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Abstract: For the spaceborne synthetic aperture radar (SAR), it is difficult to obtain high resolution
and wide width at the same time. This paper proposes a novel imaging system based on tandem SAR
satellites, where one obtains coarse resolution and wide swath by the scanning mode, and the other
obtains the undersampled echo from the same swath. The high resolution is achieved by associating
the tandem SARs’ echo and using the minimum-energy-based algorithm. Finally, a high-resolution
wide-swath SAR system is designed, and its imaging performance is verified by simulated data and
real airborne SAR data.
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1. Introduction

The synthetic aperture radar (SAR) is a powerful sensor that can observe the Earth’s
surface day and night, regardless of the weather conditions [1–3]. This sensor has been
widely adopted in the military and civilian remote sensing areas, such as oceanographic
observations, sea-ice monitoring, and vegetation mapping [4–6]. For future SAR develop-
ment, high-resolution wide-swath (HRWS) technology plays an important role in these
applications. However, the high resolution and the wide swath contradict each other due
to the minimum antenna area constraint [7]. On the one hand, the high resolution requires
a high-pulse repetition frequency (PRF) to suppress the Doppler ambiguity. At the same
time, the wide swath needs a low PRF to avoid range ambiguity. Therefore, HRWS cannot
be obtained in a monostatic SAR system simultaneously [8].

For achieving monostatic HRWS-SAR imaging, researchers proposed many methods,
which can be divided into two categories: 1. The first approach focuses on the range
ambiguity issue, where a sufficiently high PRF is selected to avoid the Doppler ambiguity.
The frequency diversity array (FDA) technique is proposed in [9]. It introduces a small
increment across the all array elements, then the echoes received from different ambiguous
regions are separated. Moreover, the multiple-elevation-beam technology is adopted in [10].
It employs real-time beamforming on receipt to form multiple narrow elevation beams,
each following the radar echo of a different transmitted pulse; thus, the range ambiguity is
suppressed. 2. The second approach is to cope with the Doppler ambiguity issue, where
a low PRF is chosen to avoid range ambiguity. For example, the azimuth multichannel
technology compensates for the lack of temporal sampling by the spatial sampling of points
of multiple channels [11]. Thus, the effective sampling rate is increased, and the Doppler
ambiguity is suppressed [12]. Those technologies mentioned above can effectively improve
the width of the swath while ensuring the azimuth resolution for monostatic SAR. However,
they all have a complex structure, leading to greater challenges in designing a large satellite.
To reduce hardware complexity [13–15], separates the transmitter and receiver of SAR to
a multi-satellite network, but the increased launch volume and mass for the deployment
of multiple satellites and additional hardware for accurate phase synchronization are
indispensable [16]. Furthermore, [17] develops a monostatic SAR−HRWS imaging system
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based on compressed sensing (CS) theory, but its imaging performance depends on the
sparsity of the observed scene.

In order to achieve HRWS-SAR imaging, this paper proposes a novel imaging system
based on tandem SAR satellites. The first one works in the scanning mode to obtain the
coarse observations of a wide swath. The second one obtains the downsampled echo from
the same swath. Then, the high-resolution imaging is achieved by associating the tandem
SARs’ echo and using the minimum-energy-based algorithm. Since the precise phase
synchronization between two satellites is unnecessary, the system cost can be reduced.

This paper is organized as follows: Section 2 introduces the working modes of the two
satellites. Section 3 constructs the signal model and describes the minimum-energy-based
algorithm. Section 4 designs an example system and verifies its imaging performance.
Finally, Section 5 concludes this paper.

2. Imaging System Based on Tandem SAR Satellites

The proposed system consists of two satellites flying successively in the same orbit.
The distance between two satellites is far enough to ensure that they do not interfere with
each other. Both satellites adopt a scanning mode, but the scanning methods are different.
The introduction is presented in detail as follows.

