pool, 1000-d fc, softmax

We research object classification and recognition, utilizing the main network archi-
tecture of ResNet-18. In practice, we make the following modifications to the original
ResNet-18:

Step 1. Remove the first layer of the 7 x 7 convolution in the original network.

Step 2. Modify the original second 3 x 3 maximum pooling layer to a 3 x 3 convolution
and set 64 convolution kernels.

Step 3. Finally, the 1000 neurons in the final fully connected layer are modified
to 3 neurons.

Through the above processing, we obtain an improved ResNet-18 network. The
magnetic feature data are in the data format of 101 x 8 x 4, and the convolution operation
is performed through a 3 x 3 convolution kernel. Then, they are input into 8 ResNet
blocks, and the corresponding convolution operation is performed. The data are then
globally pooled before being fed into the fully connected layer. Figure 4 depicts the
network structure.
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Magnetic data 101*8*4

3*3 conv, filters = 256 ~o
strides =2 N
\
3*3 conv,filters = 64 l )
/
! 3*3 conv, filters = 256 7

3*3 conv,filters = 64 t(;<

3*3 conv, filters = 256
3*3 conv,filters = 64 l

¢ 3*3 conv, filters = 256
3*3 conv,filters = 64

Figure 4. ResNet-18 network structure. The dotted line indicates that the dimensions are different,
and it needs to be adjusted through a 1 * 1 convolution kernel to adjust to the same dimension.

3. Training ResNet-18 Model

All model training and test evaluation experiments are carried out on an NVIDIA
GeForce RTX 2080 Ti GPU with 32 GB of memory. The TensorFlow GPU version operates
on Windows 10 and is installed on the Anaconda 3 platform.

3.1. Dataset Generation

In the experiment, we use three sizes of iron balls as neural network training and
recognition targets. The 5 m-long sliding track is located on the north side of the detection
target, and the laser distance sensor used to record the FMCAS position information is
located on the east side of the sliding track. The data collector (model: PXIe-4309-NI) is
located 4 m northeast of the slide rail, as shown in Figure 5a.

A spatial Cartesian coordinate system is developed, as shown in Figure 5b, with the
x-axis facing north, the y-axis facing west, and the unit is meters. The start of the sliding
track is at coordinates (0.5, —1.5), and the end of the sliding track is at coordinates (0.5, 1.5).
The FMSC slides from the sliding track start point to the sliding track endpoint. The sliding
distance is 4 m. During the sliding process, the laser distance sensor records the distance
(0~4.5) of the FMSC relative to the starting point of the slide rail in real time.
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(b) Schematic diagram of the experimental test
Figure 5. Experimental site map and experimental schematic.

The starting position of each probe target is (—0.2, —0.2), and the end position is (0.2, 0.2).
The target moves 0.1 m along the x-axis each time. When the x-axis coordinate of the target
reaches 0.2 m, the target moves 0.1 m along the y-axis. The x-axis position of the target is
repeatedly adjusted to complete a cycle. The target has a total of 25 position points; for each
position point, FMCAS slides 40 times. Each target to be tested has a total of 1000 groups of
data, which are used as the training set for deep learning. The targets are randomly arranged
in 5 random positions within a square area from (—0.2, —0.2) to (0.2, 0.2), and the FMCAS
is also slid 40 times, with a total of 200 groups of data for each target, as the test set of deep
learning. The three targets we measured and their effective data during the experiment
are shown in Table 3. During the follow-up experimental processing, we found a set of
experiments where the laser distance sensor did not capture the entire sliding distance of the
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FMCAS. Therefore, we consider the shuffling experimental data invalid, which cannot be
used for subsequent identification work.

Table 3. Statistical table of measured data.

