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Abstract: Fused deposition modelling (FDM)-based 3D printing is a trending technology in the era of
Industry 4.0 that manufactures products in layer-by-layer form. It shows remarkable benefits such as
rapid prototyping, cost-effectiveness, flexibility, and a sustainable manufacturing approach. Along
with such advantages, a few defects occur in FDM products during the printing stage. Diagnosing
defects occurring during 3D printing is a challenging task. Proper data acquisition and monitoring
systems need to be developed for effective fault diagnosis. In this paper, the authors proposed
a low-cost multi-sensor data acquisition system (DAQ) for detecting various faults in 3D printed
products. The data acquisition system was developed using an Arduino micro-controller that collects
real-time multi-sensor signals using vibration, current, and sound sensors. The different types
of fault conditions are referred to introduce various defects in 3D products to analyze the effect
of the fault conditions on the captured sensor data. Time and frequency domain analyses were
performed on captured data to create feature vectors by selecting the chi-square method, and the
most significant features were selected to train the CNN model. The K-means cluster algorithm was
used for data clustering purposes, and the bell curve or normal distribution curve was used to define
individual sensor threshold values under normal conditions. The CNN model was used to classify
the normal and fault condition data, which gave an accuracy of around 94%, by evaluating the model
performance based on recall, precision, and F1 score.

Keywords: Arduino; data acquisition system; fault detection; fused deposition modelling; low-cost;
multi-sensor

1. Introduction

The additive manufacturing process [1] is a growing manufacturing field that uses
layer by layer deposition of the material to produce a finished product [2]. Additive
manufacturing (AM) uses CAD/CAM software to generate 3D products that are further
converted into G-codes using slicer software. The G-codes file is provided to the 3D printer
for producing 3D printed objects. It performs layer-by-layer deposition of material and fol-
lows a G-codes sequence to print an object [1]. Along with G-codes, many AM processes use
their own vector generation mechanism [3]. Digital light processing (DLP), fused deposition
modelling (FDM) [4–6], selective laser sintering (SLS), and stereolithography (SLA) [7] are
the types of AM processes. The FDM-based 3D printer is popular for producing low-cost
and complex geometrical objects while reducing the printing time. Along with several
benefits, FDM also leads to defects in final printed products due to various reasons. The
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faults occur in objects resulting from changing the process parameters, such as disturbed
bed leveling, changes in nozzle or extruder temperature, structural looseness, etc. [5].

The majority of defects arises due to changes in temperature and vibration caused
during the printing stage. Due to a material property or printing process failure, the FDM
3D printed component is produced with a variety of defects, including warping, poor
surface finish, porosity (infill gap), stringing, cracking, and so on [1,8]. The author in [9]
mentioned the various 3D printing defects and provided a possible solution to reduce
those defects. A few other methods, such as X-ray computed tomography (XCT) and
active infrared thermography (IRT), can also be used to quantify defects in the additive
manufacturing process [10,11]. The warping defect in the 3D object occurs when the
material deposition is non-uniform, and there is a temperature difference between the
nozzle and bed during the printing process. Another defect caused due to solidification
is porosity. Porosity is the initial stage of producing cracks in the finished product. It
appears due to entrapped gas bubbles, lack of fusion, solidification shrinkage, and loss of
material properties due to humidity and moisture [12]. Defects also occur in the product
with the increasing speed of cooling or heating due to the generation of shear stresses.
To deliver quality products in the market, detecting these defects in FDM printing is
crucial. Diagnosing defects that occur during 3D printing is a challenging task. Proper
data acquisition and monitoring systems need to be developed for effective fault diagnosis.
Proper classification of faulty products can also help in finding the causes of faults. In this
work, the authors aim to detect and classify the different types of defects that occur in
FDM-based 3D printing.

2. Related Work

Proper fault diagnosis is an essential aspect in additive manufacturing for producing
good quality products. The faults can be diagnosis by using data-driven methods [13].
Cyber-physical manufacturing [14] is an emerging area of the manufacturing process. It
deals with physical systems and interacts with the cyber domain through a communication
network [15]. In the cyber domain, physical system process parameters can be monitored
through each clock cycle of the communicating network using a sensing element. The
various employed sensing elements on the physical system can measure multiple process
parameters such as vibration, magnetic field, current, acoustic, temperature, humidity, etc.
Based on real-time sensor data, the anomaly can find out and represent an actual physical
system in the cyber domain to accurately predict the behavior of the physical system [16].
The actual physical system interacts with humans and environmental parameters that
change the physical system’s state, which is one of the significant issues in the physical
domain [17]. High-end FDM can monitor, but low-cost FDM does not have process mon-
itoring capabilities. In such a case, real-time data capturing and monitoring is possible
using an external data acquisition system and using multiple sensors. Even though the
high-end FDM machines have monitoring capabilities, they do not provide the provision
to classify the normal and abnormal (faulty) data for the analytics. Proper data analytics
helps to classify the causes of fault as well. Kousiatza et al. used thermocouple and fiber
Bragg grating (FBG) sensors to measure real-time field parameters and their effects on
multilayer deposition to identify anomalies [4]. In the additive manufacturing process, the
data-driven with predictive approach [18] is used to improve the surface integrity of the
finished product. Using multiple sensors such as infrared temperature, thermocouples,
and accelerometer, real-time temperature and vibration data were captured, and using
machine learning techniques, the quality of surface roughness of the finished product was
measured [19].

2.1. Monitoring Models Used in AM Process

Deep neural networks (DNNs) [20] with convolutional neural networks (CNNs) are
used to employ an automatic quality gradient system in AM processes. By capturing
real-time layer-by-layer deposition, the internal and surface defects in the finished object in
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3D printing can be measured and classified into different types [21]. When large objects are
printed using an FDM-based 3D printer, most of the defects occur between layers of the
printing process due to misalignment, leading to wastage of material and time. To prevent
wastage of material caused due to misalignment of objects, mechanical components and
structures in the AM process are introduced with a computer vision system. Langeland et al.
used two cameras set at different angles to capture real-time material deposition images to
train a deep learning model that further predicted defects based on the surface [22]. The
quality of 3D product maintenance is a big challenge in AM processes. However, predicting
defects in the 3D product is possible using image processing and supervised machine
learning models. Based on support vector machine models, datasets are classified into
two parts: abnormal and normal image datasets. Delli et al. performed an experiment on
acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) materials, and based on
their surface finishing, the part geometry types of defects introduced in the finished objects
were predicted [23]. Stoyanov et al. found that the machine learning models referred to
the predictive process control system to improve product quality and investigated ink-jet
electronics devices using a data-driven method [24]. In the stereolithography 3D printer
device, a high level of concentrated oxygen is used. Monitoring real-time oxygen levels
during the printing process is possible using the data-driven method, which measures the
normal and critical level oxygen levels to prevent a high risk of quality degradation [7].