2.1. Working Mode of the First Satellite

The first satellite, namely, Sat-1, operates in the traditional scanning mode [18], which
adopts the burst mode, and assigns the aperture time to multiple subswaths. It can broaden
the range swath at the cost of coarsening the azimuth resolution. The observation geometry
of Sat-1 is shown in Figure 1. To achieve an imaging system with azimuth resolution δaz,
the necessary burst time Tn of the nth subswath should satisfy the following:

Tn =
0.886 · λR0,n

2Vδaz
(1)

where λ is the wavelength, R0,n is the mean slant range in the zero Doppler plane of the
nth subswath, and V is the speed of the SAR platform.
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Figure 1. Pulse assignment diagram of the traditional scanning method, where the antenna beam
jumps periodically among different subswaths. N indicates the number of subswaths.

According to the principle of traditional ScanSAR, we have

BD = (N + 1) · Bn (2)

where Bn and BD denote the Doppler bandwidth of the nth subswath and the 3 dB band-
width of the azimuth antenna, respectively. According to Equation (2), the coarsening of the
azimuth resolution is in the order of N + 1, while the range swath compared to a strip-map
system is increased by N.
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2.2. Working Mode of the Second Satellite

The second satellite, which is noted as Sat-2, adopts a new scanning method. It
randomly assigns each pulse to one of the subswaths on the ground and receives the
reflected echo, as shown in Figure 2.
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Figure 2. Pulse assignment diagram of the new scanning method, where each pulse is randomly
assigned to one of the subswaths on the ground and different subswaths have different squint angles.

Since spaceborne SAR platforms usually work at an altitude of more than 100 km [19],
the reflected echoes of transmitted pulses return to the receiver after several pulse intervals
(PIs). Because all subswaths share one receiver, the waiting PI number for different sub-
swaths must be the same to avoid overlapping of the received echoes. Assuming that the
waiting PI number is NPI , as shown in Figure 3, the reflected echoes of all the subswaths
should return to the receiver during the NPI + 1th PI after transmission. To that end, we
set the farthest subswath work in broadside mode and the other subswaths in squint mode.
The squint angle increases as the distance of subswath to nadir decreases, as shown in
Figure 2.
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Figure 3. Timing diagram of the subswath’s pulse transmitting and receiving, where the vertical line
indicates the pulse emission time, and the long red line indicates that the current pulse is assigned to
this subswath. The short gray line suggests that the current pulse is assigned to other subswaths. S1,
S2, and S5 represent the reflected echoes of pulses 1, 2, and 5, respectively.

In the trans-receive view, the time interval of the two transmitted pulses is fixed to
1/PRF, while the time interval of the two received pulses of any subswath is not certain,
and the average sampling rate is lower than the Nyquist rate. Therefore, the received
echoes are downsampled.

2.3. Comparison of the Two Scanning Methods

The scanning method adopted in Sat-2 can keep the entire aperture time of targets,
which is different from the traditional method. As shown in Figures 4 and 5, each point
represents an azimuth sample in the echo of a ground target and corresponds to a trans-
mitted pulse. The traditional scanning method assigns a continuous pulse train to one
subswath, thus truncating the target’s aperture time. The proposed scanning method
randomly chooses the pulses assigned to one subswath; it can retain the entire aperture
time, although with downsampling.
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An example system is designed in Section 4. After the echoes are received, the coarse
observations obtained by Sat-1 are used as prior knowledge to achieve high-resolution
imaging from the received Sat-2 data.

3. Signal Model and Imaging Algorithm

According to the system introduced above, Sat-1 works in traditional scanning mode;
its received data can be processed by existing algorithms [1–3]. This section mainly focuses
on the modeling and imaging for Sat-2.

3.1. Signal Model of the Sat-2

According to the SAR principle described in [20], the original SAR echo of Sat-2 can
be expressed as

S0(η, τ) = A0Wa(η − ηc)Wr

(
τ − 2R(η)

c

)
exp

{
−j

4π

λ
R(η)

}
· exp

{
jπkr

(
τ − 2R(η)

c

)2
}

(3)

where τ and η denote the range and azimuth time, respectively, and ηc is the beam center
crossing time. R(η) is the slant distance between the observed target and the platform at
azimuth time η, c is the speed of light, kr is the pulse modulation frequency, A0 is a complex
constant, and Wa(·) and Wr(·) are the azimuth and range antenna mode, respectively. M is
the number of targets on the observed scene.

