
Citation: Gavrić, N.; Bojović, Ž.

Security Concerns in MMO

Games—Analysis of a Potent

Application Layer in DDoS Threats.

Sensors 2022, 22, 7791. https://

doi.org/10.3390/s22207791

Academic Editor: George Ghinea

Received: 4 September 2022

Accepted: 10 October 2022

Published: 14 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Security Concerns in MMO Games—Analysis of a Potent
Application Layer DDoS Threat
Nikola Gavrić * and Živko Bojović

Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
* Correspondence: gavric.de1.2019@uns.ac.rs

Abstract: The application layer in the Internet protocol suite offers a significant d egree o f free-
dom regarding the orchestration of distributed denial-of-service attacks due to many different and 
unstandardized protocols. The primary focus of defending against application-layer distributed 
denial-of-service attacks has traditionally been Hypertext Transfer Protocols oriented while observing 
individual users’ actions independently from one another. In this paper, we present and analyze a 
novel application-layer DDoS attack in massively multiplayer online games that utilize the coopera-
tive efforts of the attackers to deplete the server’s or players’ bandwidth. The attack exploits in-game 
dependencies between players to cause a massive spike in bandwidth while the attackers’ traffic 
remains legitimate. We introduce a multiplayer-relations graph to model user behavior on a game 
server. Additionally, we demonstrate the attack’s devastating capabilities on an emulated World of 
Warcraft server. Lastly, we discuss flaws of the existing defense mechanisms and possible approaches 
for the detection of these attacks using graph theory and multiplayer-relations graphs.

Keywords: distributed denial-of-service attacks; application security; graph theory; gaming; massively 
multiplayer online games; application-layer DDoS

1. Introduction

Distributed denial-of-service (DDoS) attacks have traditionally been a significant
disturbance to all service providers. They meet a wide range of these attacks at different
network communication layers. However, a recent prominent trend indicates the emergence
of new, invisible, and increasingly sophisticated application-layer DoS attacks. These
attacks aim to avoid detection while bringing the same impact as regular flooding DoS
attacks [1]. DDoS attacks take advantage of firewalls and intrusion prevention system (IPS)
devices to pass legitimate traffic, thus eliminating one security layer for the attacker [2].
Gaming servers are no exception to DDoS attacks [3], and some authors point to them as
entry points for cybercrime activities [4]. Some reports [5] indicate that gaming servers have
become the most frequent DDoS targets. Researchers and security professionals identified
many DDoS attacks during the Coronavirus pandemic lockdown [6]. Gaming servers have
become a vulnerable target due to many security flaws in standardized and unstandardized
protocols and the different types of server applications. Moreover, gaming servers are often
far more susceptible to DDoS attacks than websites because the quality of service (QoS)
often requires low latency, jitter, and processing delays. Therefore, even occasional peaks in
latency or processing delay can badly affect users’ quality of experience (QoE). For example,
we can examine the DDOS attacks on Ubisoft’s game servers. During these attacks, the
players experienced high latency or service outages, resulting in significant losses for the
company [7]. World of Warcraft [8] servers have already experienced an in-game type of
DDoS attack, perhaps even unintentionally, as they discovered that spatial dependencies
between the players at close in-game proximity contribute to significant resource demands
(Figure 1).

Sensors 2022, 22, 7791. https://doi.org/10.3390/s22207791 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22207791
https://doi.org/10.3390/s22207791
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-3555-1999
https://orcid.org/0000-0001-6257-6417
https://doi.org/10.3390/s22207791
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22207791?type=check_update&version=2


Sensors 2022, 22, 7791 2 of 15

Figure 1. Spatial representation of the players on a game server’s map.

