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Abstract: Many studies focusing on improving Transmission Control Protocol (TCP) flow control
realize a more effective use of bandwidth in data center networks. They are excellent ways to more
effectively use the bandwidth between clients and back-end servers. However, these schemes cannot
achieve the total optimization of bandwidth use for data center networks as they do not take into
account the path design of TCP flows against a hierarchical complex structure of data center networks.
To address this issue, this paper proposes a TCP flow management scheme specified a hierarchical
complex data center network for effective bandwidth use. The proposed scheme dynamically controls
the paths of TCP flows by reinforcement learning based on a hierarchical feedback model, which
obtains an optimal TCP flow establishment policy even if both the network topology and link states
are more complicated. In evaluation, the proposed scheme achieved more effective bandwidth use
and reduced the probability of TCP incast up to 30% than the conventional TCP flow management
schemes: Variant Load Balancing (VLB), Equal Cost Multi Path (ECMP), and Intelligent Forwarding
Strategy Based on Reinforcement Learning (IFS-RL) in the complex data center network.

Keywords: reinforcement learning; TCP incast problem; bandwidth optimization

1. Introduction

The architecture of large-scale data center networks is optimized for providing many
cloud services [1–3]. As the data center network handles the massive number of TCP flows
for supporting high bandwidth use among network components (e.g., routers, switches,
and servers), many TCP control schemes specific to data center architecture have also
been proposed [4]. Figure 1 shows the structure of the conventional data center network
(e.g., Fat-tree), and the process for establishing TCP flows among network components.
In the Fat-tree architecture, the data center network consists of four layers of components:
the Core, Aggregator, Edge, and Server layers. A certain layer’s component has multiple
physical connections for the lower layer’s components, which are called child components,
and a component receiving a TCP flow establishment relays it to a child component. In
detail, each component holds TCP flows sent from the clients temporally, and relays them
to bottom servers by iterative TCP flow establishment to each child components. To realize
high bandwidth use in Fat-tree, redundant paths are ready to network components, and
each component controls TCP flows with proper use of the paths [1]. Other data center
architectures such as B-cube and DCell also fulfill the high bandwidth use with suitable
TCP flow control [5,6], and their packet controls on a flow are implemented into pro-
grammable network components such as OpenFlow switches and intelligent routers [7–9].
Despite adopting the excellent data center architecture, the developers of the data center
network have suffered from a TCP incast problem, which leads the degradation of TCP
throughput [10]. In detail, a network component has a queue for preserving TCP segment
data (contained into a TCP flow), and shares it for multiple TCP flows. If a lot of short flow
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(e.g, lightweight messages) arrives at the network component, the queue is overflowed and
the arrival packets are dropped. This TCP incast problem probably occurs in the internet
in the same way as a data center network. However, the communication quality on the
Internet is not guaranteed (i.e., best effort communication), so the temporal occurrence of
TCP incast is not critical for the users. On the other hand, a data center network sustains
numerous cloud services with their requested service-level agreement (SLA), therefore,
the communication delay caused by TCP incast probably violates the SLA and impairs
the reliability of the data center network. To prevent the occurrence of TCP incast, a large
number of TCP flows must be processed with several transport layer’s technologies on the
data center architecture.

Avoiding TCP incast, the approaches of adopting Data Center TCP (DCTCP) focus on
a rate adjustment, which means the packet sending interval adjustment among network
components [11–13]. However, its effectiveness has a limitation for optimizing the entire
TCP flow control in the data center network as its rate adjustment is executed on single
TCP connection between ingress and egress components (i.e., peer to peer). Alternatively,
using multipath TCP (MPTCP) scheme, a network component can forward packets through
multiple TCP connections in parallel. It realizes load balancing of packet forwarding
processes on the multiple TCP connections, and it contributes to the high bandwidth use
and transferring a large amount of data among network components [14–16]. However, a
policy for selecting multiple paths to establish TCP flow relies on ECMP (Equal Cost Multi
Path) protocol, which allocates the packet forwarding processes to multiple TCP paths
equally. In addition, similar to DCTCP, MPTCP can only optimize packet forwarding on
the target paths.

To achieve effective bandwidth use in the entire data center network, this paper
proposes TCP flows establishment scheme based on hierarchical feedback reinforcement
learning. The feature and advantages of the proposed scheme are as follows.

• For recognizing the entire network condition, the proposed scheme uses the hierarchi-
cal information which has been fed back from bottom to top components.

• Learning said information, the proposed scheme makes the empirical rule of effi-
cient TCP flow establishments, and tries to establish TCP flows for optimizing TCP
throughput in the entire data center network.