Detection Target Properties (Radius/mm) Valid Data (Groups) Invalid Data (Groups)
No. 1 iron ball 51 1238 0
No. 2 iron ball 56.5 1223 0
No. 3 iron ball 67.5 1240 1

We use three different sizes of shot balls as detection targets. The lead ball is cast from
cast iron. The susceptibility of the material is greater than 200. Throughout the experiment,
the sampling frequency is set to 100 Hz. The power frequency signal perturbs the region
where the experiment is conducted, and the DC component is the magnetic anomaly
generated by the target. Therefore, the collected time-domain signal is low-pass filtered
using the Butterworth filter in signal processing. The bandpass frequency is set to 2 Hz, the
bandstop frequency is set to 12 Hz, and the filter is set to the 6th order. Figure 6 illustrates
the low-pass filter’s performance. Figure 7 depicts the comparison before and after low-
pass filtering. The red curve represents the unfiltered time-domain signal, whereas the
black line represents the time-domain signal that was low-pass filtered.

I T I T I T I T I T I
0F —— Amplitude 0
| —— Phase
-100 | 4 -2
2 | | &
~ -200 | 44 =
g g
a r 1 ~
= D
= 300 | 46 @
€ &
< r 1 o
—400 | - -8
-500 | 4-10
1 L 1 L 1 L 1 L 1 L 1
0 10 20 30 40 50
Frequency (Hz)

Figure 6. Butterworth Low-Pass Filter Frequency Response and Phase Frequency Curves.

We place the starting point of the magnetic tensor matrix at 1000 mm from the FMCAS
to the laser distance sensor and the endpoint at 4000 mm. We divide 101 points evenly
within a distance of 3000 mm and obtain the three-axis magnetic flux density output
of each fluxgate magnetic sensor at these distance points. We use the position of the
FMCAS as the independent variable and use the three-axis magnetic flux density of each
fluxgate magnetic sensor as the dependent variable for the interpolation calculation. For
interpolation calculations, we use the position of the FMCAS as the independent variable
and the three-axis magnetic flux density of each fluxgate magnetic sensor as the dependent
variable. Using the linear interpolation method of sample points, according to the position
we need, the three-axis magnetic flux density distribution of each fluxgate magnetic sensor
at this position is determined. In this way, we can obtain the 3-axis magnetic field data of
the 8-fluxgate sensor at 101 equally spaced positions between 1000 mm and 4000 mm. The
interpolation method is depicted in Figure 8.
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Figure 7. Comparison of time-domain signals before and after filtering.
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Figure 8. Interpolation calculation of the magnetic field position distribution.

According to the above processing method, we process each set of data into a set of
magnetic flux tensor matrices. The resulting matrix is mapped to the labels one-to-one. The
total field distribution for the entire survey line is shown in Figure 9. From Figure 9, it can
be found that the amplitude of the signal received by the No. 7 and No. 8 sensors is the
largest because these two sensors are closest to the target. The distance between the two
valleys is approximately 400 mm, which is the distance between the two sensors.
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1.000
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Distance (mm)

Figure 9. Normalized total field distribution plot.

3.2. Uncertainty Analysis

The Earth’s magnetic field is a dynamic system and varies on a wide range of timescales
from seconds to hundreds of millions of years. The core field [37] is dominated by fields
generated from a self-sustaining dynamo in the Earth’s fluid outer core. This creates around
95% of the magnetic field strength at the Earth’s surface. The measured magnetic field
averages a strength on the order of 50 uT, varying, however, between some 20 and 60 uT.
Another internal source is the lithospheric field, generated in rocks containing minerals
carrying the magnetization and situated below the Curie temperature, generally in the
upper 5-30 km of the Earth’s surface [38]. Globally, this contribution is much smaller at
around 20 nT. Regular changes in solar activity and corresponding outer space plasma
flow alterations induce global geophysical field fluctuations with a frequency range from
0.001 Hz to 10 Hz [39].

The experimenter pulled the FMCAS by the traction rope to complete the magnetic
field measurement of a survey line on the slide rail, and it took about 10s to slide once.
Uncertainty in the data collected by the sensors was due to fluctuations in the geomagnetic
field. The fluxgate sensor was left standing and collected to record the local magnetic field
environment. The sampling frequency was set to 100 Hz and the acquisition time was
30 s. The fluxgate sensor recorded data on the variation in the three components of the
environmental magnetic field. The data were statistically observed for the uncertainty of
the magnetic field, as shown in Table 4.