2.2. Low-Cost Data Acquisition Systems

González et al. developed a low-cost Arduino-based DAQ system for automobile
dynamics applications [25]. For validation of a low-cost DAQ system, it is compared
with standard vibration acquisition technologies. Designed low-cost DAQ shows an error
of 2.19% compared to the standard vibration acquisition system. Gopalakrishna et al.
used an accelerometer, and a low-cost acquisition system was built to monitor a bearing
in a mechanical system and relay the data to the end devices [26]. Shen et al. used an
open-source Arduino micro-controller for the behavior monitoring of mussels [27]. The
mussels’ behavioral responses were observed and analyzed. Mussels’ heart activities and
valve motions were tracked using infrared and Hall sensors. During the exposure, mus-
sels displayed a typical behavior pattern, which was captured by the low-cost Arduino
microcontroller board. Barile et al. developed a real-time automated process to assess the
structural integrity of dynamic events by transmitting data such as temperature, position,
acceleration, and inclination wirelessly via the system’s harvested energy [28]. Titov et al.
developed a new design of the CaPaMan with low-cost, lightweight characteristics using
a 3D printer [29]. The effectiveness of the design circuit was tracked with the help of an
Arduino controller and sensors. Damcı et al. developed a low-cost acquisition system
designed for a single-axis vibration shaker table using an Arduino DUE board [30]. Pal-
adino et al. developed a low-cost monitoring system in the food processing industry to
control the quality of food products using the free, open-source kernel low-cost supervisory
control and data acquisition (SCADA) system [31]. Soto-Ocampo et al. developed a low-
cost and high-frequency DAQ system using a Raspberry Pi microcontroller to diagnose
a bearing test rig [32]. Vidal-Pardo et al. developed a five-channel Arduino-based DAQ
system for aerodynamic applications [33]. The literature found that developing such a
low-cost DAQ system has a considerable amount of application areas.

Many researchers use the Arduino and Raspberry Pi-based microcontroller to develop
low-cost DAQ systems to diagnose the different types of faults in 3D printers and other
machines [34,35]. The low-cost DAQ system has limitations of sampling frequency. The
traditional DAQ system with a single sensor may not capture all types of defects in the AM
process. The single sensor has a few drawbacks, as explained in Sayyad et al. [13], so the
multi-sensor approach is preferred for reliable results. During AM printing, the change in
process temperature and vibrations are essential monitoring parameters. These parameters
can only be monitored by using a multi-sensor approach. Changes in temperature can
easily be detected by temperature sensors, whereas vibrations generated due to structural
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defects can easily be captured using vibration sensors only. Therefore, the use of multiple
sensors is necessary in AM process fault detection. However, there has not been much
research addressing multi-sensor low-cost DAQ systems. The analysis of acquired data
using feature extraction is also missing in most of the literature.

In this paper, the authors focused on the following points:

1. The authors proposed a low-cost multi-sensor data acquisition system for the 3D
printer to detect various faults induced in the FDM 3D printed products during the
printing process.

2. In this work, the authors considered the different fault conditions for 3D printers dur-
ing experimentation, such as disturbing bed leveling, changing nozzle temperature,
changing belt tension, etc., and inducing severe defects in the finished product.

3. The data acquired by the designed DAQ system refer to performing time and fre-
quency domain analysis to extract various features from it and perform multiple fault
diagnoses using the CNN model.

3. Methodology

The data acquisition system is used to measure and record multiple sensor data, which
helps to analyze various faults and their conditions. The design of DAQ for dynamically
complex systems for low-cost platforms confronts various challenges, including a data
retrieval rate constraint [36]. In this proposed system, the DAQ is designed to capture
multi-sensor data through a different channel with the same sampling frequency. This
DAQ is used to measure vibration, sound, and current sensor output, which is mounted on
the 3D printer. The basic architecture of the data acquisition system is shown in Figure 1.

Figure 1. The basic architecture of DAQ.

3.1. Data Acquisition and System Design

The essential components of DAQ are the input device, signal conditioning unit, data
preprocessing unit, and output device. Input devices deal with sensors that measure real-
world or physical parameters such as vibration, humidity, temperature, and sounds that
convert signals into electrical form [37]. In the second step, the signal is amplified and
converted into a microcontroller readable format by using voltage to frequency converter,
analog to digital converter, and digital to analog converter circuits. In the third step, raw
data are processed and converted into their measuring unit by performing mathematical
operations. In the fourth step, generated data from the sensor are given to the output device
for data monitoring and storing purposes.

This proposed system uses vibration, current, and sound sensors as the input sig-
nals. VBR1/D0-3 is an industrial vibration sensor that is connected to the 3D printer
and transmits data to an Arduino using the RS485 module. The Max4466 adjustable gain
sound sensor is used to measure the sound intensity. It is connected to the analog to
digital converter of the Arduino board to measure sensor output. The ADS1015 operational
amplifier is used to amplify the current sensor output and is sent to the Arduino using
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Inter-Integrated Circuit, eye-squared-C communication (I2C). Through different terminals
of the Arduino Uno, different sensor data are measured by keeping a constant sampling
frequency. The detailed specification of the Arduino Uno, power supply, sensors, Analog
to digital converter (ADS1015), and RS485 Module is added in Appendix A.

In this data acquisition system, multi-sensor data were monitored and recorded with
design GUI and Python IDE (Integrated Development Environment) software and stored
in pdf format with a sampling frequency of 140 Hz. Figure 2 shows the DAQ architecture
layout. It is a prototype of the existing system designed and simulated from Proteus
software to check system feasibility.

Figure 2. Architecture of DAQ.

The components used in Figure 3 are the current transformer, sound sensor, step-down
transformer, Max487 IC, voltage regulator IC (7805, 7809), cooling fan, an Arduino Uno
board, etc. The 230 AC supply is given to a step-down transformer that gives 12.9 AC
output that further convert into 15.6 DC volts using a full-wave bridge rectifier circuit. For
5 V and 9 V supplies, voltage regulators IC 7805 and 7809, respectively, are used. Here, the
voltage drop across the IC generates heat energy that must be dissipated from the design
printed circuit board (PCB). Otherwise, it affects the performance of the hardware. This
heating problem was solved using a cooling fan with a mass flow rate of 60 cubic feet per
minute (CFM), as explained in Appendix B. As shown in Figure 3, the voltage divider
circuit is connected to R5 resistance in parallel. It gives output that varies from 4 to 20 mA,
such as the output provided by the analog terminal of the vibration sensor. The current
transformer is used to measure changing current by connecting burden resistance across it.
It gives analog output that must be amplified before being provided to the Arduino board.
The LM358 op-amp is used to amplify the current transformer output that is further sent to
the Arduino board to measure a change in current.

Here a max4466 adjustable gain sound sensor is used that offers analog output as per
changing sound intensity. Thus, no external amplification circuit is required for it. Using
the analog terminal of the vibration sensor, only resultant vibration is measured, but by
using the RS485 communication terminal, the individual axis of the vibration is measured,
which is more effective to troubleshoot faults induced in the 3D printed products. Thus, the
RS485 module is used to communicate with a vibration sensor and sends the individual axis
data to the Arduino board. Here current sensor analog output is given to a design op-amp
that provides better output for high ampere current, but using an ADS1015 programable
operation amplifier gives better output for low- or high-frequency signals. Therefore, the
ADS1015 programmable amplifier was used to measure the output of the current sensor.
The final layout of the circuit used for the proposed system is shown in Figure 4.
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Figure 3. Proposed system PCB layout in Proteus software.

Figure 4. The final layout of PCB.

3.2. Location of Sensors

The sensor’s location mounted on the experimental setup decides the intensity of
the variation measured by individual sensors. Most sensor locations affect the numerical
value generated by individual sensors during various fault conditions. Therefore, a proper
location for the sensor needs to be selected that captures effectively fault conditions and
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helps to improve diagnoses of various faults. In this proposed system, the design DAQ is
connected to sensors mounted on the FDM to measure faults induced during the printing
process. In a 3D printer, stepper motors are used, which are some of the major components
responsible for generating vibration, noise, and changing currents and electromagnetic
fields. Different sensors are mounted on a 3D printer based on the stepper motor position.