• Applying deep reinforcement learning approach into the learning algorithm, the
proposed scheme can handle a massive number of TCP flows effectively.

TCP flow

establishment
Physical link

Core

Aggregator

Edge

Server

Switch or router component

(software or hard)

Core

(Top layer)

Server 

(Bottom layer)

TCP flow is transferred from top to bottom.

Figure 1. A structure of conventional data center network (e.g., Fat-tree).

The feedback information can be included in general TCP information exchanging
so that the redundant communication (i.e., communicating fed back information) can be
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reduced. In addition, using deep reinforcement learning implementation bundled into
famous calculation library (e.g., Chainer [17]) can also reduce the computational cost for
applying intelligent TCP control. Therefore, the proposed scheme can realize the TCP
throughput optimization with lower overhead. The rest of this paper is structured as
follows. Section 2 introduces the related work concerning TCP flow management in data
center networks. Section 3 explains hierarchical reward feedback learning and discusses
simulation results of the proposed scheme in Section 4. Finally, Section 5 concludes this
paper’s body and presents the future work.

2. Related Work

There are many approaches to avoid the incast and achieve effective bandwidth use in
a data center network, which roughly consist of two groups described below.

The first approach tries to adjust a TCP flow rate control scheme such as DCTCP,
which achieves high bandwidth and low latency by adjusting TCP rate by using Explicit
Congestion Notification (ECN). Detecting an expansion of a packet queue length in its
own packet forwarding function, a network component begins attaching ECN onto a TCP
packet. After that, a network component receiving the packet-attached ECN negotiates
with the sender to reduce the TCP rate for preventing the occurrence of TCP incast. The
customized DCTCP for improving the bandwidth use in the entire data center network also
proposed [12,13]. These schemes adopt a central information management server collects
the network condition of the entire data center network, and determines TCP flow control
policies in each network component. Alternatively, the decentralized approaches for tuning
TCP flow rate are also proposed [18], which estimates the network condition by using
the statistical message passing method, and deals with TCP incast as soon as possible.
While TCP flow control based on ECN is proposed, FAST-TCP and TCP Vegas can realize
effective TCP rate control not using ECN [19,20]. These schemes can control TCP flow rate
by considering the queuing delay among network components, which enables them to
estimate the states of TCP flows without ECN.

The second approach considers how to establish TCP connections. Valiant load
balancing (VLB), which uses an oblivious flow control strategy, recursively forwards
packets or TCP flows for the lower layer network components at random. Thus, VLB
can handle TCP flow establishment independent of link capacities and TCP flow lengths.
Alternatively, there are also multiple ways to implement randomized load balancing among
multiple TCP flows. For example, MPTCP realizes multiple TCP flows establishments for
sending a large number of packets in parallel, whose connections used in MPTCP are found
by ECMP protocol [14,15]. The related works concerning MPTCP propose the congestion
flow migration and switching multiple TCP flow control algorithms on multipath TCP
flows [16,21]. The former changes the congested path of TCP to another one dynamically
so that TCP incast occurrence can be dealt quickly. The latter switches multiple congestion
control algorithms depending on network conditions. These schemes adjust TCP flow rate
among multiple paths. Applying intelligent statistical approaches for MPTCP’s rate control
has also been proposed, which improves the robustness for changing network condition
dynamically [22,23]. The former approach adjusts TCP rates across multiple paths by using
deep reinforcement learning. The latter approach can deal with drastic traffic changes
that could not be solved by the former approach. There are also schemes that intelligently
determine TCP path selection without using ECMP and MPTCP [9,24–26]. These schemes
determine which path to establish TCP by learning algorithms. In the algorithms, a learning
agent (e.g., network component) tunes the determination policy to minimize Round Trip
Time (RTT) or throughput of a TCP flow.

The first approach focuses on end-to-end TCP rate control on single TCP connection
so that it contributes only to the use of end-to-end bandwidth. Moreover, it has no mention
of how to establish a TCP path among network components; thereby, the effectiveness
is limited for improving bandwidth use in the entire data center network. Alternatively,
the second approach considers how to establish paths of TCP flows and improves the
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bandwidth use in entire data center network compared to first approach. However, several
schemes based on MPTCP depend on ECMP for establishing multiple TCP flows. Therefore,
the path selections become inefficient in complicated data center networks in which link
capacities are different. The path selection schemes without using ECMP and MPTCP can
realize effective bandwidth use even if link capacities are different. However, these schemes
focus on end-to-end bandwidth use and cannot realize the bandwidth optimization in the
entire data center network.