Figure 1 shows communications between the players (vertices) who stand physically
close to each other in-game, causing them to exchange various information continuously.
Suppose we display all online players as vertices in a graph representing an in-game
map and quantify players’ interrelationships with weighted edges. Data links occur only
between players within each other’s view range in-game (Figure 1). In that case, we
assume that several players (who see one another) can form a complete subgraph and
broadcast the same amount of information to each other. Such communication causes
quadratic bandwidth demands in terms of the number of players, whereas players with
lesser connections and isolated ones consume considerably fewer resources. Consequently,
World of Warcraft implemented the Sharding system [9] (Figure 2). The Sharding system
splits existing players into several disjoint sets so that players from one set cannot see
players from the other sets but rather have limited interaction options. Therefore, players
cannot communicate extensively with everyone around them but only with a limited set
of players. Thereby, several lesser subgraphs are formed rather than a large connected
one, thus reducing communication. In Figure 2, the dashed edges display connections
between the players that would occur without the Sharding system, whereas the colored
ones show two independent groups of players. Inspired by this phenomenon, we modeled
a DDoS attack with the idea that there could be many scenarios in which intentional players’
in-game actions could cause massive spikes in bandwidth demand and that the Sharding
system solves only one of those.

In this paper, we present a DDoS attack that can considerably degrade the perfor-
mance of a game server or its players and cause significant losses. Because of the attack’s
adjustability, the attacker can tweak the desired intensity, ranging from barely noticeable
and moderate to ones that cause a service outage. Both hardware resources and a server or
its clients’ bandwidth can be attack targets. Launching costs of this attack are low since it
does not rely on a large botnet and expensive equipment but rather on cooperation between
a small set of bots disguised as regular game players, thus making it feasible for the attacker
to blackmail the server or players. We have organized this paper as follows:

• Section 2 presents related work in terms of attacks and relevant defense approaches.
• Section 3 describes the attack with its theoretical and practical aspects.
• Section 4 shows the DDoS attack experiment and its results.



Sensors 2022, 22, 7791 3 of 15

• Section 5 discusses the results of our research.
• Section 6 consists of our conclusions and future work.

Figure 2. The Sharding system with two sets of players.

This paper studies a new application-layer DDoS attack method that, unlike volumetric
attacks (e.g., Coremelt and crossfire attacks), possesses the ability to carry an amplification
factor (the ratio between the data sent by the attacker and data received by the victim). For
these reasons, we compare attack capabilities against current defense solutions to indicate
the need for new defense mechanisms. We aim to build a dynamic system framework for
modeling and developing mitigation methods. We model the attack using graph theory
and introduce the concept of a multiplayer-relations graph that we use to describe players’
interrelationships within a game server. From the scientific and methodological point of
view, this paper introduces the following achievements:

• In-game dependencies between players can result in significant bandwidth demand.
Therefore, we can exploit the cooperative efforts of the attackers disguised as regular
players in playing games in such a manner to maximize resource depletion while
minimizing detectability.

• The multiplayer-relations graph can describe bandwidth-consuming relations between
the players on a gaming server.

• The potential of this attack on an emulated game server to show the attack’s feasibility
and its alignment with the attack models.

• We show that the current defense approaches are inefficient as they do not consider
cooperation between the attackers, and we discuss possible defense solutions.

2. Related Work
2.1. Attacks

Obtaining attack vectors by using a game’s API was suggested in a review of UDP
amplification attacks [10]. They exploited the computational asymmetry in a scenario
where individual attackers attacked the server independently.

This attack type is a feature-based one that exploits vulnerabilities to enhance available
features. Our attack manifests some of the characteristics described in the DDoS attack’s
taxonomy [11], such as a low number of zombies required to perform the attack from only
a single machine successfully. Stealthiness is also present because it relies on exploiting
the application’s features. The taxonomy does not mention the possibility of coordinated



Sensors 2022, 22, 7791 4 of 15

feature-based application-layer attacks. Moreover, the authors described low-rate DDoS
attacks as those that try to consume all available spots. Massively multiplayer online
(MMO) games translate into logging onto too many accounts, which is impractical.

Regarding bandwidth depletion, concepts similar to ours were presented on a larger
scale on the network layer in the Coremelt [12] and Crossfire [13] attacks, where cooperation
between the bots resulted in sophisticated network link flooding. In the Coremelt attack,
flooding occurs from the data exchange between the bots, and in the Crossfire attack, it is
the data exchange between the bots and the servers behind the targeted links. Similarly, in
our scenario, in the star network topology, we can observe the game server as the targeted
link while its players are the final destination or bots.

The application layer offers the greatest degree of freedom compared to the other
layers in orchestrating DDoS attacks. Unlike the attack mentioned above, our attack can
involve more sophisticated methods, making it harder to detect.

