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Abstract: The diffractive deep neural network (D2NN) can efficiently accomplish 2D object recogni-
tion based on rapid optical manipulation. Moreover, the multiple-view D2NN array (MDA) possesses
the obvious advantage of being able to effectively achieve 3D object classification. At present, 3D
target recognition should be performed in a high-speed and dynamic way. It should be invariant to
the typical shifting, scaling, and rotating variance of targets in relatively complicated circumstances,
which remains a shortcoming of optical neural network architectures. In order to efficiently recognize
3D targets based on the developed D2NN, a more robust MDA (mr-MDA) is proposed in this paper.
Through utilizing a new training strategy to tackle several random disturbances introduced into the
optical neural network system, a trained mr-MDA model constructed by us was numerically verified,
demonstrating that the training strategy is able to dynamically recognize 3D objects in a relatively
stable way.

Keywords: diffractive neural network; deep learning; computer vision

1. Introduction

Deep learning has become a prevalent machine learning method [1–3] in recent years.
As demonstrated, a multi-layer artificial neural network imitates the human learning pro-
cess and then uncovers the hidden target patterns from a large amount of data, which can
be comparable or even superior to the human recognition ability. With the rapid progress
in deep learning, various electronic neural networks (ENNs) currently play a crucial role
in solving target classification and recognition problems. The application of ENNs has
extended into many fields, including computer vision [4–9] and neural language process-
ing [10–13]. To address increasingly complicated problems, the fundamental architecture
of ENNs is becoming accumulatively complex. However, there are still some flaws in
conventional ENNs, such as their dramatic energy consumption and limited computational
speed, which lead to the poor coupling of micro-sensors. At present, the scale of integrated
chips is mesoscopic; thus, their development is seriously constrained by Moore’s law [14]
and quantum tunneling. Therefore, it is crucial to find a way to address the problems above.

More recently, the diffractive deep neural network (D2NN), as a novel physical neural
network with an all-optical deep learning framework, has been utilized to realize target
classification and is practically constructed using several common methods, such as 3D-
printing [15], femtosecond photon direct writing [16], and the wet etching technique. Due
to the isomorphism between the forward propagation of dense neural networks and the
Huygens–Fresnel principle, the D2NN can be implemented by sequential network layers
connected by light diffraction to achieve the complete or local connection between neurons
of each diffractive layer. This has the benefits of optical computing, such as theoretically
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operating at light speed with an extremely low consumption, and a parallel signal pro-
cessing ability for optical computing [17–20]. The D2NN is evolving fast and is applied
in many fields, such as Fourier-space D2NN [21], class-specific differential detection [22],
multi-directional beam steering [23], and other applications [24–30]. Obviously, the D2NN
has the potential to adaptively control the phase distribution of diffraction layers according
to the complex amplitude distribution of diffractive beams to uncover the potential features
of data and then learn the mapping relationship between the input light field and the actual
label of the input object. Specifically, the D2NN has demonstrated excellent performance
on many datasets, such as the Mixed National Institute of Standards and Technology
database (MINIST) [15], the Fashion-MNIST dataset [21], and the CIFAR-10 dataset [22].
These studies confirm the possibility of using the optical neural network to achieve pattern
recognition and conduct 2D object classification based on the D2NNs.

In the latest research, the optical neural network employing different coding methods
can be combined with ensemble learning, and it enhances statistical inference and general-
ization capabilities [31]. Furthermore, the D2NN can take advantage of ensemble learning
to learn light field patterns or images from multiple viewing simultaneously to recognize a
3D object. As shown, a kind of multiple-viewing D2NNs array (MDA) proposed by our
research group can be efficiently used to achieve 3D object recognition under turbulence
disturbance based on the Model-net dataset [32]. Therefore, the 3D targets can still be
successfully recognized by the MDA even when the light field patterns or images based on
multiple viewing are lost.