Against these works, this paper’s proposed scheme makes the empirical rule of
efficient TCP flow establishments in “entire” data center network. In detail, each network
component measures RTT and TCP throughput, and determines the TCP flow path with
reinforcement learning policy with the measured metrics. Additionally, the measured
metrics are hierarchically fed back to share among lots of components, and are used in
each component’s reinforcement learning. Note that the reinforcement learning algorithm
uses both the measured and the fed back metrics. This cooperative manner can realize
bandwidth optimization in the entire data center network.

3. Design of TCP Flow Management Based on Hierarchical Feedback Learning

This section describes the details of the proposed flow control scheme by using a
hierarchical feedback model. The proposed scheme consists of three modules, learning
module, resource-control, and feedback modules, which are implemented into a network
component. Figure 2 shows the procedure of the proposed scheme’s flow management in a
network component. Suppose network component A has the physical connections to B and
C (i.e., child components); the behavior of the network component A implementing the
proposed scheme can be explained as follows.

Step 1: When network component A receives a client’s TCP flow at time t, the resource-
control module in the network component A selects child component (i.e., the
lower connected component) to establish the TCP flow. This selection is determined
by loading the connection states from the learning module. After this selection,
network component A establishes a TCP flow to network component B.

Step 2: Next, network component A receives the feedback information containing child
network components’ network state (e.g., RTT and the number of held TCP con-
nections) from network component B through a feedback module. If a previous
TCP establishment causes TCP incast, the Round Trip Time (RTT) increases ex-
ponentially so that network component A learns its situation with the fed back
information sent from network component B.

Step 3: After a prescribed period of time elapses, if network component A detects the
same situation observed at time t (in time t + a), the learning module predicts that
TCP flow establishment for network component B causes TCP incast. Then, the
resource-control module of network A does not establish TCP flow to the network
component B; instead, the resource-control module establishes TCP flow to network
component C.

To recognize the entire network condition, the network components implementing the
proposed scheme feedback the network states from the bottom to the top components, hier-
archically. Then, a higher layer component recognizes the lower layer’s network states and
tries to improve the TCP flow establishment policy based on deep reinforcement learning.

The following subsections explain the behaviors of the three modules by using the math-
ematical data center model, and introduce the details of the implementation procedures.
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Figure 2. The architecture of the proposed scheme.

3.1. Data Center Model

Suppose all network components in a data center network can control TCP flows from
a client such as [27,28]. This subsection introduces a data center model that satisfies the
following assumptions. Figure 3 shows an outline of the model.

• A data center network consists of |N| network components, which figures hierarchical
architecture, and the height of the hierarchy is M, noting that a network component in
zero height indicates an end-host server.

• A network component i ∈ N has physical connections to network components below
it, which are called child components of i, and the set of the child network components
of i is expressed as Ci noting that the network component k ∈ Ci also includes other
Cj (i 6= j), for example, network component 1 in Figure 3 has two upper links for two
components located in higher layer (i.e., i and j).

• The number of established TCP flows from network component i to k ∈ Ciis denoted
as Fi

k.

The next subsection provides the basic concept of reinforcement learning used in the
learning module, and indicates how to apply it to the module.

Level M
Level M-1

Level i

Level i-1

Level 1

Focus on network component i

…

…

…

: Network Component

(Server only)

…

𝐹1
𝑖 𝐹|𝑐𝑖|

𝑖

𝑖

|𝐶𝑖|1

𝐹1
𝑗

𝑖j

1 |𝐶𝑖|

j 𝐹|𝑐𝑖|
𝑗

… …

… …

… Child network components i

Figure 3. The outline of the data center model adopted in the proposed scheme.
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3.2. Reinforcement Learning

In reinforcement learning, a learning agent transits state st from state st+1 by action
at. Then, the learning agent obtains a reward Rat

st ,st+1 and adds the reward to the value
Q(st, at) in each state. Through the reward calculation, the learning agent aims to gain the
maximum reward in each state. The learning agent finds the optimal action through the
state transitions. When the learning agent transitions from st to st+1 by action at, Q(st, at),
which is the value of the action at in the state st, is updated as follows:

Q(st, at) ← Q(st, at) + α
[

Rat
st ,st+1

+ γ max
a

Q(st+1, a)−Q(st, at)
]
,

where α (0 < α ≤ 1) is the learning rate and γ (0 < γ ≤ 1) is the discount factor. The
learning rate is a weight regarding to what extent the latest information will override the
old information. The agent does not learn anything when α is 0; on the other hand, it
considers only the newest information when α is 1. The discount factor γ is a weight for
the effect of future rewards. The agent considers only the current reward when γ is 0; on
the other hand, it tries to find a high reward in the long term when γ is 1. To apply the
reinforcement learning to the proposed scheme, action, reward, and state in a network
component should be defined.