Figure 5 shows the experimental setup; on the lower horizontal beam-like structure,
the vibration sensor is mounted because two stepper motors perform their individual
operations and produce the vibration that is clearly measured in the lower horizontal beam
compared to the upper horizontal beam. This attached vibration sensor is used to measure
the three axes of vibration. The mounted sound sensor measures the noise produced by the
stepper motor. It is placed near the nozzle and the third stepper motor, which is always
closer to the deposited material layer to produce the 3D printed product or object. It
captures noise or sound during printing operations that help to analyze faults induced
in 3D products. The 3D printer requires a constant power supply to print an object, but
printing or environmental conditions cause fluctuations in the ability of the supply current
to keep a constant supply voltage. Clamp-type current transformers are used to measure
fluctuations in current, which are caused due to factors such as printing speed, nozzle
temperature, belt tension, disturbed bed leveling, etc. It is clamped to the live wire of the
single-phase supply in order to measure fluctuations in current. It is placed near to the
DAQ system that measures real-time sensor data with a timestamp. A separate graphical
user interface (GUI) was developed using the Python programming language. This GUI
records and displays real-time sensor data in a graphical format, as shown in Figure 6. It
represents a real-time data monitoring GUI that shows the real-time status of the 3D printer
during the printing process. The multiple sensors are mounted on the 3D printer to monitor
the health conditions of 3D printed products and capture variations in signals with fault
conditions. The GUI represents vibration, current, and sound sensor signals. The y-axis
represents variation in signals in terms of voltage, whereas the x-axis represents the time
duration for which signals are captured. When a fault occurs in the finished product, it gets
replicates in the form of variations in signals that are anomalies, as shown in Figure 6. The
green dotted line shown in the GUI is used to classify the signal into normal and abnormal
forms using the threshold value. Threshold values are calculated from the probability
distribution plot based on the maximum number of data points lying in normal printing
conditions. The detailed procedure for anomaly detection is explained in Section 4.6.

Figure 5. Experimental setup for the proposed system.
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Figure 6. Graphical user interface (GUI) for DAQ.

3.3. Experimental Conditions

After completing the hardware and software part, a designed DAQ was used to
analyze the fault induced in 3D printed products. These captured multisensor signals were
used for anomaly detection using a clustering algorithm. Mainly in the 3D printer, the
fault is induced in the product due to mechanical or electrical system failure. In mechanical
failure, the fault is induced mechanically, which has a major contribution with parameters
such as disturbed bed leveling, a loose assembly of the stepper motor, frame, nozzle,
belt tension, change in bed, and nozzle temperature, feed rate, etc. In electrical failure,
hardware and power supply failure are major contributors. Some of the faults occur due to
wrong information fed through slicer software. The authors induced defects in 3D printing
and predicted reasons responsible for generating faults in the final product. Overheating,
warping, messiness, elephant foot, infill gap, level shift, z-wobble or side layer issue,
cracking, and stringing are such faults that are mapped with their cause of fault generation,
such as 180 ◦C temp, 260 ◦C temp, high belt tension, low belt tension, low bed level and bed
level high, etc., as described in Table 1. A simple cube of the 30 mm × 30 mm × 20 mm
dimension was printed to capture the effects of the fault condition caused in the 3D product.

The different faults generated during the printing are listed below.
Warping: In FDM-based 3D printed products, the bottom surface is bent in the upward

direction to cause a warping defect. It mostly occurs with insufficient adhesion between
extrusion plastic with the print surface, and thermal contraction of the surface [38].

Cracking (delamination): In the 3D printing process, two-layers cannot stick together
properly and cause the separation of layers; such an effect is known as delamination or
cracking. It occurs due to poor adhesion and thermal shrinkages [38,39].

Layer Shifting: In the printing process, there is a certain displacement of the axis that
occurs up to a certain height due to mechanical failure or lack of power given to motors,
causing overheating of the motor, which loses its functionality [9].

Z-wobble or side layer issue: This is the most common defect introduced in 3D
products and forms an inconsistency in wall alignment. Such types of defects mostly occur
due to structural failure and excessive tightening of z-axis motion affecting components [40].
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Overheating or curling: This type of defect occurs when material melts at too high a
temperature, and there is not enough time to cool material before forming layer by layer
deposition [40].

Elephant foot: Expansion of the first layer during printing introduces elephant foot
defects in the 3D product. These faults occur because the nozzle is too close to the bed
surface [38].

Infill Gap: It occurs in 3D printed object surfaces due to changing printing speed or a
slightly blocked surface nozzle, resulting in a disturbed quality of the finish product [38].

Table 1. Fault condition and fault images with labels.

Normal and Induced
Fault Condition Description FDM Product Faults

Normal Condition

Bed and extrusion temperatures are kept
at 50 ◦C and 200 ◦C throughout the
printing process. The bed levelling is also
uniform, using an adjustable screw
connected to the levelling mechanism on
which the 3D printer bed is mounted. The
link connected to the horizontal beam and
pully is tight enough to prevent the belt
from slipping.

No fault

Disturbed Bed
Leveling (Level up)

Bed and extrusion temperatures are kept
at 50 ◦C and 200 ◦C, respectively,
throughout the printing process, and all
links connected to horizontal columns are
tight enough to prevent slippage. The bed
leveling is disturbed using the adjustable
screw that blocks the nozzle from the
front side.

• Poor infill [39,41]
• Elephant foot [38]

Disturbed Bed
Leveling

(Level down)

Bed and extrusion temperatures are kept
at 50 ◦C and 200 ◦C, respectively,
throughout the printing process, and all
links connected to horizontal columns are
tight enough to prevent slippage. The bed
leveling is disturbed using the adjustable
screw that keeps the distance between the
nozzle and bed surface approximately
0.2 cm that prints the first few layers in
the air.

• Layer shift [9]
• Poor adhesion [9]

Disturbed Extrusion
Temperature: 260 ◦C

The bed level is uniform, and all links are
tight enough to avoid slippage. The
temperatures of the nozzle and bed are
kept at 260 ◦C and 50 ◦C, respectively.
Due to increasing nozzle temperature, the
quality of the finished surface
gets reduced.

• Overheating [40]
• Poor surface

finish [40]

Disturbed Extrusion
Temperature: 180 ◦C

The bed level is uniform, and all links are
tight enough to avoid slippage. The
nozzle and bed temperature are kept at
180 ◦C and 50 ◦C, respectively, due to
decreasing nozzle temperature and
causing weak layer deposition. This leads
to cracking and edge warping defects in
the final product.

• Cracking or layer
separation [38,39]

• Edge warping
[38]
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Table 1. Cont.

Normal and Induced
Fault Condition Description FDM Product Faults

Low Belt Tension

The bed and nozzle temperatures are kept
at 50 ◦C and 200 ◦C, respectively, with
uniform bed leveling. The link that
connects the horizontal beams to the pully,
which helps the stepper motor drive the
nozzle assembly along a horizontal axis,
becomes loosened.

• Infill gap [41]
• Level Shift [38]

High Belt Tension

The bed and nozzle temperature are kept
at 50 ◦C and 200 ◦C, respectively, with
uniform bed leveling. The link that
connects horizontal beams to the pully,
which helps the stepper motor drive the
nozzle assembly along a horizontal axis, is
tight enough.

• Z-wobble or side
layer surface
issue [40]

3.4. Data-Driven Model

The data-driven model mainly deals with the collection of the raw signal data from
the different sensors, standardization of raw signals, and extracting and selecting the most
significant features to train machine learning or deep learning models. The flow of the
data-driven model is shown in Figure 7.

Figure 7. Flow chart for the data-driven model for anomaly (fault) detection.

In this proposed method, multiple sensor data were collected from the design DAQ
to prepare the dataset. Time and frequency domain analysis was performed on a raw
signal to extract various features that further form a feature vector. The number of feature
counts was reduced by using the chi-squared method. It selected the most significant
features based on the chi score and fed them to the CNN model to perform multiclass
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classification. The trained model performance was evaluated using a confusion matrix
based on performance evaluation parameters such as precision, F1-score, and recall. After
classification, k-means cluster algorithms were used to generate two clusters fed to calculate
the normal distribution curve to find out lower and upper threshold values for multi-sensor
data of the normal condition. Based on a threshold value, anomalies from multiple sensor
data were detected.