However, the performance of the MDA is poor when the object is translated, scaled,
or shifted. The D2NN was demonstrated to be invariant to the shifting, scaling, or rotating
variance of 2D objects [33]. However, unfortunately, it does not pay attention to factors
such as shifting, scaling, or rotating in actual 3D objects in the real world. Therefore, it may
be vulnerable to perturbation in actual 3D object recognition due to its sensitivity to the
spatial information of targets. To improve the D2NN’s applicability to the real 3D world in
terms of conducting complex object recognition, these object transformations should be
considered as they frequently occur in various classification and recognition problems.

2. Method

To address the aforementioned problem, two measures were adopted in this paper:
(1) A more robust MDA (mr-MDA) is proposed based on the plain MDA to put the base
learner (BL) array on a surface instead of in a single line. The mr-MDA is composed of BLs
from multiple viewing, and the bagging algorithm is used to make the final prediction,
which comprehensively considers decisions obtained by all BLs. Therefore, the prediction
error rate of the mr-MDA is theoretically decreased. In other words, the mr-MDA can receive
more detailed information about the detected object so that it can still uncover the hidden
abstracted clues to achieve classification under random disturbance; (2) a new training
strategy is utilized to formulate the target transformations through random variables and
then they are introduced as a disturbance to train the phases of diffractive layers, which
thus enhances its capability to adapt to the uncertain transformation of input objects. This
method was frequently employed in early ENNs to improve the robustness of the model,
e.g., data enhancement technology [34], and to improve model generalization [35,36].

3. Diffraction Theory

Analysis of information forward-propagation is critical in conventional ENNs. The
massive neurons of each layer are connected by forward-propagation based on electron
flow. In the D2NN, the forward-propagation is based on Huygens’ principle, which is
shown in Figure 1. There are many ways to achieve information forward-propagation
corresponding to a fully connective neural network, a convolutional neural network, and a
recurrent neural network, etc. In the D2NN, the neurons of each layers are fully connected
by light diffraction, as shown in Figure 2.
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According to Rayleigh–Sommerfeld diffraction theory, each neuron in the diffractive
layer is considered as the source of a secondary wave, and it follows the following optical
model [15]:

wL
i (x, y, z) =

z− zi

r2

(
1

2πr
+

1
jλ

)
exp

(
j2πr
λ

)
, (1)

where L represents the L-th layer of the network, i denotes the neuron located at (xi, yi, zi)
in the diffractive layer, r2 = (x − xi)2 + (y − yi)2 + (z − zi)2 and j2 = −1, and λ is the light
wavelength. The amplitude and relative phase of this secondary wave are determined by
the input wave of neurons and its transmission coefficient t. Specifically, the transmission
coefficient can be expressed as

tL
i (x, y, z) = αL

i (x, y, z) exp
(

jφL−1
i (x, y, z)

)
, (2)

where the α and φ represent the amplitude modulation and phase modulation of the input
light wave by one neuron, respectively. In the design process of the phase-modulated
diffractive layer, we can use isotropic materials to make it. By setting the height of each
point on the surface, the phase modulation of every neuron can be controlled. Therefore,
one can write the output function of the i-th neuron in L-th layer as follows:

nL
i (x, y, z) = wL

i (x, y, z) · tL
i (x, y, z) ·∑

k
nL−1

k (x, y, z) (3)

Considering the information propagation of monochromatic light from a 2D plane, the
Raleigh–Sommerfeld diffraction solution can be expressed as a convolution integral [37]:

UL(x, y) =
x

UL−1(ξ,η) · h(x− ξ, y− η)dξdη, (4)
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h(x, y) =
z
jλ
· exp(jkr)

r2 , (5)

h(x, y) =
ejkz

jλz
exp

(
jk
2z

(
x2 + y2

))
, (6)

where U is the light field. The form of the Raleigh–Sommerfeld impulse response can be
written as Equation (5) and k = 2π/λ. To facilitate the calculation, the Fresnel approximation
is used; in this situation, the impulse response can be written as Equation (6). According to
Equation (4) and the Fourier convolution theorem, it is equivalently written as