3.3. Learning Module

The learning module learns the relationship between TCP throughout and the number
of the established TCP flows based on a reinforcement learning mechanism. Here, let
us define an action as a network component selection for establishing TCP flow, hence,
network component i establishes TCP flow for child components at time t by action ai,t.
Then, the network component measures the TCP flows throughput in all held TCP and
calculates a reward based on it noting that the concrete selection mechanism is explained
in the subsection of the resource-control module.

Let si
t denote a state stored in a learning module of the network component i, meaning

each number of established TCP flows for the child components, and the fed back state
from the child components, whose formula is shown in following.

si,t = (Fi
1 , Fi

2 , · · · , Fi
|Ci |, F∗1 , F∗2 , · · · , F∗|Ci |), (1)

where the state element of F∗k (k ≤ Ci) is the number of all TCP flows for the k-th child
component, noting that the number of TCP flows from the component i is excepted. For
the component i in Figure 3, F∗1 indicates the number of TCP flows between the network
component j and 1. If the element is not measured or contained, the network component i
cannot recognize the network condition (i.e., TCP throughput) for the k-th child component
correctly and the state transition of the reinforcement learning is violated. For example,
suppose that k-th child component connects two parent components. One of the parent
components measures the number of TCP flows for the child component, and also do the
throughput. Then, the throughput depends on the number of TCP flows held by the other
parent component. Using reinforcement learning for maximizing TCP throughput in such
a network, the recognition of the relationship between TCP throughput and the number of
TCP flows is important so that the above state expression is a reasonable one for observing
the correct state.

This state looks like a suitable expression for observing the network condition, but the
records of the above states for reinforcement learning become significantly larger as the
number of both TCP flows and physical connections increases. To address this problem,
the proposed scheme adopts a deep reinforcement learning approach to approximate the
records of the state’s information with a neural network model [29,30]. In concrete terms,
Q(si,t, ai,t) is approximated by Q(si,t, ai,t, Wi,t) where Wi,t is the reinforced neural network
model of network component i until time t. When a neural network model Wi,t held in the
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network component i is reinforced with an obtained reward, the following update function
is executed,

Wi,t+1 ←Wi,t − α
dL

dWi,t
{L(Wi,t)}2 (2)

where Li
t(Wi) is TD-error (Temporal Difference Error) calculated in network component

i at time t, whose value should be minimized by reinforcement learning, and it can be
expressed by the following expression.

L(Wi,t) = Rai,t
si,t ,si,t+1 + γ max

a
Q(si,t+1, Ai, Wi,t)−Q(si,t, ai,t, Wi,t), (3)

where ai,t and Rai,t
si,t ,si,t+1 denotes the action ai and reward function of above state transition.

Repeating Formulas (2) and (3), the output of Wi (i.e., Q(si,t, Ai)) becomes closer to ground
truth so that reinforcement learning can be realized without TCP states’ records. As the
calculation or obtain processes of Rai,t

si,t ,si,t+1 and F∗k are executed in resource-control module
and feedback module, respectively, the learning module tunes the learning model by
gaining their information. The following subsections detail the processes in each module.

3.4. Resource-Control Module

A resource-control module of the network component i establishes a TCP flow for
its child component. Then, the module reads Q(si,t, Ai) from the learning module, and
selects an action ai,t from a set of actions Ai by considering at Q(si,t, Ai) time t. In detail,
the selection policy adopts the soft-max method based on Boltzmann distribution [31], and
the probability of an action aj(j ≤ |Ci|) is the following formula,

prob(aj) =
eQ(si,t ,aj)

∑
|Ci |
j=1 eQ(si,t ,aj)

. (4)

From the above formulation, the higher the value Q(si,t, aj) is, the selection probability
of the action aj is exponentially higher. At time t, the network component i executes an
action ai,t or multiple actions by the soft-max method πi,t , and tries to establish TCP flow
for j’s child component.