After range compression, Equation (3) can be expressed as

S1(η, τ) = A0Wa(η − ηc)sin c
[

Br

(
τ − 2R(η)

c

)]
exp

{
−j

4π

λ
R(η)

}
(4)

where Br is the bandwidth of the transmitted pulse. S1(η, τ) can also be expressed in the
matrix form as

Si = A ·σi (5)

where Si and σi are the observation vector and scene vector of the ith range gate, respec-
tively. σi = [σi,1, σi,2, · · · , σi,K]

T and σi,k is the equivalent backscatter coefficient of the kth
pixel, K is the number of pixels in the ith range gate. A = [A1, A2, · · · , Ak, · · · , AK] is the
sensing matrix with

Ak = Wa(η− ηc,k) · exp
{
−j

4π

λ
R(η, k)

}
where η = [η1, η2, · · · , ηNa ]

T is the azimuth time vector, Na is the total number of sampling
points in the azimuth direction, ηc,k is the beam center crossing time of the kth pixel, and
R(η, k) is the slant distance vector between the kth pixel and the platform.

According to Equation (5), the traditional imaging algorithms [21,22] based on matched
filtering can be expressed as

σ̂i = AH · Si (6)
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where AH is the conjugate transpose matrix of A. Since the received echo of Sat-2 is seri-
ously downsampled, severe ambiguity energy occurs in the imaging result of Equation (6).
The CS-based SAR system introduces the sparsity prior to the scene reconstruction to
compensate for the information lost by downsampling, and then selects the solution with
the best sparsity as the estimation of the observed scene, as shown in (7).

σ̂i = argmin‖σ̂i‖0
σ̂i

s.t. Si = Aσ̂i (7)

However, the estimation accuracy of (7) depends on whether the scene is sparse
or whether it can be sparsely represented accurately. In order to achieve better imaging
performance, this paper modifies the traditional minimum-energy criterion [23] introducing
the coarse observation as prior information and constructs the optimization problem as

σ̂i = argmin
σ̂

〈
σ̂i, Q−1 · σ̂i

〉
s.t. Si = Aσ̂i (8)

where Q = diag
(
σd,i ·σ∗d,i

)
is a K × K matrix and σd,i is the amplitude envelope of the

imaging result of the ith range gate on the ground, which can be obtained by interpolating
the imaging result of Sat-1. Finally, the solution with the minimum weighted energy is
chosen as the scene estimation.

3.2. Minimum-Energy-Based Imaging Algorithm

Based on Equation (8), this part proposes a minimum-energy-based algorithm that
mainly includes five parts: range compression, observation vector extraction, sensing
matrix construction, interpolation for coarse observation, and minimum-energy-based
estimation. The procedure is shown in Figure 6, and each step is introduced as follows.
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Figure 6. Procedure of the proposed algorithm, where Hcom( fτ) is the matched filtering function,
σ̂sum is the reconstructed scene, σ̂sum( : , i) = σ̂i indicates that σ̂i is assigned to the ith column of
σ̂sum, and Ng is the number of range gates, the numbers 1–5 mark the main steps of the algorithm.