2.2. Defense

When it comes to detecting malicious users on the application layer, it is necessary to
discuss specific issues. Firstly, a constraint comes from MMO’s real-time nature, meaning
the detection algorithm must be computationally inexpensive without affecting players’
latency. An ethical question also arises on whether it is right to sanction a player for playing
the game in a manner not originally intended. Our attack is undetectable on the network
layer as examining individual flows does not provide sufficient information to indicate a
malicious type of cooperation between the players.

There are numerous SDN-based detection approaches to the Coremelt and Crossfire
attacks. However, SDN-oriented solutions do not apply to our attack because the attackers
are just as good as the regular players from the network’s aspect. Somebody’s gameplay
style is not a network-related issue. In a networking sense, the server affected by this DDoS
attack lacks the resources to serve its players. SDN approaches are useless as there are no
actual network links under attack.

At the time being, we do not have a representative MMO game server dataset. How-
ever, we believe that signature-based detection would not help cases of coordinated attacks
because a player can play the game regularly and decide to use certain features used in the
attack more or less often during his play. The features used in the attacks are intended to
be used, so regular players will also use them.

FineLame [14] suggests tracking resource usage on the server per request. It assumes
that we can attribute the resource usage at the end of each processing phase to a single
request. Then, it proceeds with K-means or other desired methods to classify requests.
FineLame also assumes that we already know some expected user behavior, and it focuses
only on requests that take up too many resources. In the case of our attack, resource usage
per request works as intended. While the requests are taking up many more resources
than initially planned, they are acceptable due to the design of the MMO games. Finally,
FinaLame cannot detect coordinated attacks. In terms of practical implementation, it would
have to be a very complex detection algorithm, which would have to run on the game
server and track thousands of requests and player groups simultaneously.

The authors of [15] initially proposed client puzzles to defend against far simpler
attacks. Nevertheless, one can expand this idea to solving puzzles whenever a suspicious
activity arises. Another problem would be the GPU-offloading of such puzzle algorithms,
noting that powerful GPUs are common in gaming PCs and other gaming platforms.
Puzzle algorithms, GPU-offloading, and constraints were discussed in [16], making this
approach very difficult. Implementing puzzles seems inapplicable in real-time applications
due to an inherent delay it would cause, rendering the game unplayable and depleting
one’s resources, resulting in frame-rate drops and increased power consumption, both of
which are unacceptable for mobile platforms. Entropy-based metrics [17] are supposed to
distinguish malicious traffic based on the packets’ information quantity.



Sensors 2022, 22, 7791 5 of 15

Our attack, however, can adapt to such defense methods due to its flexibility. The
authors in [18] describe methods for avoiding the entropy-based defense mechanisms
that can apply to our attack. The attacker may easily play regularly for a certain period,
measure all relevant statistics, and then adjust the attack parameters to fit in. Furthermore,
the attacker can also adapt to the gameplay style during the attack to bypass the defense
mechanisms while maximizing the attack’s share of bandwidth.

Application-layer defense models [18–20] are often biased towards HTTP. Such models
are inapplicable because they rely on HTTP-specific functions, such as POST or GET
methods, browsing behavior, or visitors’ IP address distribution. IP spoofing is unnecessary
due to the authentication required to log into the game and play, meaning that source IP
addresses will remain the same before and during the attack. As for applying our Attack to
HTTP applications, we did not find suitable testing applications, but we do not exclude the
possibility of such applications.

A defense approach presented in [21] analyzes only a static case of the Coremelt
network-layer attack with a fixed amount of attackers with fixed bandwidth, which we can
apply against the application-layer DDoS. Moreover, it suggests dropping some packets
from the most bandwidth-intensive users. Our attack can quickly adapt to such rules by
reducing the flow rate and using coordinated methods. As discussed before, these attacks’
intensity can be extremely low, blending their malicious bandwidth unnoticeably within the
non-malicious one. This approach can also backfire when an individual player is targeted
by many attackers, resulting in the attack’s amplification, as the server would drop the
victim’s packets.

After reviewing the available literature, we could not find adequate consideration of
the possible existence of the attack type that we are presenting. Consequently, there is no
defense specifically designed against this attack. At the same time, it is stealthy enough
to bypass current detection systems, making it a potent threat for MMO gaming servers
and players.