4. Results and Discussion

The result section describes the multi-sensor data analysis, feature selection, feature
selection, and model performance evaluation using the CNN model. The power supply
unit and sensor configuration part are described in Appendix B.

4.1. Multi-Sensor Data Analysis

Evaluating the performance of individual channels used for collecting data is achieved
by observing a maximum number of samples recorded by each channel within one second.
The sampling frequency of the individual channel is calculated by dividing the maximum
sampling frequency of the device by the number of channels. The sampling frequency
is decreased with an increase in the number of channels. In this proposed system, four-
channels or pins of the Arduino were used to measure the current, sound, and vibration
data. I2C and RS485 communication were used for current and vibration sensors to
capture real-time data. Through serial real-time data monitoring of three individual axes of
vibration, the current and sound sensor monitored at a baud rate of 115,200. The device
port and baud rate were configured in Python using the serial library and storing Arduino
serial data in pdf format. Various combinations of sensors and their effects on sampling
frequency were measured and are described in Table 2.

Table 2. Sampling frequency of individual and combined sensors.

Sensors Sampling Frequency (Hz)

Sound 1537–1540
Current 365–370

Vibration (along X, Y, Z direction) 206–210
Sound + Current 328–300

Current + Vibration 150–155
Sound + Vibration 195–200

Current + Vibration + Sound 140

In this proposed work, a simple cube object is printed with the 3D printer during
normal conditions. At the same time, real-time data are captured using multiple sensors.
Then, different faults are induced in the printing process manually Table 1, and faulty data
are captured.

This proposed method uses vibration, sound, and current sensors for data collection
purposes. Multisensor data efficiently capture the various fault condition and their cor-
responding effect. Vibration sensors capture the change in vibration intensity during the
printing stage. They can easily detect the structural defects occurring in FDM. Using the
current and sound sensor, the health condition of the 3D printer is easy to diagnose. The
current sensor is used to measure the fluctuation in the power supply. As faults are induced
in the machine, the current drawn by the stepper motors varies, and the corresponding
noise generated by the individual motor is also changed. The sound sensor is used to cap-
ture the noise produced by the individual motors under normal and abnormal conditions.
Figure 8 shows the raw signal representation for the normal and abnormal conditions.
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Figure 8. Raw sensor signal representation for normal and fault conditions.

4.2. Feature Extraction

The raw data collected from the sensor has large dimensions. Processing such high-
dimensional data may require more computational resources and time. Feature extraction is
helpful to extract the most significant features from the raw data for analysis. These features
can be extracted in time and frequency domains. This paper considers the time-domain
features such as mean, root mean square, peak to peak, variance, skewness, shape factor,
clearance factor, etc., and from the frequency domain, considering features such as spectral
mean, spectral variance, spectral standard deviation, spectral skewness, etc., to extract time
and frequency domain features. Table 3 shows the formulae used for extracting different
features. The same formulas calculate time and frequency domain features for each sensor
signal and create a feature vector.
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Table 3. Time domain and frequency domain features.

Feature Feature Name Formula

Time domain

Root Mean Square Yrms =

√
1
N

N
∑

i=1
yi

2

Mean Yrms =
1
N

N
∑

i=1
yi

Variance yvar =
n
∑

i=1

(yi−ym)
(N−1)

2

Skewness Yskew = ∑N
i=1(yi−ym)

3

(N−1)yσ
3

Kurtosis Ykur = ∑N
i=1(yi−ym)

4

(N−1)Yσ
4

Standard Deviation Ystd =

√
n
∑

i=1

(yi−ym)
(N−1)

2

Shape Factor YSF =

√
1
N ∑N

i=1 yi
2

1
N ∑N

i=1 yi

Clearance Factor Yc f =
max(yi)

1
N ∑N

i=1 yi
2

Peak to Peak Ypeak = max(yi)−min(yi)

Crest Factor Yc f =
Ymax
Yrms

Impulse factor Yi f =
Ymax
Ypeak

Frequency domain

Spectral Mean Frms =
1
N

N
∑

i=1
fi

Spectral Variance Fvar =
n
∑

i=1

( fi− fm)
(N−1)

2

Spectral Standard Deviation Fstd =

√
n
∑

i=1

( fi− fm)
(N−1)

2

Spectral Skewness Fskew = ∑N
i=1( fi− fm)

3

(N−1) fσ
3

Spectrum Kurtosis fkur =
N
∑

i=1

(
( fi− fm)

σ

)4
S( fi)

4.3. Data Normalization/Standardization

The extracted time and frequency domain have different numerical values. It is also
possible that the low dimensional feature should have a good correlation with predicted
output, and due to the high dimension of the feature, it may dominate the performance
of the low dimension feature. This problem is solved by referring to scaled data using
data normalization methods. In this proposed method, min–max methods are referred for
data normalization with a 0 to 1 scaling range. The extracted features are scaled using a
min–max scaler, and their mathematical form is represented in Equation (1) [42].

zmin_max =
yi −min(y)

max(y)−min(y)
(1)

4.4. Feature Selection Using the Chi-Square Method

The chi-square method is used to select the relevant features from extracted time
and frequency domains. The selected features are provided to classification algorithms
for performing multi-fault classification. In this paper, the chi-square method is used for
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feature selection purposes. This method is generally used for checking the independence
of two variables. Equation (2) is used for calculating the chi-square values [43]:

X2
d = ∑

(Xi −Yi)
2

Yi
(2)

where d = degrees of freedom, X = observed values, and Y = expected values.
When the observed values are close to the expected values, the value of chi-square

is low. The low chi-square value indicates the variables have high independence, i.e.,
low dependency. Thus, for high correlation or dependency, high chi-square values are
selected in the feature selection process. Figure 9 represents the time and frequency domain
feature nature evaluated by the chi-square method. The optimum number of features is
selected from this graph by defining the threshold value. This threshold value is randomly
selected, and the corresponding feature count is fed to the CNN model to evaluate model
performance. The author refers to time and frequency domain features calculated from
Table 1 to create a feature vector. As the number of the feature count increases, it increases
computation time. The most significant and relevant features are fed to the CNN model to
reduce computational time and avoid overfitting problems.

Figure 9. Feature selection using the chi-square method.

Each feature has different dimensions and numerical values that affect model perfor-
mance and induce the effect of the curse of dimensionality. Therefore, selecting the most
relevant features from the generated feature vector can reduce the computation cost and im-
prove classification accuracy. Table 4 represents selected features based on their chi-square
value and describes the multiple sensor feature contributions with the predicted value.

4.5. Model Performance Evaluation Using CNN

This section mainly discussed the working of the CNN model, performance evaluation
of the CNN model, learning curves for CNN model, and multi-fault diagnosis using the
CNN model.

4.5.1. Working of CNN Model

CNN is a conventional neural network mainly used for multi-class image classification,
diagnosis, and prognostic fields due to its feature mapping and data mining capability [44].
Figure 10 represents the architecture of the CNN model [45,46]. It automatically extracts
the most significant features from different input data using various kernel filters. To obtain
high-performance output from different algorithms, mostly preprocess data are used but
using the CNN model without preprocessing data may give high-performance output. The
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basic structure of CNN is a composite of the input layer, alternating convolution layer,
and pooling layer with equal padding that could be converted into low dimension using
a flatten layer to give the desired output by referring to a dense layer [44]. In between
the convolution layer with equal padding is mostly used relu as an activation function
that replaces the negative value by zero. The output predicting layers of CNN are mostly
composed of sigmoid activation functions that scale feed data through the range of 0 to 1.
The selected features from the time and frequency domain are fed to the CNN input layer
to perform multi-class fault classification. It performs feature extraction and classification
simultaneously using a neural network. It includes three convolutional layers, three pooling
layers, and a single dropout layer used to connect the fully connected layer.