3.2.1. Range Compression

The range compression filter Hcom( fτ), as shown in Figure 6, can be constructed by

Hcom( fτ) = exp
(
−jπ

f 2
τ

kr

)
(9)

where fτ is the range frequency. After range compression, S1(η, τ) is obtained.
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3.2.2. Observation Vector Extraction

In S1(η, τ), the target echoes appear as curves with range cell migration (RCM). And
the RCM must be corrected to extract the observation vector Si, which can be expressed as

Si =

[
K

∑
k=1

S1

(
η1, τη1,k

) K

∑
k=1

S1

(
η2, τη2,k

)
· · ·

K

∑
k=1

S1
(
ηNa , τηNa ,k

)]T

(10)

where τηn ,k = 2R(ηn, k)/c is the main lobe’s peak position of the kth pixel at ηn. The
illustration of the extraction of Si is shown in Figure 7.
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3.2.3. Observation Vector Extraction

According to the definition in Equation (5), the sensing matrix can be constructed by

A = [A1, A2, · · · , Ak, · · · , AK] (11)

with

Ak = Wa(η− ηc,m) · exp
{
−j

4π

λ
R(η, k)

}
3.2.4. Interpolation for Coarse Observation

Since the coarse observations from Sat-1, which are processed by the existing algo-
rithms [1–3], are used as the weighting coefficients on pixels in each range gate of the
final imaging result, the nearest neighbor interpolation algorithm [24] is adopted to ensure
that the coarse observations are consistent with the final image’s sampling space. The
interpolation principle can be expressed as

σd(x̃, ỹ) = σ′d

(⌈
x̃

∆dx/∆d′x

⌉
,

⌈
ỹ

∆dy/∆d′y

⌉)
(12)

where (x̃, ỹ) is the 2D coordinates of pixels in the interpolated result, and σ′d and σd are
the image amplitudes before and after the interpolation, respectively. ∆dx and ∆d′x are the
sampling space before and after interpolation along the X direction, respectively, and ∆dy
and ∆d′y are the sampling space before and after interpolation along Y direction, respectively.
The diagram of interpolation is shown in Figure 8.
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3.2.5. Minimum-Energy-Based Estimation

To obtain the minimum weighted energy solution required in Equation (8), we define
a new norm in the space consisted of band-limited sequences as

‖σ̂i‖new =
〈
σ̂i, Q−1 · σ̂i

〉
(13)

The validation of the new norm can be found in Appendix A. Then, the solution with
minimum weighted energy is the solution with the smallest new norm. According to the
projection theorem in [25], σ̂i must be orthogonal in 〈·, ·〉new to ℵ(A), where ℵ(A) is the
null space of A and 〈·, ·〉new is the new inner product corresponding to ‖ · ‖new. So, we
obtain

σ̂i ∈ <(A∗) (14)

where <(A∗) is the range space of A∗, and A∗ is the adjoint operator of A, which can be
calculated by

A∗ = QAH (15)

The specific derivation of Equation (15) can be found in the appendix of [26]. According
to Equations (14) and (15), σ̂i can be expressed as

σ̂i = QAH · v (16)

where v is a Na × 1 vector. According to Si = Aσ̂i in Equation (8), v can be calculated by

v =
(

AQAH
)−1

Si (17)

Then, the σ̂i can be obtained by

σ̂i = QAH
(

AQAH
)−1

Si (18)

It can be divided into the following two steps:

σ̂tem =
(

AQAH
)−1

Si (19)

σ̂i = Q ·AHσ̂tem (20)

Step one normalizes the amplitude of the targets in Si as shown in Equation (19), and
step two is to image the normalized result of step one as shown in Equation (20). Due to the
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inevitable model error and noise in the real data, we modify Equations (19)–(21) to achieve
more robust imaging performance.

σ̂tem = Qs
−1Si (21)

where Qs is a diagonal matrix, its diagonal elements are
{
|Si,1|ρ, |Si,2|ρ, · · · , |Si,Na |

ρ}, and
|Si,n| is the absolute value of the nth element in Si, ρ is the normalization factor and this
paper sets ρ = 0.5. At the same time, Equation (20) can be modified to an iterative form, as
shown in Equation (22).

σ̂i,j = Qj−1 ·AHσ̂tem (22)

where σ̂i,j is the jth reconstruction result and σ̂i,0 = σd,i, σd,i is the ith column of the coarse

observation of Sat-1, Qj−1 = diag
(
σ̂i,j−1 · σ̂∗i,j−1

)
. This paper sets the iteration order to 2,

and the detailed steps are listed in Table 1.