UL(x, y) = =−1{={UL−1(x, y)} ·H
(
fx, fy

)}
, (7)

H(fX, fY) = ejkz exp
(

jπλz
(

f2
X + f2

Y

))
, (8)

where = represents the fast Fourier transform, UL is the plane wave in the L-th diffractive
layer, =−1 represents the reverse fast Fourier transform, and the H(fx,fy) is defined as the
Raleigh–Sommerfeld transfer function given by Equation (8). The fX and fY are independent
frequency variables associated with x and y. Two input light fields are converted by the
above transformation to obtain the corresponding diffractive light field in Figure 3.
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Figure 3. Diffraction simulation display. (a) Diffraction of square. (b) Diffraction of real target
from dataset.

4. Basic Architecture

The basic structure of the mr-MDA was remodified based on the original MDA and it
can better adapt to the random shifting, scaling, or rotating transformations. Specifically,
Figure 4 shows the configuration of the BLs in this paper, which was designed as a grid
with two rows and three columns on the surface of a sphere. The red point represents
a BL. The angle of adjacent BLs in the same row is demonstrated by θv, and the angle
difference of adjacent BLs in the same column is marked as θh, which were designed to be
at 30◦ and 15◦, respectively. Compared with the original MDA, the additional BLs were
placed in a distinct row, instead of all learners being in the same row, enabling them to
receive more spatial information about the target in different viewings and then increase
the independence between BLs. Taking advantage of this basic architecture, the hypothesis
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space of the mr-MDA is significantly extended, thus making it possible to adapt to targets
with random disturbance and increasing the probability of finding an optimal answer.
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The detailed inference process for one sample of the mr-MDA is demonstrated by the
relationships in

w =
∑NS

k=1 I
[
yk = Fi,j(xk)

]
NS

, (9)

s =
m

∑
i=1

n

∑
j=1

wi,j · αi,j, (10)

pr = argmax
0<=i<M

(si), (11)

For a more convenient explanation, the subscripts of i and j demonstrate the BL located
in the ith row and the jth column in the mr-MDA. In Equation (9), wi,j ∈R denotes the weight
of the BLs, NS denotes the number of samples in the validation dataset, and I[·] represents
the indicator function, which is defined as 1 or 0, respectively, when the condition in the
brackets is true or false. In addition, xk is the kth sample in the validation, and its true
label is marked as yk. Fi,j(·), demonstrating a mapping function of the corresponding BLs,
which propagates the light field information of the input image through several diffractive
layers to consequently shape a specific spot image, leading to the prediction of xk. The
wi,j is obtained based on the performance of the BLs during the validation stage and then
represents the reliability of one BL; its inference can be described as shown in Equation (9).
Consequently, the prediction of the mr-MDA is mainly considered by the most dependable
BL, and thus is affected by the rest of the BLs. The M indicates the number of categories
in a dataset, which is set as 10. The αi, j ∈R1×M denotes a vector of the prediction result
of the BL for one sample, and its ith column value represents the correct rate at which the
target is classified as the ith category. The s = (s(0), s(1), . . . s(M−1))∈R1×M is an integrated
prediction output vector (IPOV) of the mr-MDA, and the significance of each column value
is the same as each column of αi, j. In Equation (11), the pr denotes the prediction result of
the mr-MDA, which is the column number of the highest value in the IPOV.