Establishing the TCP flow, the resource-control module calculates a reward ri, which
is calculated by reward function Rai,t

si,t ,si,t+1 expressed by following,

Rai,t
si,t ,si,t+1 = β

STi
j

RTi
j

√
Loss

+ (1− β)rj, (ai,t = aj). (5)

This reward function is based on a TCP throughput formula, which estimates the
degree of TCP congestion with the discriminant model for TCP incast [19,20,32]. Suppose
the network component i establishes TCP flow to j-th child component by action ai,t (i.e.,
aj). RTi

j and STi
j denote RTT and the shortest RTT between the network component i and j

when a TCP flow is established between them. With these parameters, the resource-control
module calculates the first term on the left side at first.

In addition, rj denotes the reward which is received from the k-th child component
through the feedback module’s action. The reward is calculated in the child component
with reward function R

aj,t
sj,t ,sj,t+1 . The reason why the child component’s reward is contained

in the parent component’s reward is that the reinforcement learning control aims to consider
the network performance (i.e., TCP throughput and RTT) of the lower layer on the data
center network. The parameter β(0 < β < 1) is the weight for balancing throughput for
child component and lower component’s throughput. As the value of β is lower, its reward
function is weighted to lower network components throughput and aims to lower layers’
throughput optimization. Figure 4 shows the abstract of this reward feedback process that
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the network components [A, B, C, D] on the TCP flow paths calculate the feedback rewards,
respectively.

: Network Component

D

C

B

A

…

…

…

Core

(Top layer)

Server 

(Bottom layer) Paths of TCP flows’ 

establishments

The calculated reward by C (rc)

- Throughput to D + rD

The calculated reward by B (rb)

- Throughput to C + rc

→ Throughput to C + D + rD

The calculated Reward by A (ra)

- Throughput to B + rb

→ Throughput to B + C + D + rD

Figure 4. The abstraction of the reward feedback process (Hierarchical reward feedback).

This reward function (5) decreases as response time among lower layer network
components (i.e., child component) increases, due to reasons such as TCP incast, so that it is
calculated by considering the lower layer’s throughput. Both terms in reward function (5)
are input to the learning module, and the learning module reinforces the neural network
model through Formulations (2) and (3).

3.5. Feedback Module

This module enables a network component to feed its state and a calculated reward
to the parent network component. In the above cases, the network component j(j ∈ Ci)
provides the calculated reward rj and the total number of TCP flows F∗j excepting the num-
ber of TCP flows from component i. By continuously feeding back the states and rewards,
the feedback process is executed hierarchically. Then, a network component can recognize
TCP throughput below it, and control TCP establishments by considering hierarchical data
center architecture. Note that the network component i records continuously feedback
both child components TCP flows information F∗1 , F∗2 , ·, and F∗|Ci |

and the hierarchical
feedback rewards. Both the resource-control and the learning modules use the recorded
data asynchronously for real-time TCP flow control.

3.6. Learning Algorithm of the Proposed Scheme

Algorithm 1 shows the above-mentioned learning control process. At first, Wi,t must
be initialized, and start to control TCP flow with a measured state. For building input
data, the network component i records continuously feed back both child components TCP
flows information F∗1 , F∗2 , · · ·, F∗|Ci |

and the hierarchical feedback rewards. The record is
used in determining a state. Extracting the up-to-date child TCP flow information, the
network component i builds a state si,t, and handles it as the input for the proposed scheme.
With the input state, the next action ai,t is determined by the soft-max method πi,t in the
resource-control module, noting that ai,t establishes TCP flow to component j. Waiting for
receiving the hierarchical reward, the network component i combines both the received
reward and the reward calculated by itself. After that, the network component i’s learning
module updates the reinforced learning model Wi,t with TD-error Li,t, calculated using the
reward, and completes these processes.
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Algorithm 1 The hierarchical feedback learning control of network component i

Inputs:
The measured state si,t,
learning rate α,
balanced factor β, and discount factor λ.

Initialize:
deep reinforcement learning models Wi,t

# Obtain next action and execute it.
ai,t ← πi,t
# Suppose ai,t is establishing the TCP flow for component j.
# Calculate reward function with Measured RTT.