3. The DDoS Attack

This section explains our attack model’s details, challenges, and requirements for
launching an attack. This model assumes star topology and an MMO game server. We
explain the novelty of this attack in terms of graph theory, where we introduce the term
multiplayer-relations graph to simplify the model.

3.1. The Multiplayer-Relations Graph

Due to the complex nature of describing connections between physical equipment
and logical relations between the players within the gaming server’s application that
cause bandwidth usage, we introduce the multiplayer-relations graph, which facilitates
the modeling of our attack. The multiplayer-relations graph is the server’s view of clients
(vertices) and their interrelationships, quantified by weighted, directed edges, representing
bandwidth usage. Loops in this graph describe clients’ bandwidth usage for individual
needs, both upload and download, as these are API calls sent to the server and results
of API calls that affect the caller. We have used loops to describe actions such as playing
alone in an isolated area, obtaining responses from the server, keeping the connection
alive, and sending API calls with their respective arguments (e.g., chat API and message
content). A directed edge quantifies bandwidth usage (server’s upload, which is the client’s
download) resulting from API calls by one vertex, affecting the targeted vertex, such as a
private message from one player to another. Physically, clients are in a star topology with
the server in the center. However, we must point out that the multiplayer-relations graph
provides much more information. This graph is based on users’ actions affecting the server
application. Due to the physical graph’s lack of information, generating a multiplayer-
relations graph requires information from the server application. Assuming that we have
the information about source and destination of traffic between the clients, the transition
from a physical to a multiplayer-relations graph is shown in Figure 3, which illustrates



Sensors 2022, 22, 7791 6 of 15

insufficient insight from only observing from a networking perspective. The transform
procedure from the physical graph to the multiplayer-relations graph is the following:

1. Remove the vertex representing the server from the graph (Vertex 0 in Figure 3).
2. All edges that were incident on vertex 0 from other vertices will become loops for

their respective vertices.
3. Using the information obtained from the server’s application, find the initiators (API

callers) of the bandwidth represented by the remaining edge’s incident from the
removed vertex 0 and connect these edges to their sources. If both the source and
destination of an API call are the same, add that bandwidth to existing loops among
other bandwidth where the server used to be the initiator of bandwidth (e.g., keeping
the connection alive). Optionally, track how much every entity contributed to the
loops in case there is a need for an inverse transform.

The inverse transform procedure is the following:

1. Add a vertex representing the server to the multiplayer-relations graph.
2. Replace all loops with edges incident on the server vertex from their respective

vertices and add edges incident from the server’s vertex to these vertices. Using the
information stored during the transform, determine the weight of these edges.

3. All edges incident from the non-server vertices to other non-server vertices should
have their source changed to the server vertex. This step may aggregate edges, so it is
also necessary to aggregate their weights.

The transform focuses on client relations, so we removed the server to avoid loading
the graph unnecessarily with the server as a proxy for client communication. Step two facili-
tates the observation of the graph, as we know that loops represent bandwidth arising from
the clients’ overall upload in addition to necessary traffic from the server-client communica-
tion. Step three may create new edges because there can be multiple initiators of bandwidth
towards a vertex. By only observing the physical graph, this information is invisible. The
final step is crucial for observation, and it is what makes the multiplayer-relations graph
unique. The sum of weights on the physical graph and the multiplayer-relations graph
must be the same. Loops in the multiplayer-relations graph comprise both upload and
download for simplicity, making it impossible to transform the multiplayer-relations graph
into a physical one unless we keep track of the loops’ download and upload components.
Insight into the physical graph is always available on the server and we did not find it
necessary for planning DDoS attacks. Therefore, the total bandwidth at any given moment
equals the sum of all weights on the graph. API calls may create or delete graph edges
and affect total bandwidth demand. In terms of multiplayer-relations graphs, traditional
DDoS defense approaches only consider loops, whereas other edges are neglected or do
not exist in some applications (e.g., visiting a web page). However, In MMO games, such
an approach is ineffective as the directed edges and their weights in the graph are highly
volatile. Therefore, bandwidth usage for a given number of online players can fit a large
scale of values, ranging from a graph that only consists of loops to a fully connected graph,
similarly to the in-game crowd problem solved by the Sharding system [9]. The attacker
aims to manipulate the multiplayer-relations graph in such a way as to maximize band-
width usage. The number of online players is unchanged from the system’s perspective.
For example, suppose that there are 30 players online and all of them broadcast with a
1 Mbps rate. In that case, there is a 30 Mbps demand for every player, meaning roughly
900 Mbps will be consumed. On the other hand, if we split the players into five groups of
six players, demand will be only around 180 Mbps. Moreover, we identified a few exploits
other than in-game crowding to cause such a spike in bandwidth usage, and we assume
there are more such exploits.