Table 4. Selected features by the chi-square method.

Sr. No Feature Chi-Square Score Sr. No Feature Chi-Square Score

1 powspc_kurtosis_current 749.0191 21 IF_vib3 54.45829
2 powspc_skew_current 541.3756 22 MF_vib3 54.41491
3 mean_current 376.5628 23 CF_vib3 54.41491
4 kurtosis_vib3 255.8377 24 powspc_mean_current 54.4077
5 kurtosis_vib2 230.5496 25 std_vib1 53.96427
6 mean_vib2 139.974 26 rms_current 46.5927
7 rms_vib2 136.3834 27 var_vib1 44.64349
8 mean_vib3 114.8013 28 SF_vib1 44.49147
9 powspc_p2p_current 114.0053 29 std_sound1 43.93499

10 rms_vib3 113.5372 30 mean_vib1 43.30074
11 p2p_vib2 92.40597 31 rms_vib1 42.90891
12 peak_vib2 92.40597 32 var_vib3 41.39019
13 powspc_std_current 81.00898 33 SF_vib3 41.35895
14 IF_vib2 77.83489 34 p2p_vib1 38.15497
15 CF_vib2 77.71817 35 peak_vib1 38.15497
16 MF_vib2 77.71817 36 std_vib3 34.05571
17 powspc_rms_current 75.84044 37 SF_vib2 31.32263
18 kurtosis_vib1 69.38061 38 var_vib2 31.23275
19 p2p_vib3 65.75025 39 SF_sound1 30.55542
20 peak_vib3 65.75025 40 var_sound1 30.53649

Figure 10. Basic architecture of the CNN model.
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Convolution Layer

The forward propagation process uses kernel filters and activation functions to perform
convolution operations. A feature vector made by a feature matrix is obtained in the
convolution layer that performs feature mapping shown in Equation (3) [47]:

xl
j = f

 ∑
i=ml

j

(
xl−1

j + kl
ij

)
+ Bl

j

 (3)

where xl
j is lth layer map with a jth feature, f is the activation function, ml

j is a group of the

input to be calculated by output, kl
ij is the kernel used for lth layer, and Bl

j is the bias of the
lth layer.

In the backward propagation process, the back-propagation algorithm updates the
convolutional layer, and its parameters or weight during every run of epochs to improve
CNN model performance output are shown in Equation (4).

∂L
∂kl

ij
= ∑

a,b

((
δl

j

)
a,b
∗
(

pl−1
i

)
a,b

)
,

∂L
∂Bl

j
= ∑

a,b

(
δl

j

)
a,b

(4)

where
(

pl−1
i

)
a,b is the loss function that patches with xl−1

j and is multiplied element-by-

element by kl+1
ij during convolution to compute the element at (,) in the output convolution

result; xl
j . δl

j is jth element of the sensitivities in the lth layer.

Pooling Layer

The number of layers connected to the convolutional layer of the CNN model can be
reduced, but the number of neurons in each feature map is not reduced significantly, which
leads to causing high dimension and overfitting of the model. To reduce the overfitting
problem, a pooling layer is used. Equation (5) calculates the forward propagation of the
pooling layer, and Equation (6) represents the back-propagation of the pooling layer.

xl
j = f

(
βl

j ∗ down
(

xl−1
j

)
+ Bl

j

)
(5)

∂L
∂βl

j
= ∑

a,b

(
δl

j ∗ down
(

xl−1
i

)
a,b

)
(6)

Here, down(.) denotes a sub-sampling function, βl
j denotes multiplicative bias, and Bl

j
denotes the additive bias of the lth layers.

Fully Connected Layer

In this layer, all neurons are connected to each other, which means the previous layer
neuron is connected to the next layer, as with multilayer perceptions, and the output from
the fully connected layer is calculated by Equation (7).

xl = α
(

wl xl−1 + Bl
)

(7)

where Bl is the bias of the lth layer, α(.) is the activation function, and wl is the weight.

4.5.2. Performance Evaluation Metrics

To evaluate the prediction performance of the classification problem, using machine
learning or a deep learning model can be the preferred confusion matrix. It provides a
confusion matrix report that tells us an individual class performance based on precision,
recall, F1-score, and support. The output predicted by the CNN model is evaluated by the
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confusion matrix using tp (True Positive), tn (True Negative), fp (False Positive), or fn (False
Negative) parameters. Precision represents the positive predictive value ratio calculated
from the total positive prediction. It defines the number of positive cases that turn into
positive values and is calculated by mathematical Equation (8).

Pprecision =
tp

tp + fp
(8)

where

tp is a true positive value, or actual and predicted value is true and positive.
tn is a true negative value, or actual and predicted value is true and negative.
fp is a false positive value, or the predicted output was a positive value, but the actual
predicted output is negative.
fn is a false-negative value, or the predicted output was a negative value, but the actual
predicted output is positive.

The recall shows how correctly our model predicts actual positive cases. It shows
probability distribution and defines the sensitivity of the true predicted output, and its
mathematical form is described in Equation (9).

Rrecall =
tp

tp + fn
(9)

Therefore, precision is essential in cases where false positive is higher than false-
negative prediction values, and recall is necessary where false-negative is greater than
false-positive predicted values. However, in actual implementation, the increased recall of
the predicted output given model precision could be decreased and vice versa.

FF1_score =
2 ∗ Ppricision Rrecall

Ppricision + Rrecall
(10)

To solve such a problem, Equation (10) refers to and defines precision and recall in a
single line using F1-sores. The F1-scores in the confusion matrix are given harmonic means
recall and precision, and are maximal when both metrics parameters have the same or
equal values.

4.5.3. Learning Curves for CNN

The selected features from the chi-square method are fed to the CNN model to perform
classification. For training the CNN model, 80% of data is considered, and the remaining
20% of the data are preferred for evaluating model performance. It gives 94% of testing
accuracy on 20% of the test dataset, and corresponding accuracy and loss that occur during
the model building process are shown in Figure 11.

Figure 11. The learning curve of the CNN model for training and testing accuracy and losses.
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4.5.4. Multi-Fault Diagnosis Using CNN

The performance of the CNN model is evaluated using different performance eval-
uation parameters. Figure 12 shows that multiple fault classification is performed using
the CNN model by referring to the confusion matrix and calculates precision, recall, and
F1-score for an individual class, as shown in Figure 13.

Figure 12. Multi-fault diagnosis using a confusion matrix.

Figure 13. Performance evaluation using the CNN model.

4.6. Anomaly Detection Using K-Means Clustering Algorithm

K-means is an unsupervised learning algorithm that deals with unlabeled data and
groups them into several clusters. Each cluster groups similarity of data and shows
dissimilarity with the remaining cluster. It assigns data points to clusters, such as a sum of
the square distance between the cluster centroid and the data point should be minimum.
The minimum distance shows that the defining cluster has homogeneous data points
and well-separated distance with individual clusters. Since it refers to a distance-based
mechanism to group similarities in the data, it needs to be fed standardized data, which
have zero mean and one standard deviation. Therefore, the actual data are normalized
using min–max, standardization, or z-score-based scaling methods. Figure 14 represents
the normal and abnormal condition vibration, sound, and current sensor data. The normal
and faulty printed product data are used for comparison to find the anomalies from the
data. The authors performed exploratory data analysis on vibration, current, and sound
sensor signals to detect anomalies. The X-axis of the subplot represents time in seconds,
whereas the Y-axis of each subplot indicates sensor output in voltage.