Rai,t
si,t ,si,t+1 = β

STi
j

RTi
j

√
Loss

# Re-calculate reward function with the feedback reward.
Rai,t

si,t ,si,t+1 += (1− β)rj
# Calculate TD-error
L(Wi,t) = Rai,t

si,t ,si,t+1 + γ maxa Q(si,t+1, Ai, Wi,t)−Q(si,t, ai,t, Wi,t)
# Update Wi,t to Wi,t+1
Wi,t+1 ←Wi,t − α dL

dWi,t
{L(Wi,t)}2

t← t + 1

3.7. Summary of the Proposed Scheme’s Behavior

Figure 5 shows the concrete behavior of the proposed scheme’s TCP flow establishment.
At time t, a network component receives a TCP establishment from parent component
(i.e., the connected higher layer’s component). Then, the resource-control module (RM)
requests Q(si,t, Ai) to the learning module (LM). The LM returns it by using si,t consisted of
the feedback parameters F∗1 , F∗2 , · · ·, F∗|Ci |

and the measured parameters Fi
1 , Fi

2 , · · · , Fi
|Ci |

noting that the feedback module (FM) obtains the input parameter and reward information
from the child components at certain intervals. With Q(si,t, Ai), the RM determines the next
target for establishing TCP flow. Establishing TCP flow for the target, the RM measures
the established TCP flow’s RTT, and inputs it for the LM. Finally, the LM combines the
reward input to the RM and a feedback reward, and reinforces its own learning model
with them. Repeating this process, the proposed scheme can realize an intelligent TCP flow
establishment for improving bandwidth use in the entire data center network.

RCM FMLM

Input  feedback 

information.

RCM receives a 

TCP establishment.

FM receives 

feedback information 

at a certain intervals.

Return 

Q(si,t, Ai).

Time

t

RCM determines next 

target for establishing 

TCP flow by using 

πi,t ←Q(si,t, Ai).

Input  feedback 

information.

Request

Q(si,t, Ai). 

LM updates Wi,t.

LM calculates Q(si,t, Ai).

LM builds state si,t+a

FM receives 

feedback information 

at a certain intervals.

Reward

Figure 5. An sequence diagram of the proposed scheme’s behavior.
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4. Simulation Results

This section explains how much the proposed scheme could reduce the occurrence
of TCP incast with computer simulation. This simulation program is running on Ubuntu
Linux server (CPU: Intel(R) Core(TM) i7-9700K 3.60 GHz, Memory: 32 GB, GPU: NVIDIA
RTX 2080 super), and the proposed scheme’s learning algorithm is built by Chainer and
ChainerRL of Python 3.6. ref. [17,33]. With these settings, 100 million TCP flows ar-
rive at the data center and measure the probability of incast occurrence, RTT, and flow
completion time.

Assuming a high-traffic data center, the simulator constructs two hierarchical data
center topologies: Fat-tree and Tree, and provides storage service on it [1,2,5]. Figure 6
shows their topology that the tree topology is a non-complex architecture; on the other
hand, the Fat-tree topology is a complex architecture, which establishes multiple paths
for a destinated component. The hierarchical level is three and the numbers of network
components are 10, 50, and 250 in each hierarchy, which derives from the general data
center network model built on three levels components: the core, aggregate, and server
layers’ components. Each layer’s network component, except for the core layer, has five
connections to the lower layer’s components. The arrival rate of TCP flows from an outer
network to a core router depends on the Poisson distribution, and the length of TCP flow
(i.e., download time) depends on the exponential distribution, whose TCP flows traverse
the data center network’s top to bottom [34–36]. The maximum numbers of TCP flows
held in a network component are different from the located layer. A core/aggregate/server
layer’s component can handle up to 100,000, 10,000, and 1000 TCP flows, respectively,
noting that those capacities vary by about ±10% randomly. Each link is set RTT = [0, 0.001];
however, the RTT increases exponentially due to TCP incast. With these settings, the
proposed scheme, VLB, ECMP, and IFS-RL are compared to their performance. The VLB
randomly forwards TCP flows to lower components [37,38]. ECMP, adopting many MPTCP
schemes, splits a flow into n subflows equally and forwards the split flows to lower com-
ponents through different routing paths, noting the subflows path, which is calculated by
OSPF [14–16]. IFS-RL is an intelligent forwarding strategy based on reinforcement learning,
similar to the proposed scheme, which selects the flow establishment target (i.e., lower
network component) to optimize the bandwidth use between network components [9].
The difference between IFS-RL and the proposed scheme is whether the learning algo-
rithm, based on hierarchical information which has been fed back (i.e., state and reward),
is applied or not. The proposed scheme and IFS-R accept five-layered Deep Q Network
(DQN) and Double Deep Q Network (DDQN) to approximate Q(si,t, ai,t), noting that each
layer’s input size corresponds to the first layer’s one. DQN and DDQN are reinforcement
learning algorithms using Neural Networks, which are applied to implement the functions
(formulas) of (2) and (3). Note that IFS-RL uses the same DQN and DDQN as the proposed
scheme, however, does not consider the factors fed back. To deploy it to this simulation,
both neural networks are tuned to 1000 epochs, and the learning parameters [α, β, γ] are set
to [0.1, 0.5, 0.9].