In summary, Equation (10) guides the concrete realization of the weighted voting
algorithm, and the mr-MDA draws a conclusion based on the collective wisdom, which
helps the mr-MDA to accurately achieve classification despite the random disturbance
already introduced into a 3D target. Additionally, Equation (10) conveys a simple linear
operation, and its time complexity is only determined by the scale of the BL array, such
as approximately O(m × n), which can be negligible during an entire calculation. Hence,
it will exhibit an inappreciable impact on the costing time of the entire optical network
system, which enables the entire system to perform an ultra-high-speed operation despite
the participation of electronic devices.
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As shown in Figure 5, a multiple BL of the mr-MDA will accept light fields from the
different viewing angles of a 3D target. These light fields present more information, such
as the depth of the target, than that of a single light field, which is the principal reason as
to why the mr-MDA achieves higher accuracy even when the 3D target randomly occurs
based on a shifting, rotating or scaling operation. The predicted light spot distributions
are obtained by all BLs and then are transmitted to the computer or electronic circuit.
Furthermore, all predicted light fields are integrated as an ensemble light field to obtain
the IPOV according to the weighted voting method: an implementation of the bagging
algorithm. To facilitate the description, each light spot of the ensemble light field is
numbered as shown in this picture, which represents a specific category of the target.
Finally, every column value of the IPOV represents the confidence level to which the target
belongs in the corresponding category. The category with the highest value is the final
prediction result of the mr-MDA, which is demonstrated by Equation (11). The multiple
BLs are placed in different positions on the sphere with a customized distribution in order
to receive the required light field images from different viewing angles. Determinations
will be drawn by all BLs, which are integrated into an ensemble light field, and the final
prediction is inferred by the mr-MDA by choosing the brightest light spot.
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As shown in Figure 6, an essential BL of the mr-MDA is designed as a series of diffrac-
tive layers and some existing diffractive residual blocks. Figure 6a demonstrates the key
structure of a BL. In our work, the distance between each diffractive layer and between the
last diffractive layer and the output layer was set to 22.72λ and 68.18λ, respectively, where
λ denotes the light wavelength. Every network layer of the BL was set in a 72.72λ × 72.72λ
format, with 200 × 200 layered neurons in a light field scenario and a 2.2 µm wavelength
so it can be integrated into micro-detectors. There are three diffractive layers in the front of
residual blocks, two diffractive layers in the back, and a photodetector as an output layer.
For enhancing the capacity of the mr-MDA, there are two residual blocks and each of them
is made of three diffractive layers. The BLs of the mr-MDA were trained by calculating the
cross-entropy loss of the forward propagation, which was simulated. Each layer can be
fabricated as a physical entity. The output of each BL is transmitted to the computer or
electronic circuit to participate in weighted voting to form a final output as a prediction.
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Figure 6. An essential BL of the mr-MDA was designed as a series of diffractive layers with some
diffractive blocks. (a) Basic architecture of an essential BL. (b) Core architecture of the diffractive
residual blocks in the BL.

For a given 3D object, every trained BL can be used to obtain a customized optical
spot pattern based on a specific single viewing light field. All BLs adopt cross entropy as a
loss function for calculating the output loss and further employ the Adam algorithm and
error backpropagation to update the phase of the diffractive layer. The loss function for
one training sample is demonstrated by the expressions in

α =
exp(I)

∑M−1
i=0 exp(I(i))

, (12)

L = − 1
M

M−1

∑
i=0

β(i)logα(i) + (1− β(i)) log(1− α(i)), (13)

where I = (I(0), I(1), . . . I(M−1))∈R1×M denotes a light intensity vector of the spot in the
output layer of the BL, and I(i) is the light intensity of the ith light spot. In Equation (13), L
is the cross entropy, which statistically indicates the difference between the prediction of
the mr-MDA and the true target label. The α, which is one of αi,j and a normalized vector
of the light intensity vector, can be calculated using a soft-max function, as indicated in
Equation (12). The β(i) denotes the ith column of the true one-hot label, and its value can be
selected as 1 or 0.

According to previous studies, the original deep neural network has several defects,
such as a large number of model parameters, a long training time, and the risk of overfitting.
As demonstrated, the residual deep neural network [38] can be utilized to help the network
to overcome the above shortcomings in the case of the same layer number. Therefore, it is
possible to build a deeper ENN that can better uncover potential patterns or images from
more complex samples. It was verified that the scheme is realizable in an optical neural
network and has excellent performance compared with the architecture of the plain D2NN
in a recent study [39]. Consequently, to enhance the expression capability of the mr-MDA to
cope with shifting, scaling, or rotating targets and to further avoid the problem of vanishing
gradients and overfitting in model training, each unit of the BLs should contain diffractive
residual blocks. Figure 6b shows the fundamental construction of the diffractive residual
block for base learning. Light splitting and focusing can be achieved in the residual block
by employing a beam splitter and reflecting mirror.