Sensors 2022, 22, 7791 7 of 15

Figure 3. Transition from a physical graph (left) to a multiplayer-relations graph (right).

3.2. Orchestrating The Attack

To launch an attack on a game server, the attacker must be familiar with the application
and its protocols to estimate the impact of calling APIs that will later be used as attack
vectors. We can facilitate this part if there is a way for the attacker to emulate the server
and perform tests. This part is critical because a successful attack requires an appropriate
set of attack vectors. Obtaining attack vectors can also be performed by directly modifying
the client application, its memory, or its network packets using some widely available
tools [22,23],as presented in Figure 4. If any parts of the game rely on client-sided con-
straints, those could be removed to amplify the attack. An example would be removing the
timers for calling APIs we intend to abuse or abusing a particular protocol by disrupting
its client-side components (e.g., selectively removing ACK messages). A suitable attack
vector is an API call that causes substantial traffic or computational demand.

Figure 4. Exploitation of the client application by (a) modifying game files, (b) modifying memory
during runtime, and (c) modifying network packets.

After an attack vector set has been identified, the attacker must configure bots and a
system that controls and synchronizes their behavior, as illustrated in Figure 4. The final



Sensors 2022, 22, 7791 8 of 15

part before launching the attack involves technical details such as determining the number
of bots or physical devices and used networks. Such decisions depend on the quality of the
attack vectors and defense mechanisms that a game server might possess (e.g., throughput
limiters per socket or IP address). The controlling application can be a separate application
and an in-game feature, such as an add-on, which is a user-programmed addition to the
game client. The controlling application’s purpose is to automatize and synchronize bots’
actions. For instance, many MMO games have player grouping mechanisms in which an
individual player can be a group leader. Changing a group’s leader requires the leader
to call an API and specify the new group leader’s name. After processing that API, the
server assigns the leader role to the new player, and everybody in the group is notified
about the change. In this situation, the attacker could form a group of bots that would
randomly swap leader roles indefinitely. Moreover, the games usually do not include the
GUI necessary to re-promote oneself. For this reason, the attacker could interfere with
the network packets and change the argument of the API call to set himself as the new
group leader if there is no server-side check for actions that were initially not intended to
be executed.

3.3. Detectability

The nature of MMO games and DDoS attacks allows the application of various at-
tacking strategies. For instance, there can be a variable number of attackers, as any bot
can be disguised as a regular player for an indefinite period. Several groups of bots can
work together with different attack vector sets, with each bot attacking with different
intensities or switching between groups. These abilities make the detection of the attack
tremendously complicated.

4. Experiment and Results

We emulated a World of Warcraft [8] server using the TrinityCore [24] emulator to
demonstrate the attack’s feasibility. We used a list with descriptions of all WoW API
calls [25] to form our attack vector. Even though there are many attacking strategies
available, we stick to a relatively simple one with only one attack vector and a constant
number of attackers at a constant attacking intensity for the sake of demonstration. As this
is an emulated experiment, there are no players other than the attackers, so we decided to
isolate them in-game as much as possible to minimize other sources of traffic in order to
observed how our theoretical and experimental models compare.

4.1. Attack Setup

The attack vector consists of a SendAddonMessage [26] API call, which we use to
send messages via add-on channels. Typically, these messages are invisible to players and
uses for communication between add-ons. In the first scenario, the API call is configured
to broadcast messages to all bots used in the attack to maximize bandwidth depletion.
Broadcasted messages are also sent back to the API caller. We can intuitively explain
this behavior by sending a message to a group chat, where the sender sees his message
appearing in the chat after the server broadcasts it. In the second scenario, the bots
target a single player with a simple volumetric attack that causes lesser overall bandwidth.
However, it might disrupt the victim’s connection or even cause disconnection. The selected
API call causes the sending of the desired command with its arguments, such as message
contents and the receiving channel or player’s name to the server. After the server processes
the requested API call, the add-on message is transmitted to the receiver(s) described in
the API argument. The bots were controlled via an add-on that we created for the master
bot to send commands via an add-on channel to the bots to execute them upon receipt. We
tweaked the add-on and used an auto-clicker to precisely set the desired upload speed per
bot to 0.2 MBps. A total of 20 attacking bots were involved. We present the attack schematic
in Figure 5.