4.1. Probability of TCP Incast Occurrence for Changing TCP Flow’s Pattern

Figure 7 shows the probability of TCP incast occurrence for changing the arrival rate of
TCP flows among all network components on Tree and Fat-tree architecture. The changed
target parameter λ determines the arrival rate of TCP flows by Poisson distribution. If λ
becomes larger, the arrival of TCP flows is higher and causes TCP incast frequently. In all
schemes on both architectures, TCP incast frequently occurs as the arrival rate of TCP flows
is higher. However, both ECMP and VLB conduct the worse results as the performances
are guaranteed on the stable hierarchical topology. Alternatively, the proposed schemes
could reduce the probability of TCP incast occurrence of up to 20% compared with ECMP
and VLB. Comparing to IFS-RL, the performance improvement rate decreases compared
to ECMP and VLB. The proposed scheme and IFS-RL can learn the network condition,
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depending on the link capacity and arrival rate of TCP flows, and prevent the entire data
center network from TCP incast.

Core

Aggregator

Server

Complex architecture Non-complex architecture

TCP flows arrive at certain intervals, which depends on Poisson process

(i.e., using arrival rate and flow length distributions) .

Figure 6. An illustration of the evaluation environment. In this evaluation scenario, Clients’
TCP flows arrive at both data center, whose traffic volume depends on the arrival rate and flow
length distributions.

However, it was found that the proposed scheme outperformed IFS-RL due to the
realization of the accurate recognition of entire network condition. This trend is not different
in both data center architecture, however the performance difference is more pronounced
for the complex architecture compared to the non-complex architecture. Comparing DQN
and DDQN performances, the proposed scheme based on DDQN is superior based on DQN.
Generally, DQN is overoptimistic for finding the relationship and takes more statistical
error in approximating Q(si,t, ai,t) than DDQN.
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Figure 7. The probability of TCP incast occurrence against the arrival rate of TCP flows ((Left): the
case for complex architecture, (Right): the case for non-complex architecture).

Figure 8 shows the probability of TCP incast occurrence for changing the length of
TCP flows in both architectures. In this evaluation, the arrival rate fixed to 0.5 and the
parameter λ of the exponential distribution of TCP flow length was changed. When the
parameter becomes lower, the distribution of TCP flow length features a long tail, and the
longer TCP flows arrive at the data center frequently (hence, TCP incast occurs frequently).
This result shows that the proposed schemes saw lower TCP incast occurrences than the
conventional schemes: ECMP, VLB, and IFS-RL whose result is similar to the previous
result. The proposed scheme controls TCP flow establishment by considering TCP flow
length, so that the probability of TCP incast occurrence is bound to about 20%, even if the
flow length is longer. Therefore, as with the previous experimental results, there was a
difference in performance for each scheme.
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Figure 8. The probability of TCP incast occurrence against the length of TCP flows ((Left): the case
for complex architecture, (Right): the case for non-complex architecture).

4.2. The Comparison of RTT, Throughput, and Flow Completion Time in Each Scheme

The next evaluations adopt the worst scenarios for each scheme, which were executed
on the highest arrival rate of TCP flows. In this environment, RTT, throughput reduction,
and flow completion time are measured by changing the flow length distribution value λ 0.1
(short flow arrivals) to 0.9 (long flow arrivals). Figure 9 shows the average of RTT in different
data center architectures. In the case of short flow arrivals (label: Short), all schemes could
take the average RTT up to 5 ms as TCP incast does not occur frequently, noting that an error
bar indicates the 95th percentile. On the other hand, in the case of long flow arrivals (label:
Long), TCP incast occurs more frequently than the case of short flow arrivals, as more packets
occupy the entire data center network. Therefore, the RTT becomes longer and it took up
to 8 ms. Focusing on the different architectures’ results, RTT of all schemes is the shorter in
non-complex architecture than in complex architecture. In detail, the difference in average
RTT in both architectures was about 2–3 ms. Additionally, it was found that the proposed
scheme contributed most to the reduction in average RTT and its deviation.
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Figure 9. RTT against the length of TCP flows ((Left): the case for complex architecture, (Right): the
case for non-complex architecture).