Table 1. Processing steps of the real airborne SAR data.

Processing Steps Content

Step one Obtains S1(η, τ) by range compression of the original echo.
Step two Extracts the observation vectors

{
Si|i = 1, · · · , Ng

}
from S1(η, τ)

Step three

For i = 1: Ng

σ̂tem = Qs
−1Si

Q0 = diag
(
σd,i ·σ∗d,i

)
σ̂i,1 = Q0 ·AHσ̂tem

Q1 = diag
(
σ̂i,1 · σ̂∗i,1

)
σ̂i,2 = Q1 ·AHσ̂tem

End

Step four Output:
σ̂sum =

[
σ̂1,2 σ̂2,2 · · · σ̂Ng ,2

]
4. Verification and Analysis

This section aims to verify the discussion in the previous sections. It can be divided
into three parts. Based on the SAR imaging system introduced above, Section 4.1 designs
an example system and verifies the imaging performance. Section 4.2 verifies the effec-
tiveness of the proposed algorithm with real airborne SAR data. Section 4.3 analyzes the
performance variation of the proposed system with the number of subswaths. The details
are as follows.

4.1. System Design Example and Imaging Performance

Table 2 shows the satellite parameters used in this part.

Table 2. System parameters for Sat-1 and Sat-2.

Parameters Value

Carrier frequency (GHz) 9.6
Range bandwidth (MHz) 100

Sampling frequency (MHz) 120
Pulse width (µs) 20

Orbital height (km) 630
Platform velocity (m/s) 7545

Resolution (m) 3

Based on the parameters in Table 2, this part designs an example HRWS-SAR system.
The azimuth and range resolutions of the system are set to 3 m. The range swath is set to
200 km and divided into six subswaths. Each subswath has the same PRF and different
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squint angles. The beam position parameters of the two satellites are the same as in Table 3.
The scanning parameters of Sat-1 are listed in Table 4.

Table 3. Beam position parameters of six subswaths.

Look Angle in the
Zero Doppler Plane (◦) PRF (Hz) Squint Angle (◦) Subswath Width (km)

Subswath 1 32.01~34.41◦ 2673 0◦ 39.90
Subswath 2 29.79~32.19◦ 2673 8.70◦ 37.58
Subswath 3 27.51~29.91◦ 2673 15.30◦ 35.55
Subswath 4 25.23~27.63◦ 2673 19.40◦ 33.82
Subswath 5 22.91~25.31◦ 2673 22.50◦ 32.31
Subswath 6 20.55~22.95◦ 2673 26.80◦ 31.00

Table 4. Scanning parameters of Sat-1.

Burst Duration(s) 3 dB Doppler Bandwidth (MHz)

Subswath 1 0.077 2446
Subswath 2 0.075 2428
Subswath 3 0.074 2323
Subswath 4 0.072 2231
Subswath 5 0.070 2148
Subswath 6 0.069 2032

According to the designed SAR imaging system, the received echo of subswath 1 is
simulated based on the scene as shown in Figure 9. Then, the BP algorithm, the L1 algorithm,
and the proposed algorithm are carried out to image the simulated echo. According to the
imaging results in Figure 10, there is obvious ambiguity energy in the imaging result of the
BP algorithm, while the L1 algorithm and the proposed algorithm achieve good imaging
quality. Figure 11 shows the azimuth profiles of the range gate marked by a red arrow in
Figure 10.
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Then, the azimuth resolution, the peak side lobe ratio, the integrated side lobe ratio,
and the structure similarity are used to measure the performance of the three algorithms.
The evaluated results are shown in Table 5.

Table 5. Evaluation results.