5. Experimental Preparation

To better explain the transformations mentioned, some imaging results received by the BLs
located in distinct perspectives after introducing random disturbance into one of samples from
the dataset are demonstrated in Figure 7. The proposed training strategy introduces random
shifting, scaling, and rotating variance into the original targets, and the degree of random object
transformation is respectively represented by independently and uniformly distributed random
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variables. The parameters of ∆, K, and Θ are all three-dimensional vectors used to describe
spatial information after undergoing some uncertain beam transformations. ∆ = (∆x, ∆y,
∆z) indicates that the input object presents some shifts of ∆x, ∆y, and ∆z in the x, y, and z
directions, respectively. Each of their column values is defined as a uniformly distributed
variable, for instance, ∆x ~ U (−δ, δ), ∆y ~ U (−δ, δ), ∆z ~ U (−δ, δ). The hyperparameter
δ represents the displacement level of the target, and δ ∈ [0, 0.7] in this letter. Therefore,
the increase in the value of δ will result in an increased possibility and a variance range of
the target displacement, which will also introduce a greater disturbance into the model.
To appropriately quantify the influence of ∆ on the image formed by a single viewing,
the significance of ∆x, ∆y, and ∆z is carefully described as shown in Figure 8. Both the
scaling and rotating parameters are individually defined as K= (kx, ky, kz) and Θ= (Θx, Θy,
Θz), which means that the original targets are scaled and rotated along the x and y and z
directions, respectively. In order to maintain the proper object proportion, the K is further
designed into kx = ky = kz~U (1 − ε, 1 + ε) and ε ∈ [0, 0.7] in this letter. To this end, each
column of Θ individually conforms to a uniform distribution of U (−θ, θ) and θ ∈ [0◦, 60◦]
in this manuscript. For the sake of convenience, a parameter of viewi,j(vi,j) was used to
represent the BL located in the ith row and the jth column in our BLs’ array, and they will
receive the input light field image of the target in different views.
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For the given hyperparameters of δ, ε, and θ, the range of a random disturbance
introduced into the original target is controllable. Therefore, we can adjust their values to
illustrate the impact of the object’s shifting, scaling, and rotating variance on the prediction
results of the mr-MDA mode. Furthermore, by assigning different values to the variables
on both the training dataset and the blind test data, we demonstrate the prospective
performance of the mr-MDA using a new training strategy.

6. Results and Discussion

The performance comparison of the mr-MDA, the BLs, and the MDA is demonstrated
in Figure 9a–c. It was verified that the architecture of the mr-MDA is more capable of
adapting the 3D target, which already has random disturbance introduced, than the MDA.
This is significant progress compared with a single viewing BL. Specifically, the classification
accuracy of the mr-MDA at all sampling points is superior as compared to the other two
models mentioned. According to the experiments, it can be seen that the test accuracy
of the mr-MDA is higher than that of the BL by ~30% and the MDA by ~15% under the
situation of target shifting, by ~30% and ~10% under target scaling, and by ~15% and
~10% under target rotating. The results mentioned above were obtained based on strong
interference (more details are shown in Figure 9). In addition, as the values of the variables
increase, the recognition capabilities of the single viewing BL, MDA, and mr-MDA decline
significantly. However, the performance of the mr-MDA declines more slowly owing to the
mr-MDA receiving more target spatial information. It should be noted that the mr-MDA
demonstrates a larger hypothesis space in statistics, which is sufficient to uncover more
complex patterns. Moreover, concrete data as regards specific interference are shown in
Table 1. The decision making combined with multiple perspectives is more accurate than
only relying on one single perspective, and this phenomenon becomes more obvious with
the increase in the number of perspectives when interference is introduced. However, this
difference is not apparent with no interference.
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Figure 9. Performance with different random disturbances corresponding to the mr-MDA, the BLs,
and the plain MDA. The subfigures (a–c) respectively represent the curves of the test accuracy under
shifting, scaling, and rotating disturbance. The subgraphs (d–g) respectively denote the phase image
of one diffractive layer of the mr-MDA trained by shifting (δ = 0.6), scaling (ε = 0.8), and rotating
(θ = 50◦), and the standard (δ = 0, ε = 0, θ = 0) training dataset.