Table 4. Statistical table of environmental magnetic field changes.

Direction Mean Standard Deviation Maximum Minimum
z 36,884.2 3.3 36,898.9 36,878.0
X 30,121.8 3.6 30,131.6 30,114.7
y 15,367.2 5.7 15,374.4 15,341.8

Unit: nT.
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From Table 4, we see that the ambient magnetic field fluctuates a lot, and the uncer-
tainty of the collected data is caused by the fluctuation of the ambient magnetic field. We
subtracted the mean value from the measured triaxial magnetic field to obtain the absolute
error image of the triaxial magnetic field, as shown in Figure 10.

5 10 15 20 25 30
Time (s)
Figure 10. Absolute error diagram of ambient magnetic field in three axes.

By observing Figure 10, we could find that the fluctuation of the magnetic field has a
random nature, and the fluctuation of the magnetic field in the x-direction is greater than
that in the z- and x-directions. In order to observe the random fluctuation of the ambient
magnetic field more intuitively and accurately, we made a statistical distribution chart of
the three-axis ambient magnetic field, as shown in Figure 11.

Figure 11 shows that the CDF curves of the z-axis and x-axis components of the
environment magnetic field are approximately normally distributed. Z-axis environment
magnetic field components are concentrated around the mean value of 36,884.2 nT, and
the CDF at 0.5 takes the value of 36,883.5 nT, which is close to the mean value. X-axis
environment magnetic field components are concentrated around the mean value of 30,121.8
nT, and the CDF at 0.5 takes the value of 30,121.5 nT, which is close to the mean value.
The CDF curve of the y-axis ambient magnetic field component is still a bit different from
the normal distribution. The y-axis ambient magnetic field component is not obviously
concentrated around the mean value of 15,367.2 nT, but is closer to 15,371 nT, but the CDF
value at 0.5 is close to the mean value.

In general, the z-axis and x-axis components of the environment magnetic field are
relatively stable. The z-axis direction ambient magnetic field fluctuates approximately 20
nT every 30 s, the x-axis direction ambient magnetic field fluctuates approximately 17 nT
every 30 s, and the y-axis direction ambient magnetic field fluctuates approximately 33 nT
every 30 s. We observe the frequency distribution of the environment magnetic field based
on the collected time-domain signal by fast Fourier transform, as shown in Figure 12.
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Figure 12. Fast Fourier expansion of the environmental magnetic field in the z-axis direction.

Observing Figure 12, we can find that the noise is mainly concentrated at low fre-
quencies and 50 Hz. In order to reduce the error of these uncertainties on the data, we use
low-pass filtering for the data. As shown in Figure 7, it can be seen that there are obvious
deviations between the unfiltered data and the low-pass filtered data, and the two curves
do not overlap; these deviations are mainly caused by the 50 Hz noise. According to the
experimental site view, there are interference objects such as transmission lines around the
environment.

3.3. Training the Recognition Network

We separated the dataset into 3088 training sets, 513 test sets, and 100 validation sets,
according to Table 2. The three categories are mutually exclusive and fully distinct. The
model training required four hours after 100 iterations, as depicted in Figure 13.

I T I T I T I T I T I
1.0 e | _
0.8 |- -
)
S - trai
5 0.6 rain _|
o —e— test
O
<
04 | -
0.2 -
00 | L | L | L | L | L |
0 20 40 60 80 100

Number of iterations

Figure 13. The curve of iterative convergence. The accuracy on the training set is shown by the black
line, while the accuracy on the test set is represented by the red line.
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For sample set D, the classification accuracy is defined by the following formula.

ace(f; D) = I(f(xi) = yi) ®)

SR
™=

i=1

The f function represents the completely trained neural network, and m indicates
the total number of all samples. The accuracy of the training set steadily increases as the
number of iterations grows and eventually converges to 1; the accuracy of the test set
gradually increases after the 60th iteration, eventually converging to approximately 0.9.
We add seven sets of untargeted ambient magnetic fields to the validation set, totaling 107
groups, to further verify the recognition effect. Table 5 shows the test labels in the final
validation set.