BP Algorithm L1 Algorithm Proposed
Algorithm

Azimuth resolution (m) 2.94 2.73 2.73
PSLR (dB) −16.96 −20.55 −22.62
ISLR (dB) −9.64 −15.16 −15.74

SSIM 0.61 0.80 0.81

Consistent with the description above, the evaluation results in Table 5 show that the
proposed algorithm has the highest SSIM, PSLR, and ISLR; the imaging quality of the L1
algorithm is slightly worse; and the performance of the BP algorithm is the worst. Since
the simulation scene in Figure 9 is sparse, and cannot verify the imaging performance
sufficiently, the next section uses real airborne SAR data to further measure the performance
of the three algorithms.
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4.2. Verification of Real Airborne SAR Data

This section uses real airborne SAR data obtained in January 2017 in Crown Head
Ridge, Guangxi, China, to verify the performance of the proposed imaging system; the
parameters are listed in Table 6.

Table 6. System parameters for airborne SAR.

Parameters Value

Carrier frequency (GHz) 35
Range bandwidth (MHz) 480

Sampling frequency (MHz) 500
Pulse width (µs) 25
Slant range (km) 27.21
Velocity (m/s) 90.86

Doppler bandwidth (MHz) 600
Duration time (s) 15

The optical image of the observed scene is shown in Figure 12. The SAR imaging result
processed by the traditional BP algorithm [27] is presented in Figure 13a, where a strong
target is marked. Since the airborne SAR system works in strip-map mode, the original
SAR data are randomly downsampled by a factor of six to construct the received echo of
one subswath in the proposed system. The imaging result of the traditional BP algorithm
with downsampled SAR data is presented in Figure 13b, which is seriously polluted by the
ambiguity energy.
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The result of the proposed algorithm, σ̂sum, is shown in Figure 14c, and the coarse
observation of Sat-1 and the result of the L1 algorithm are shown in Figure 14a,b for
comparison.

According to Figure 14, the coarse observation in Figure 14a has low azimuth resolu-
tion, making the targets stack together and reducing imaging interpretation performance.
The result of the L1 algorithm in Figure 14b improves the imaging resolution, but some
weak target information is lost, and there are a lot of reconstruction errors in the imag-
ing result. The proposed algorithm provides the best imaging performance, as shown
in Figure 14c. It not only achieves a resolution similar to the original image as shown in
Figure 13a, but also suppresses the targets’ side lobes. Then, the azimuth resolution, PSLR
(peak side lobe ratio), ISLR (integral side lobe ratio), and SSIM (structure similarity index
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measure) are used to quantitatively evaluate the imaging quality. The calculation method
of SSIM is represented in Equation (23), and all of the evaluation results are listed in Table 7.

SSIM
(
Imx, Imy

)
=

(
2µxµy + c1

)(
2sxy + c2

)(
µ2

x + µ2
y + c1

)(
s2

x + s2
y + c2

) (23)

where Imx and Imy are the evaluated image and the reference image, respectively. µx and
µy denote the average value of Imx and Imy, respectively. s2

y and s2
x denote the variance of

Imx and Imy, respectively. sxy is the covariance of Imx and Imy.
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Figure 14. Imaging results of real airborne SAR data. (a) Coarse observation of Sat-1. (b) Reconstruc-
tion result of the L1 algorithm. (c) Reconstruction result of the proposed algorithm.

Table 7. Evaluation results.

Reference Coarse
Observation L1 Algorithm Proposed

Algorithm

Azimuth
resolution (m) 0.6 3.6 0.6 0.6

PSLR (dB) −12.27 −11.77 −10.47 −17.84
ISLR (dB) −7.37 −9.35 −7.97 −17.13

SSIM 1 0.89 0.87 0.93

The evaluation results in Table 6 are consistent with the imaging results in Figure 13.
The L1 algorithm achieves high azimuth resolution, but the reconstruction errors lead
to the deterioration of SSIM. The proposed algorithm achieves high azimuth resolution
and higher sidelube suppression performance. Compared with the reference result, the
proposed algorithm improves the PSLR and ISLR by 5.58 dB and 9.76 dB, respectively.