Table 1. The accuracy of different models under specific circumstances.

Model Not Inference
(%)

δ = 0.6
(%)

ε = 0.8
(%)

θ = 50◦

(%)

single BL 83.1 41.2 72.3 49.2
3-MDA 84.3 49.3 74.8 52.7
6-MDA 87.2 58.3 77.2 63.1

The phase diagram in Figure 9d–g demonstrates that after introducing disturbance
into the training dataset, the phase of the corresponding diffractive layer also changed
significantly compared with that of the standard phase. Specifically, the spiral phase shown
in Figure 9g is more evident and adjacent to the center of the figure. In contrast, the other
spiral phases in Figure 9d–f are distinct, owing to the diffraction layer of the mr-MDA
taking random disturbance into account in the error propagation of the training phase and
adaptively resisting it. Furthermore, the mr-MDA is driven based on ensemble learning in
the D2NN, so its performance is closely related to the independence between the BLs, which
leads to a superior performance as compared to the plain D2NN and MDA as random
disturbance increases.

The detailed inference of the mr-MDA is the same as that of the MDA; we present
two of the predictions in Figure 10. Every trained BL individually outputs a specific spot
pattern, and some are in line with the expectations, but others are wrong. According to the
BL weight, the mr-MDA draws a conclusion based on collective wisdom using a weighted
voting algorithm. The brightest light spot exists at the desired position (as shown by the
white arrow) in the subfigures with a red frame, which indicates a correct prediction result.
In the sample on the left in Figure 10, the mr-MDA achieves a correct prediction despite
two BLs already making the wrong decision, because each BL is given the appropriate
weight during training; thus, it makes the correct decision even when more than half of the
BLs make wrong predictions, as shown on the right in Figure 10. In addition, Figure 10
also shows that the light distribution of the BL is significantly different from the light
distribution of the mr-MDA, and the latter is only prominent at one certain point, which
does not interfere with the final decision.
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Figure 10. Detailed inference of the mr-MDA.

As demonstrated, each BL outputs a specific spot pattern after receiving light field
images from different viewing angles, and then the mr-MDA determines the target’s
category based on the BLs’ weighted voting (e.g., the prediction accuracy of each BL
on the validation dataset = [0.471, 0.357, 0.401, 0.458, 0.411, 0.454] in Figure 10, so the
corresponding BL weight = [0.185, 0.140, 0.157, 0.179, 0.161,0.178]). In the end, the final
spot pattern is obtained by weighted voting, which has the highest light intensity at the
correct spot position. The weighted voting algorithm allows the mr-MDA to consider all
results of BLs and then adaptively favor the more reliable ones, which explains why the BL
making a wrong decision has a smaller weight but the final prediction is correct, as shown
in Figure 10. This pattern of decision making not only improves the fault tolerance rate of
the whole micro-system, but also enables the whole optical process to work in parallel.

Apparently, the modified architecture of the mr-MDA is more robust than that of the
MDA. To further improve the robustness of the mr-MDA, we adopted a training strategy
that defines both parameters of δtrain and δtest as the shifting variable in the training dataset
and test dataset, both εtrain and εtest as the scaling variable in the training dataset and test
dataset, and both θtrain and θtest as the rotating variable in the training dataset and test
dataset. The mr-MDA has prior knowledge and is not sensitive to spatial information
concerning shifting, scaling, or rotating while achieving 3D target classification. Figure 11
shows the excellent results obtained by employing the new training strategy.