Sensors 2022, 22, 7791 9 of 15

Figure 5. DDoS attack scheme: (a) attacking the server; (b) attacking a single player on the server.

4.2. Theoretical Background

The second attack scenario is relatively simple because it is a volumetric attack, so
the expected traffic that the server sends to the victim should be approximately equal to
the traffic it is receiving from the attackers. In terms of the multiplayer-relations graph,
the victim is a vertex with incident edges coming from the attacker’s vertices. However, a
more complicated case is present in the first attack scenario, where bandwidth demands
(per second) caused by the attack (denoted as b) by an individual attacker can be obtained
as follows.

b = f (ni, ki, N) = (1 + C) · (S +
N

∑
i=1

(ni · ki)) (1)

N is the number of receivers of the message, ni is the number of messages per second,
and ki is the size of each message being sent to the i-th receiver. C represents protocol-
related messages such as other API arguments, ACK messages, and others. S represents
uploaded data from the client to the server, which will later be transmitted to other bots
(modeled as a loop as these are only API calls). However, with the chosen attack vector, we
simplified the attack so that all of malicious messages have the same size. The messages
are equally broadcasted at the same rate to everybody; therefore, we have the following.

ni = n ∧ ki = k f or i = 1, . . . , N (2)

x = n · k (3)

S = x (4)

f (x, N) = (1 + C) · (x · (N + 1)) (5)

The value of x is now traffic at a constant rate and represents the traffic sent to a player
other than the API caller. We assume that S and x are of the same size, meaning that the
attacking API call (Upload to the server) with an add-on message in its arguments is equal
in packet size to its counterpart, retransmitted by the server. To simplify the model further,
as C is a relatively small number, we can ignore it; thus, we have the following.

C → 0 (6)

f (x, N) = x · (N + 1) (7)



Sensors 2022, 22, 7791 10 of 15

In terms of graphs, N is the number of edges (including a loop) involved in the
attack. These edges are incident to the vertex performing the attack, and x is the weight
of each edge. The plus one factor represents the additional weight of the attacker’s loop
as the attacker’s upload data. As we perform the attack with N attackers, we create a
complete graph with N · (N − 1)-directed edges between N vertices, indicating quadratic
bandwidth demands in terms of the number of the attackers. There are additional N loops
for the attackers receiving their own messages from the server plus N loops for their API
call upload. Therefore, we get an approximation of total bandwidth demand caused by
attackers (denoted as B).

B = N · b = N · f (x, N) = x · (N2 + N) (8)

In our attacking scenario, this means that we are supposed to roughly deplete around
80 MBps of the server’s upload and 4 MBps of its download. We can present this attack
model as a complete multiplayer-relations graph with N loops. As illustrated in Figure 6
with only a few attackers, loops show the attacking messages sent to the server and ordinary
player activities, whereas directed edges show messages retransmitted by the server .

Figure 6. Multiplayer-relations graph—example attack model with (a) 1 attacker and (b) 4 attackers.

As shown in Figure 7, it is difficult to determine the reasons for communication
between the players by only observing the physical graph, even in the case of only a
single attacker. In the case of multiple attackers, such as in Figure 6b, the physical graph
would show higher numbers without any indications for their values, hence proving the
multiplayer-relations graph’s usefulness.

Figure 7. Physical representation of the multiplayer-relations graph shown in Figure 6a.



Sensors 2022, 22, 7791 11 of 15

4.3. Testbed

We experimented on two servers. One hosted the World of Warcraft server, while the
other was running multiple client application instances. Both servers possess a dual Intel
Xeon 4110 CPUs setup and 128 GB of RAM, where one that was dedicated for the players
also hosts an Nvidia Titan XP GPU. The servers are connected locally with ethernet via a
single 1 Gbps link.