4.3. Analysis of the Subswath Number

According to the introduction above, Sat-2 randomly assigns the transmitted pulse
to multiple subswaths. Therefore, the received echo of each subswath is undersampled,
and a greater number of subswaths corresponds to fewer sampling points and worse
reconstruction performance. A detailed analysis is listed in this part. The reconstruction
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error is regarded as noise. The signal-to-reconstruction-noise ratio is defined to analyze the
reconstruction performance, that is

SNRME =
‖σi‖2

new

‖σi − σ̂i‖2
new

(24)

where σi and σ̂i are the ideal result and the estimated result of the ith range gate, respectively.
‖ · ‖new is the new norm defined in Section 3.2.5. The ‖σi − σ̂i‖2

new in Equation (24) can be
expanded as

‖σi − σ̂i‖2
new =

〈
(σi − σ̂i), Q−1(σi − σ̂i)

〉
≤ ‖σi‖2

new − σH
i AH

(
AQAH

)−1
Aσi (25)

Then, we can obtain

SNRME =
‖σi‖2

new

‖σi − σ̂i‖2
new

≥ 1

1− σH
i AH

(
AQAH

)−1
Aσi/‖σi‖2

new

(26)

Figure 15 shows the variation curves of SNRME on the subswath number, where the
lowest SNRME and the highest lower bound, calculated by Equation (26), among all range
gates are selected.
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Figure 15. Illustration of SNRME curves for different subswath numbers, where N is the number
of subswaths.

According to Figure 15, when the subswath number approaches 20, SNRME is close to
the theoretical lower bound, and the imaging result may be completely submerged by the
reconstruction error.

5. Conclusions

In SAR observations, high resolution and wide swath contradict each other. This
paper proposes a novel SAR imaging system based on tandem SAR satellites, where Sat-1
works in the traditional scanning mode to obtain coarse observations of a wide swath,
and Sat-2 adopts a new scanning method to obtain the downsampled echo from the same
swath. Then, a minimum-energy-based algorithm is proposed to associate the two SARs’
data and achieve high resolution. Since the accurate phase synchronization between two
satellites is unnecessary, the system cost can be significantly reduced. The simulations and
processed results of real airborne SAR data have proven that the proposed imaging system
can expand the range swath of the strip-map mode by up to six times and achieve the
high-resolution imaging of observed scenes.
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Appendix A

Given a vector space X over a subfield F of the complex numbers C, a norm on X is
a real-valued function ‖ · ‖: X→ R with the following properties, where |a| denotes the
usual absolute value of a scalar a:

(1) Triangle inequality: ‖x + y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X.
(2) Absolute homogeneity: ‖ax‖ = |a| · ‖x‖ for all x ∈ X and all scalar a.
(3) Positive definiteness: for all x ∈ X, ‖x‖ ≥ 0 and ‖x‖ = 0⇔ x = 0 .

Then, the validation of the new norm ‖ · ‖new defined in Equation (13) is derived as
follows. According to the definition, ‖x‖new can be calculated by

‖x‖new =

√〈
x, Q−1x

〉
=
√

∑
n

q−1
nn · xnxn (A1)

where xn is the nth element of x, and qnn is the nth row and nth column element in Q. Since
xnxn > 0 and q−1

nn > 0, the positive definiteness of ‖x‖new is easily proved. Then, according
to Equation (A1), we have

‖x + y‖new =
√

∑
n

q−1
nn · (xn + yn)(xn + yn)

=
√

∑
n

q−1
nn · xnxn + ∑

n
q−1

nn · xnyn + ∑
n

q−1
nn · ynxn + ∑

n
q−1

nn · ynyn

≤
√

∑
n

q−1
nn · xnxn + ∑

n
q−1

nn · ynyn + 2
√

∑
n

q−1
nn · xnxn

√
∑
n

q−1
nn · ynyn

= ‖x‖new + ‖y‖new

(A2)

and
‖ax‖new =

√
∑
n

q−1
nn · axnaxn = |a| ·

√
∑
n

q−1
nn · xnxn = |a| · ‖x‖new (A3)

So ‖ · ‖new satisfies property 1 and 2. Then, the validation of ‖ · ‖new is proven.
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