Sensors 2022, 22, 517 19 of 33

Figure 14. Representation of normal and abnormal condition vibration, sound, and current sen-
sor data.

Each subplot of Figure 14 is compared with the normal condition to identify anomalies.
For anomaly detection, the proposed k-means algorithm is used. The k-means algorithm
divides the dataset into two groups based on the distancing mechanism. Each cluster has
multiple sensors signals plot the normal distribution curve that represents the probability
of data distribution symmetrically on both sides, as shown in Figure 15. Data points away
from the bell curve represent the distribution of data in terms of standard deviations. A low
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standard deviation indicates that data are clustered toward the mean or center, showing
higher normal deviation density. However, the large standard deviation indicates that data
spread away from the mean and generate a wide and flatter curve. The probability of data
distribution is calculated using Equation (11):

f (x) =
1

σ
√

2π
e
(x−µ)2

2σ2 (11)

where f (x) is a probability distribution, σ is standard deviation, σ2 is variance, x is the
variable, and µ is the mean value of a variable.

Figure 15. Vibration signal bell curve for deciding threshold values (for normal conditions data).

The point that covers 99.99% of the data distribution is selected from the bell curve as a
threshold value for fault conditions, as shown in Figure 16. The values that cover 99.99% of
the distribution from each cluster are set as an upper and lower threshold value for normal
conditions. Using the same methods, the threshold value for multiple sensors is calculated.
These upper and lower limits act as a boundary condition for remaining sensors, and based
on it, anomalies in each condition can be calculated.

Figure 16. Threshold selection for normal data.

For the anomaly detection purpose, multiple sensor data such as vibration, current,
and sound are considered. The threshold values are calculated from the normal condition
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that divides the data into normal and anomaly data. Figures 17 and 18 represent anomaly
detection for low and high belt tension conditions. Once the threshold values are finalized,
the real-time status of the product during the printing stage can be monitored by using the
developed GUI.

Figure 17. Anomalies detection for low belt tension.

Figure 18. Anomalies detection for high belt tension.

5. Conclusions

In this work, a low-cost data acquisition system (DAQ) is designed using an Arduino
micro-controller that captures real-time multi-sensor signals using various sensors such as
vibration, current, and sound. The important findings of the study are quickly summarized
as follows:

1. The multiple sensor’s real-time data was captured through a developed low-cost
DAQ system with a uniform sampling rate of 140 samples per second (Hz) using an
Arduino microcontroller board.
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2. Multiple faults are induced in the 3D product, and the corresponding variations in
the multiple sensor signals are recorded.

3. Time and frequency domain analysis is performed, and features are selected using the
chi-square method.

4. The k-means cluster algorithm is used for data clustering purposes, and a bell curve or
normal distribution curve is used for defining the individual sensor threshold values
under normal conditions.

5. The CNN model is used to classify the normal and faulty data to evaluate the model’s
performance based on recall, precision, and F1 score. Around 94% classification
accuracy is obtained by using the CNN model, and corresponding anomalies from
individual sensors are also determined.
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Abbreviations

ABS Acrylonitrile Butadiene Styrene
AM Additive Manufacturing
ADC Analog to digital converter
CSV Comma-Separated Values
CNN Convolutional Neural Network
CFM Cubic Feet per Minute
CT Current transformer
DAQ Data Acquisition System
DLP Digital Light Processing
DC Direct Current
FFT Fast Fourier Transform
FBG Fiber Bragg Grating
FOS Factor of Safety
FDM Fused Deposition Modelling
GUI Graphical User Interface
IC Integrated Circuit
I2C Inter-Integrated Circuit, eye-squared-Communication
MEMS Micro-Electro-Mechanical System
PLA Polylactic Acid
PSD Power Spectrum Density
PCB Printed Circuit Board



Sensors 2022, 22, 517 23 of 33

SLS Selective Laser Sintering
SPI Serial Peripheral Interface
SRAM Static random-access memory
SLA Stereolithography
SCADA Supervisory Control and Data Acquisition
SMPS Switch Mode Power Supply
USB Universal Serial Bus

Appendix A.

Appendix A.1. Arduino Uno Specification

The proper selection of data acquisition is an essential aspect of any data monitoring
system. Due to its high cost, acquiring experimental equipment has become a challenge.
The Arduino board is used to partly solve this problem because it is low-cost and easy to
practical equipment control [48]. The Arduino Uno is the microcontroller with an internal
chip of atmega328p that operates at 16 MHz clock speed with 32 kb Flash memory and
2 kb Static random-access memory (static RAM or SRAM), the specification of the Arduino
Uno board is shown in Table A1. It has digital and analog input–output pins that use to
connect different sensors to the microcontroller. Those input–output pins designation can
be changed through Arduino software. The Arduino board can be powered by a Universal
Serial Bus (USB) cable or external power supply that varies from 6 to 20 volts. It has digital
and analog input–output pins that can connect to several boards and circuits to perform
various control and monitoring operations. It has an inbuilt analog to digital converter that
measures analog sensor output through 6 pins and digital sensor output through 14 pins. It
also incorporated with digital and analog output given sensors using I2C, Serial Peripheral
Interface (SPI) communication interfaces [49]. In this proposed work, vibration and current
sensors communicate with Arduino using RS485 and I2C protocols. However, the sound
sensor output was directly given to the Arduino analog to digital converter to measure the
sound intensity. Real-time data can be monitored through the serial monitor at a baud rate
of 115,200 bps. It sends real-time sensors data to Python IDE using serial communication.

Table A1. Specification of Arduino Uno.

Parameter Specification

Clock speed 16 MHz
Operating voltage 5 V

Analog Pins 6
Digital Pins 14

SRAM 2 kb
Flash Memory 32 kb

Appendix A.2. Power Supply

All electronic devices are designed to work at a pre-define power rating based on
voltage and current. Generally, the voltage supply to an electronic device is fixed or ideally
constant, and current consumption is changes due to changing load conditions. The voltage
regulation is one of the essential parameters of power supply modules that affect the
performance of the complete circuits. Hence constant power supply is essential for the
smooth working of DAQ.

The requirement for a consistent voltage supply is met in this proposed DAQ system
by employing design voltage regulating circuits for 5 V, 9 V, and for a 24 V proposed switch
mode power supply (SMPS) is used. The VBR1 is the industrial sensor that requires a 24 V
supply as input and gives output that varies from 4 to 24 mA and 0 to 10 V using an analog
and RS485 terminal. For the remaining sensors such as sound and current, a 5 V power
supply is required. The external cooling fan is connected to a circuit that cools voltage
regulating IC 7809 and 7805 by connecting to a 9 V power supply.
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Appendix A.3. Sound Sensor

It is a sound detection module that uses a capacitive microphone and inbuild Max4466
adjustable gain amplifier to measure sound waves through their intensity and converters
them into an electrical signal. It is also used to measure and record changing voice or
audio that play an important role in further calculating FFT from the sound signal. It
uses a capacitive microphone soldered in a module that has a 20 kHz operating frequency.
Measuring audio waveform coming out from the output pin of the module has VCC/2 DC
bias, so at the perfect quiet place, it was given steady output, which is half of the supplied
voltage (VCC/2). It also provides AC-coupled audio by connecting a 100 µF capacitor
between the sensor’s output pin and the analog input pin of the Arduino board. The output
getting from the module is not suitable for driving speakers directly. For that purposed
external audio amplifier is required. In this proposed system, the Max4466 Sound sensor
given output is directly fed to the analog terminal of the Arduino Uno board. As per
changing the sound intensity, the output voltage given by the sound sensor is increased up
to 5 V. The specification of the sound sensor considered during selection is described in
Table A2.

Table A2. Specification of the sound sensor.