The mr-MDA trained by the shifting, scaling, and rotating datasets presents several
obvious advantages compared with that trained only by the standard dataset. As the
disturbance on the test dataset increases, the performance of the mr-MDA using the normal
training strategy declines sharply, while the performances after employing the new training
strategy drop slowly or remain almost stable. Specifically, Figure 11a shows that a standard
mr-MDA can achieve excellent blind test accuracy in a weak disturbance. However, it
also obtains a small mean and high variance behavior over the entire experiment (e.g., the
standard mr-MDA achieved a ~85.9% test accuracy when δtest = 0, εtest = 0, and θtest = 0,
but its final average test accuracy was only ~43.1%, ~71.2%, and ~58.0%, and the variance
was ~5.7%, ~1.3%, and ~3.9%), which is not enough to conduct satisfactory 3D target
classification after random disturbance has already been introduced. The mr-MDA trained
with the standard dataset lacks prior knowledge of the 3D spatial information of targets
and only learns the standard spatial information, such as the position, size, and direction of
targets. In statistics, it is impossible to find an optimal solution to adapt to the uncertain
object. Therefore, when interference is introduced into the training data, the mean and
variance of the mr-MDA over the entire experiment are greatly improved (e.g., when
δtrain = 0.4, the average accuracy reached ~57% and its variance was only ~0.7%. When
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εtrain = 0.5, the average accuracy reached ~78.5% and its variance was ~ 0.2%. When
θtrain = 30, the average accuracy reached ~65.9% and its variance was 1.1%). Remarkably,
excessive interference in the training dataset can reduce the prediction accuracy, but the
variance still decreases (e.g., as shown in Figure 11, when δtrain = 0.7, εtrain = 0.7, and
θtrain = 60, the variance was approximately zero but their averages were ~54.5% and ~77.2%
and ~56.5%).
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Figure 11. Comparison of the performances using different training strategies. The comparison
between the inference accuracies of the mr-MDA resisting target shifting (left) (a), resisting target
scaling (left) (b), and resisting target rotation (left) (c). The variance of each curve is in the left picture
(right). The value corresponding to the red point in the right subgraphs represents the mean, and the
distance from the red point to the upper and lower ends denotes the variance.

In summary, the proposed mr-MDA can effectively recognize 3D objects that are
shifted, scaled, and rotated as a result of its basic architecture, which already enhances the
independence between the BLs. Furthermore, it was verified that the proposed training
strategy can appropriately increase the mean value of the final decision accuracy and
decrease its variance, which plays an essential role in using the D2NN to stably recognize
3D objects. In this work, the mr-MDA was trained based on the Model-net dataset using
Python 3.8.9 and the framework of Tensorflow 2.0, and we chose blender 2.79b to obtain
a multi-viewing imaging light field of 3D targets. The training and testing of the mr-
MDA were run on a PC with Intel Core i7-10700 CPU (2.90GHZ) and the GeForce RTX
2070 (NVIDIA). It generally took ~20 min to train one BL and thus cost ~375.12KB in
memory consumption. Since the BLs were trained independently, each BL was trained
using different distributed server nodes.

7. Conclusions

According to this experiment, it was concluded that the D2NN can indeed theoretically
accomplish various complicated tasks. The original MDA model was remarkably improved
and a new training strategy utilized to obviously expand the applications of the mr-MDA
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in terms of accomplishing more difficult classification. The mr-MDA model dramatically
enhances the independence between the BLs and it exhibits superior performance in 3D
object classification under random interference compared with the MDA and the plain
D2NN. In addition, the mr-MDA, employing the proposed training strategy, is insensitive to
the spatial information of targets, which is a key feature when utilizing an arrayed photonic
integrated device to recognize complex 3D objects in a dynamic and rapid manner with low-
energy consumption. Although it is currently difficult to perfectly align more diffractive
layers, related work has been published that analyzes the errors in model placement [40].
In addition, the model used in this article provides a way in which to avoid excessively
deep network layers. More perspectives can be used to replace the deeper network and
couple it to the front of the sensor, because optical computing is parallel and high-speed,
and the system size is micro-scale.
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