Figure 10 shows maximum throughput degradation rate in different data center
architecture. The meaning of both labels is the same as in the evaluation of RTT. In both
architectures, the proposed scheme contributed to reduce the throughput degradation rate.
In particular, the proposed scheme in the long case on complex architecture could realize
the lowest degradation compared to the other schemes, at about 20% degradation.
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Figure 10. The maximum throughput degradation rate in different data center architecture ((Left):
the case for complex architecture, (Right): the case for non-complex architecture).
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Figure 11 shows the average flow completion time in different data center architecture.
In both of the architectures, there was not much difference in completion time for the
short flow in all schemes. However, the proposed scheme realized the shortest completion
time in the other schemes, and it is about 10 ms in both architectures with the long case.
IFS-RL also took a shorter completion time (about 15 ms), but not shorter than the proposed
scheme. Focusing on 95th percentile of the completion time, the proposed scheme also
realized shortest result.
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Figure 11. The average flow completion time in different data center architecture ((Left): the case for
complex architecture, (Right): the case for non-complex architecture).

4.3. Probability of TCP Incast Occurrence for Changing Learning Parameters

Figure 12 shows the effects of the learning parameters of the learning module. It
measured the probability of TCP incast occurrence by changing learning rate α and discount
factor γ in the complex data center architecture. The result indicated that the probability of
TCP incast occurrence depends on both parameters. In the case of a lower learning rate, the
probability becomes lower. In general, the lower learning rate enables the learning agent
to obtain deep insight into the given environment; thereby, it can be concluded that the
better learning control was realized compared with the higher learning rate case. On the
other hand, as the discount factor γ became lower, the probability of TCP incast occurrence
took a higher value. The discount factor γ determines the effect of future rewards. The
agent considers only the current reward when γ is 0 and tries to find a high reward in the
long term when γ is 1. Therefore, when the value of the discount factor becomes higher,
stable flow control can be realized over a long period and the probability of TCP incast
occurrence decreases.
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Figure 12. Probability of TCP incast occurrence against learning parameters: α, γ.

Figure 13 shows the probability of TCP incast occurrence by changing the balanced fac-
tor β of reinforcement learning’s reward in the complex data center architecture. Adapting
the largely biased value (e.g., 0.1 and 0.9), the proposed scheme took the higher prob-
ability of TCP incast than the case of adapting unbiased value (e.g, 0.5). The balanced
factor β of reinforcement learning’s reward weights the TCP throughput feedback from



Sensors 2022, 22, 611 14 of 16

the lower layer components. As the parameter β becomes higher, a network component
largely reflects the TCP throughput measured by itself in its own reward. This means that
the network component tries to maximize its own TCP throughput and does not aim to
optimize the entire TCP throughput. On the other hand, as the parameter β becomes lower,
a network component largely reflects the fed back TCP throughput (i.e., reward) in the own
reward so that the network component does not maximize the throughput of the held TCP
flows. From the result, setting the unbiased value to β is important to maximize the entire
TCP throughput.
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Figure 13. The probability of TCP incast occurrence against learning parameter: β.

4.4. Overhead for Reinforcement Learning

The proposed scheme adopts the deep reinforcement learning approach to realize
intelligent TCP flow control, thereby the computation delay occurs for each control. In
detail, the delay depends on the performance of extracting Q(si,t, Ai) at each control.
Using chainerrl library [33], both DQN and DDQN in the proposed scheme took about
3 ms and 4 ms to the extraction, respectively. This delay is not critical for improving
the throughput and flow completion time. This is as the delay depends on the network
component’s specifications (e.g., CPU and memory size), therefore it will be improved as
the specification improved.

Besides the delay, the storage cost of the reinforcement learning model is also an
overhead. Using chainerrl library, both DQN and DDQN models took tens of kilobytes
at most. However, various reinforcement learning models must be preserved for dealing
with the case of dramatically changing the arrival rate of TCP flows. For example, the
reinforcement learning models optimized for a certain arrival rate (λ = 0.1) cannot always
archive the optimal TCP flow control in other case (λ = 0.9). Additionally, a model selection
algorithm must be implemented for the effective use of the reinforcement learning models.
For dealing with the cases, the robustness of the reinforcement learning control must
be improved.

5. Conclusions

This paper proposed a TCP flow control scheme for efficient bandwidth use in data
center networks, which can be realized even if the data center architecture is complicated.
In the simulation results, the proposed scheme showed that the scheme is more effective
than other TCP flow management schemes (i.e., VLB, ECMP, and IFS-RL) in reducing the
number of TCP incast occurrences, forwarding delay, and the flow completion time. This
paper also evaluated the effects of learning parameters on its performance, and the results
showed that its effectiveness can be enhanced by adjusting the learning parameters in a
high-traffic data center network. For realizing more effective bandwidth use, the robustness
improvement of the proposed scheme and its verification would be left as a future problem.
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