Table 5. Validation set contains label table.

Detection Target Valid Data (Groups)
No. 1 iron ball 40
No. 2 iron ball 32
No. 3 iron ball 28
No see 7

We incorporate an untargeted environmental magnetic field to solve the accurate
target recognition problem. We set the threshold for target recognition to 0.75. If, during the
recognition process, it is inferred that the recognition target has a probability greater than
75% and is identified as a target in the target library, we consider this target recognition
to be successful. If it is deduced that the recognition probability of the identified target
is 75%, we conclude that the target we detected is not in the target library and that it is
no see. Including the validation set in the model increased its accuracy by 84.1 percent.
The accuracy rate represents the correct proportion of class predictions in the sample. The
precision rate represents the proportion of true positive examples in the samples that are
predicted to be positive examples. The recall rate represents the proportion of real positive
samples that are predicted to be positive samples. F1-Score is a model evaluation index
that takes into account both the precision rate and the recall rate. F1-Score is actually the
harmonic mean of the precision rate and the recall rate. The recall rate, accuracy rate,
precision rate, specificity rate, and F1-Score value are used as performance metrics to
evaluate the model.

Accuracy = IP+IN (4)
Y= TPYFP{ TN+ FN
TP

Recall = ————

Ot = TPYFEN ®)
.. TP

Precision = TP FP (6)

e TN
Specificity = TN+ FP (7)
Fl— 2 x Recall x Precision ®)

Recall + Precision

TP denotes a true positive case, FP denotes a false positive example, and FN denotes a
false negative example. Figure 14 depicts the confusion matrix derived by calculation. As
illustrated in Figure 15, we simultaneously generated the receiver operating characteristics
(ROC) curve based on the prediction findings.
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The model’s accuracy rating is 84.1% after calculations. Table 6 shows the precision
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Receiver operating characteristic classification diagram.

rate, recall rate, single accuracy rate, and F1-Score value.
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Table 6. Model reference index table.
Precision Recall Acc Single F1-Score
No. 1 iron ball 88.2% 75% 86.9% 0.81
No. 2 iron ball 87.5% 87.5% 92.5% 0.87
No. 3 iron ball 96.4% 96.4% 96.3% 0.96
No see 38.5% 71.4% 90.6% 0.5

4. Experimental Results and Analysis

According to Equation (1), it can be found that the magnetic field generated by the
dipole target decays with the third power of distance. Therefore, when the target is far
away, the magnetization field of the detection target cannot be obtained by the fluxgate
sensor. We used the model HSF923-2H5-AA fluxgate sensor with the sensor index shown
in Table 1, but it did not achieve the expected accuracy during the experiment. To obtain a
better signal-to-noise ratio, either the magnitude of the target magnetic moment should
be increased or the measurement point should be placed close to the detection target. To
ensure the availability of Equation (1) (detection distance is much larger than the target
diameter), the distance from the detection location to the target cannot be too close either.

The fluctuation of the ambient magnetic field has a great influence on the experiment.
By observing Figure 10 and Table 4, it can be found that the uncertainty of the magnetic
field fluctuation in the experimental environment is great, especially the fluctuation in the
y-axis direction, and the root mean square of the magnetic field is as high as 5.7 nT within
the 30 s of the test, which is much higher than the root mean square of the magnetic field
in the x-axis and z-axis directions. Observing Figure 12, it can be found that the noise of
the ambient magnetic field is mainly concentrated in the low-frequency and 50 Hz parts,
and a better waveform can be obtained by low-pass filtering, as shown in Figure 7. It is
recommended to perform a time-frequency analysis of the ambient magnetic field before
the experiment to obtain the noise distribution and select a suitable filter to restore the
real waveform.

In the experiment, when the No. 1 iron ball target is 0.7 m away from the fluxgate
sensor, the magnetic field is only 3 nT. When the ambient magnetic field fluctuates widely,
the signal of the target is completely mixed into the ambient magnetic field. When the
No. 1 iron ball target is 0.3 m away from the fluxgate sensor, a better signal-to-noise ratio
is obtained, and the magnetic field is 120 nT. Figure 13 reveals that the accuracy of the
validation set begins to converge after 60 iterations, and the accuracy of the validation set
tends to fluctuate smoothly after 80 iterations and then converges at approximately 0.9.