Parameter Specification

Model MAX4466 Electret Microphone Amplifier
Supply Voltage 2.41 to 5.5 V

Power-Supply Rejection Ratio 112 dB
Common-Mode Rejection Ratio 126 dB
Gain Bandwidth Product (kHz) 600

Appendix A.4. Current Sensor

The current transformer is an electrical device that is used to measure alternating
current. It is mostly used to determine the amount of electricity consumed by electronic
equipment. It is a split core type device that can be clamped to the live or neutral wire of
the electronic device to measure alternating current. It connects one wire at a time, either
live or neutral wire. SCT-013-030 is a split-core current transformer having the jaw to clamp
the wire. The current transformer is installed 90 degrees to the current-carrying conductor.
A change in magnetic field induces a voltage in the secondary winding that is directly
proportional to the amount of current flowing to the clamp wire, and its specification is
described in Table A3.

Table A3. Specification of current sensor.

Parameters Specification

Model SCT-013-030
Input Current 0 to 30 A

Output 0 to 1 V
Frequency range 50 Hz to 1 kHz

Temperature range −25 ◦C to 70 ◦C

Appendix A.5. Vibration Sensor

VBR1/D0-3 is an industrial vibration sensor are operating on a 24 V power supply
to give output that varies from 4 to 20 mA and 0 to 10 V. It has five terminals or wires.
Out of five, two terminals are connected to a 24 V power supply, two-terminal are used
for RS485 communication, and one terminal gives an analog output that varies from 4 to
20 mA. The same sensor data is captured through RS485 and analog wire, but at a time,
one type of wiring connection is used to measure vibration. The VBR1/D0-3 is a Micro-
Electro-Mechanical System (MEMS) sensor used to monitor and measure shocks, vibration,
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tilt, and temperature. Using Analog and RS485 terminal of vibration sensor measures
resultant and individual axis vibration. This proposed system used an RS4855 terminal of a
vibration sensor to measure the individual axis of vibration. Table A4 refers to describes
the specification of vibration sensor that has a major contribution to sensor selection.

Table A4. Specification of Vibration Sensor.

Parameters Specification

Model VBR1/D0-3
Supply Voltage 24 V
Number of Axis 3

Frequency Range 400 Hz
Weight 100 g

Operating Range ±16 g

Appendix A.6. ADS1015

It is an Analog to digital converter (ADC) device with a 12-bit resolution offered to the
connected device. It is transfers data to the Arduino board using I2C communication. It has
four I2C slave channels that address four devices at a time. It is powered by a single power
supply that varies from 2.5 to 5.5 V. That also supports differential and single-end devices
to measure the analog signal. ADS1015 is a device that has a sampling or conversion rate
of 3300 samples per sec. It is suitable for an input range of ±250 mv and comfortable
for large or small signals to be measured with High resolutions. It also has an inbuild
multiplexer that gives two differential and four single-ended inputs. It is a programmable
amplifier module that can switch its operating mode of channels through programming
either single-end or differential ends. The ADS1015-Q1 device has two modes of operation:
continuous conversion and single-shot conversion, which immediately powers down after
a conversion and reduces current usage significantly during idle periods.

Appendix A.7. RS485 Module

RS485 Module works on the asynchronous serial communication protocol [50], which
means along with data, there is no synchronous clock pulse transmitted. It also used
differential signals that transfer data from one device to another device using binary
conversion. The differential signal is working on the differential voltage range ±5 V. One of
the advantages of the RS485 module is that it rejects the common mode of noise. It transfers
the data with a sampling rate of 30 MB per second. It also has a provision to support
multiple slave devices using a single master mode. It can connect with 32 devices at a time.
In this proposed work, the RS485 module communicates with the vibration sensor and
transmits sensor data to the Arduino board. RS485 module can be used as a transmitter as
well as the receiver. In the case of the transmitter, receiver Enable (RE), and Driver Enable
(DE) pin of module connected to 5 V supply and DI pin of the module is connected to
transmitter pin of Arduino, then data from transmitting (Tx) pin of the Arduino was sent
to DI pin of the module. In the case of the receiver, the RE and DE pins of the module are
connected to the ground. Then, from the RO pin of the RS485 models, send the complete
sensor data to the Arduino board.

Appendix B.

Appendix B.1. Power Supply Unit

The Full-Wave Bridge Rectifier Circuit

In a bridge rectifier, both half cycle of the sine wave is rectified by connecting four
diodes together to form a bridge circuit. The secondary winding of the transformer is
generally connected to the bridge circuit on one side and another side connected with a
load, as shown in Figure A1. It converts AC output voltage into pulse Direct Current (DC)
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output voltage that can further be used as a power supply after smoothing output voltage
using a capacitor. The advantage of a full-wave bridge circuit is that it does not require a
center-tapped transformer that reduces the cost and size of the circuit. It is also suitable for
a single secondary winding that is directly connected to the bridge and provides constant
voltage across load or resistance. Here current flowing through the load is unidirectional,
so voltage develops across load should be the same.

Figure A1. Full Wave Bridge Rectifier Circuit.

The average DC voltage across the load is calculated by Equation (A1).

Vavg = 0.637 Vpeak (A1)

In actual implementation, the voltage getting across the load is not meeting with
simulation output. Because of the diode, it does not turn on until the source voltage reaches
0.7 V. The bridge circuit operated on two diodes, so 1.4 V source voltage is lost due to
the diode.

The corrected peak output voltage getting from the full-wave bridge rectifier circuit is
calculated by Equation (A2).

Vavg = 0.637
(

Vpeak − 1.4v
)

(A2)

The full-wave bridge rectifier inverts each negative cycle and doubles the number
of positive cycles. Therefore, it gives an output frequency that is twice than input as per
Equation (A3).

fout = 2 f in (A3)

The output voltage from the rectifier circuit is in pulse form that increases up to peak
voltage and decreases until zero volts. Such output cannot be used as a power supply. The
minimum fluctuation or ripper is required to get a steady or constant DC power supply
from the circuit.

The maximum ripper voltage getting from the full-wave bridge rectifier is calculated
by Equation (A4).

Vripper =
Iload
f ∗ C

(A4)

A filtered signal need to be received from a full-wave bridge circuit to obtain constant
voltage. This problem can be solved by connecting a 1000 µF capacitor to a bridge circuit.
The connected capacitor charge itself till the peak voltage, then it discharges itself to
maintain the constant output voltage, as shown in Figure A2.
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Figure A2. Waveform of Rectifier Circuit.

Root Mean Square Error value of an output voltage of full-wave bridge rectifier
calculated by Equations (A5) and (A6).

Vrms =
Vpeak√

2
(A5)

Vavg = 0.9 Vrms (A6)

Crest or Peak Factor of the output voltage of full-wave bridge rectifier circuit calculated
by Equations (A7) and (A8) represents peak to peak voltage getting as output.

Vcrest =
Vpeak

Vrms
(A7)

Vpeak−to−peak = 2Vpeak (A8)

The form factor of the output voltage of the full-wave bridge rectifier circuit is calcu-
lated by Equation (A9).

Vf =
Vrms

Vavg
(A9)

The 7805, 7809, 7812, 7824 IC are a member of the 78xx series of voltage Regulation
families. It is mainly used for giving a steady or constant voltage. Figures A3 and A4
represent the actual voltage regulating circuit used in the proposed system. In Figure A3,
the output taken from the full-wave rectifier circuit is given as input to 7809 IC, and at
the output, it provides 10 V as a power supply. The 7809 IC has three terminals; Inputs,
Ground, and Output. The Input terminal of the IC is connected to the positive terminal of
the 15.9 V supply. The negative terminal of the IC is connected to the ground terminal of
the supply and gets a 10 V as output.