Through the analysis of the recall rate, accuracy rate, and F1 value calculated by the
model, it can be seen that in the process of target classification and recognition, the single
recognition accuracy of the No. 3 iron ball is the highest, and the F1 index is closest to 1.
The identification between the No. 1 iron ball and no see is relatively difficult because the
local geomagnetic environment has magnetic anomalies, and the diameter of the No. 3 iron
ball is relatively small, which is not conducive to distinguishing the difference between the
target and the environment. In other words, the magnetic anomaly caused by the No. 1
iron ball is sometimes overwhelmed by the local environment, so the recognition algorithm
cannot accurately distinguish between the two. Similarly, the recognition algorithm also
confuses some No. 2 iron balls with No. 1 iron balls because the magnetic anomalies
between the two are not very different. In contrast, the algorithm is more accurate in
distinguishing No. 1 iron balls and No. 3 iron balls.

The experimental results show that the system can still identify targets with significant
discrepancies in the magnetic anomalies.

5. Conclusions

When distinguishing metal targets through this recognition algorithm, the overall
accuracy rate is 84.1%. The No. 3 iron ball performed the best in recognition, with a single
recognition accuracy rate of 96.3%, a recall rate of 96.4%, and a precision rate of 96.4%. The



Sensors 2022, 22, 7653

18 of 20

excellent performance is attributed to the fact that the target is larger than other targets,
and the magnetic anomaly is more obvious. The fluctuation of the ambient magnetic field
leads to increased uncertainty in the whole identification system. In the experimental
environment, the main noise is low-frequency and 50 Hz noise. Therefore, a better real
waveform can be restored by the low-pass filter. Using the noise-reduced waveform for
training recognition will make the neural network converge better. When the algorithm
recognizes the target with a relatively close volume, it is accompanied by the generation
of errors. In the experiment, the No. 1 iron ball and the No. 2 iron ball were misclassified
because the volumes of the two are relatively close, and the magnetic anomalies displayed
on the fluxgate magnetic field sensor are relatively close.

Based on the observation of experimental effects, we found that improving the signal-
to-noise ratio of the target can classify the target more accurately. For example, during
the experiment, the slide rail can be made closer to the target. The rules to be followed
throughout the experiment are that the slide is located directly north of the target and the
slide is set along the east-west direction. The slide cannot be set to any other position. If
the slide is located due south of the target (the slide is still set in the east-west direction),
the peaks and valleys of the magnetic anomaly signal are not consistent with the trained
model. Such data cannot be identified. Our experimental site is in the northern hemisphere,
and if the experiment is conducted in the southern hemisphere, it is better to set the slide
rail to the south side of the target (the slide rail is still set in the east-west direction).

In general, our enhanced RestNet-18 network can accurately classify metallic items.
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Nomenclature

m, the magnetic moment of the dipole; Bgjpolar, magnetic field produced by a magnetic dipole; r, the
distance between the magnetic dipole’s center and the observation point; 7, the unit vector between
the magnetic dipole’s center and the observation point; xyz, the pseudo total field of the fluxgate
magnetometer; x, the fluxgate magnetometer’s x-axis magnetic field output; y, the fluxgate magne-
tometer’s y-axis magnetic field output; z, the fluxgate magnetometer’s z-axis magnetic field output;
G, the magnetic field to obtain the magnetic gradient tensor.

Greek Symbols

Mo, the vacuum permeability; 7, the ratio of a circle’s circumference to its diameter.

Subscripts

i, fluxgate marking number; z, the direction.

Glossary

FMCAS, fluxgate magnetometer cube arrangement structure; MCMC, Markov chain
Monte Carlo; RCNN, region convolutional neural network; ResNet, residual neural net-
work; CDF, cumulative distribution function; ACC, accuracy; FAC, field aligned currents;
UXO, unexploded ordnance.
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