Figure A3. Voltage regulation using 7809.
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Figure A4. Voltage regulation using 7805.

Using voltage regulation IC, high Input voltage converts into a low output voltage.
Due to voltage differences across IC, a lot of energy is exhausted in the form of heat. When
the difference between input and output voltage is high, then a large amount of heat is
generated that affects the performance of voltage regulating IC. It’s required to dissipate
generated heat for the voltage regulator IC as fast as possible for smooth functioning
purposes. The heat dissipation problem can be solved in multiple ways like.

1. Selecting the appropriate size of the heatsink,
2. Keeping the low voltage difference across IC,
3. Using multiples voltage regulating IC that can convert high voltage supply into a

lower supply voltage due to performing step by step reduction and cause a minimum
voltage to drop across IC,

4. Selecting the appropriate cooling fan size, etc.

In this proposed system, the proper size of the cooling fan is selected to continuously
passes air across IC with a mass flow rate of 60 Cubic Feet per Minute (CFM), and due to
force convection, it dissipated generated heat to surrounding as fast as possible and keep
IC surface temperature is low.

To calculate the amount of heat generated by the 7805 and 7809 voltage regulator IC,
the following Equations (A10) and (A11) are referred.

Q5v = (Vin − 5) ∗ Iout (A10)

Q9v = (Vin − 9) ∗ Iout (A11)

The total amount of heat generated by the circuit Qtotal can be calculated by
Equation (A12).

QT = (Q5v + Q9v) ∗ FOS (A12)

Here,

Q5v = amount of heat generated by 7805 IC
Q9v = amount of heat generated by 7809 IC
QT = Total amount of heat generated
Vin = Input voltage given to voltage regulating IC
Iout = output current given by output terminal of IC
FOS = factor of safety.

Those voltage regulating IC has provision for a heat sink that can be connected at the
backside of the IC. Using the natural convection method, the cooling rate of IC is slow
during load conditions. That’s one of the reasons which caused the failure of IC and power
supply. In the force convection method, continuous air passes over the backside of the
IC surface using an external fan that reduces IC temperature quickly and gives a smooth
power supply.
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The amount of heat dissipated by the cooling fan can be described by Equation (A13).

Q f an = MCp(T2 − T1) (A13)

where

Q f an = Amount of Heat Generated by Fan
M = Mass flow rate in Kg/s
Cp = Specific Heat of air
(T2 − T1) = Change in temperature.

The amount of air supply by Cooling Fan in CFM (cubic feet per minute) that can help
to dissipate heat from voltage regulating IC is calculated by Equation (A14)

MCFM = (1.76 ∗ QT )/(T2 − T1) (A14)

To fulfill the requirements of experimental airflow supply by the cooling fan in CFM,
an OD9225-12HHBIP68 cooling fan was selected, and their specifications are shown in
Table A5.

Table A5. Parameters required for fan selection.

Part Name Rated
Voltage

Input
Power

Rated
Current

Rated
Speed

Airflow
(CFM)

Noise Level
(dB)

Static
Pressure

OD9225-12HHBIP68 12 VDC 3.0 W 0.29 A 3300 RPM 60 38 0.25′′ H2O

Appendix B.2. Sensor Configuration with DAQ System

Appendix B.2.1. Current Transformer (CT)

A current transformer is similar to a standard transformer with a primary, secondary
winding, and magnetic core are as shown in Figure A5. The current flowing through the
wire produces a magnetic field in the core that induces current into the secondary coil.
The amount of current flowing through the measuring wire is directly proportional to the
current flowing through the secondary winding.

Figure A5. Current transformer.

The current flowing through secondary winding is calculated by Equations (A15)
and (A16)

CTturns =
Nprimary

Nsecondary
(A15)

Isecondary = CTturns ∗ Iprimary (A16)

The output of the current transformer gets converted into voltage using a burden
resistor. It completed a secondary winding circuit and was kept very low to maintain CT
core saturations.
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The primary peak and secondary peak current flowing through the winding of the
current transformer is calculated by Equations (A17) and (A18).

Iprimary−peak =
√

2 Irms (A17)

Isecondary−peak =
Iprimary−peak

Ns
(A18)

The burden resistance connected to CT is calculated by Equation (A19) and is de-
scribed below.

Rburden =
(

Vre f ∗ CTturn

)
/
(

2
√

2 Imax

)
(A19)

In this proposed method, the non-inverting operational amplifier is connected to a
current transformer that has the ability to convert the 1 mV output given by the current
transformer into 19.5 mV. It also provides an amplified output signal that has the same
phase as the input signal. It’s used negative feedback that is connected to the non-inverting
terminal of the operational amplifier.

In Figure A6, R4 and variable resistance are connected together to give output that
varies from 10 to 250 mV. Output is taken from variable resistance connected to DC volt-
meter to the measured voltage difference across variable resistance. This voltage divider
circuit is a replica of the voltage given by the current sensor. Equation (A20) calculates
the voltage across variable resistance connected to the DC voltammeter and non-inverting
terminal of the op-amp (operational amplifier).

Vvariable =
Rvariable

(R3 + Rvariable)
VR3 (A20)

Figure A6. Operational amplifier.

The input voltage signal given from the operational amplifier is gets amplified with a
gain of 19.5 V. As input voltage changes with millivolt corresponding output voltage signal
also change, which is measured with the help of a DC voltmeter. Equation (A21) represents
the output voltage getting from the output terminal of the operational amplifier.

Again =
Vout

Vin
=

(
1 +

R2

R1

)
(A21)

In Figure A6, the circuit used external resistance R1 and feedback resistance R2 that
connects to inverting terminal of the operational amplifier, and by applying Kirchhoff’s
law, the voltage across R2 resistance is calculated by Equation (A22).

Vin
R1

=
Vout −Vin

R2
(A22)
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Here, the input voltage applied to the non-inverting terminal of an op-amp is Vin, and
the output voltage getting from op-amp is Vout. Equation (A23) calculates the gain of the
closed-loop circuit

Vout =

(
1 +

R2

R1

)
Vin (A23)

However, in an actual implementation as compared to the designed operational
amplifier, the ADS1015 board gives better signal amplification. This board uses I2C
communication protocols and is suitable for measuring readings from differential and
single-ended devices.

Appendix B.2.2. Sound Sensor

The sound sensor gives differential output that can vary from 2.5 to 5 volts. The
differential voltage getting from the sound sensor as output is input for Arduino analog
pins. This output voltage is divided into 204 steps to convert it into analog form. This
analog output range varies from 0 to 1023 steps and is mapped with its measuring unit of
the maximum and minimum value in general. To calculate analog value given by sensor
Equations (A24) and (A25) are referred.

Vin =
Ain ∗ 5
1023

(A24)

Ain =
Vin ∗ 1023

5
(A25)

The intensity of sound measured by the sensor is calculated by Equation (A26).

dbsound = 20 ∗ log

(
Ain
Are f

)
(A26)

Here,

dbsound = Measured Intensity of sound in dB
Ain = The analog value generated by applying a differential voltage to the sound sensor
as output
Are f = The analog value generated by applying reference voltage (VCC/2).

Appendix B.2.3. Vibration Sensor

The vibration sensor gives output that varies from ±16 g. When the vibration sensor
is connected to the Arduino board through the RS485 module [51], it sends raw vibration
data that is further converted in decimal after multiplying the correction factor, as shown
in Equation (A27).

gvibration = Araw_analog ∗ Ccorrection_ f actor (A27)

The correction factor for raw vibration is given in Table A6.

Table A6. Correlation Factor for Raw Vibration Sensor.

Full Scale in g Correction Factor

2 6.1037 × 10−5

4 1.2207 × 10−4

8 2.4415 × 10−4

16 4.88305 × 10−4
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