4.4. Results

We used tcpdump [27] to capture all of the network’s packets on the game server. The
attack lasted for only several seconds to avoid generating large log files with redundant
data. We primarily focused on observing the traffic from and to the server to see how our
attack model compared to the experiment. We separated the application traffic (goodput)
from total traffic (throughput) to provide more accurate insights. In our graphs, we use
two different time steps (10 ms and 1 s) to differentiat between precise values in time and
average values over one second in order to observe the results from different perspectives.
Thus, in our first experiment, we demonstrated the depletion of the server’s bandwidth.

In Figure 8, we can precisely observe that the attacking messages are causing the server
to retransmit them to each of the attackers individually. This process takes time because
the server requires a certain amount of bandwidth because the 1Gbps link is limited at
a 1.25 MB/10 ms rate. In terms of bandwidth, the surface of the red curve should be
around 20 times lesser than the surface of the blue one, which might not be intuitive, so
we illustrated it in Figure 9 among the throughputs to roughly estimate the impact of
other protocols.

Figure 8. Server’s goodput in the first attack scenario with 10 ms time step.

Even though the server receives around 4 MBps of goodput, it only responds with
about 75 MBps instead of the expected 80 MBps, and it happens due to averaging the
measurements per second. Averaging caused certain discrepancies, such as responses
being sent before the attack. Another deviation arises from the fact that the server may
reply buffered messages in large packets, causing lesser communication overhead on
the application layer. However, the central area proves the quadratic-like bandwidth
demand that we expected to see. Our model’s numbers match the experimental results
as the red curve equals x · N, and the blue one equals approximately x · N2. In a real-life
scenario, the effects of such an attack could be much broader because ordinary players
could unknowingly take part in it as receivers of these messages. It is not uncommon to



Sensors 2022, 22, 7791 12 of 15

have players grouped into much larger chats, where even a hundred players could be on
the receiving end. Such a scenario would amplify the just demonstrated attack by a linear
factor, notably facilitating the attacker’s efforts.

Similarly to the first attack scenario, the attackers’ combined messages cause retrans-
mission in several lengthy packets containing many add-on messages, rather than the
expected one-by-one retransmission mechanism (Figure 10). Since this is a volumetric
attack, the surface below the receiving and corresponding sending traffic curves should be
roughly the same. Averaged over a second (Figure 11), the graph shows that the attacker’s
traffic is around 4.5 MBps.

Figure 9. Server’s traffic in the first attack scenario with a 1 second time step.

Figure 10. Server’s throughput in the second attack scenario with 10 ms time step.



Sensors 2022, 22, 7791 13 of 15

Figure 11. Server’s throughput in the second attack scenario with 1-second time step.

In contrast, the victim’s traffic is around 4 MBps due to lesser communication over-
head because the attackers are sending their messages one-by-one independently, while
the server is retransmitting their messages in large packets. The attack also resulted in
significant degradation in the victim’s quality of service, as the delay during the gameplay
became more extensive, eventually rendering the game unplayable.

5. Discussion

In the first attack scenario, the results obtained from the experiment align with the
theoretical model, hence proving the O(N2) bandwidth hypothesis, where N is the number
of players participating in the attack. Furthermore, we demonstrated the feasibility of the
attack and its devastating potential. Practically, in a real-world scenario, on a server with
thousands of players online, a few dozen online players (or a single person using multiple
accounts) could potentially keep the server under DDoS for an indefinite period.

In the second attack scenario, in cases where the victim’s connection is slower than the
attacker’s, the attack inevitably takes 100% of the victim’s bandwidth. The attack causes a
rapid degradation of QoS in-game and other applications using the Internet from the same
network, ultimately leading to disconnection from the game’s server. We can treat this
attack as a volumetric attack where multiple players consume a single player’s bandwidth
using brute force without any amplifications. However, a notable characteristic of the
attack is that the targeted player cannot know a DDoS attack is targeting him. There are no
apparent indicators, so the targeted player could attribute the QoS degradation to a bad
connection or hardware.

The multiplayer-relations graph has proven to be a simple and accurate tool for
describing these attacks due to matching expected (modeled) and obtained bandwidths. In
addition to tracking bandwidth, constructing the graph would require tracking API calls
and their respective responses in a real-world environment, which could pose a difficult
upgrade for some applications. Despite this, we believe that such an approach would
provide important information regarding application-layer DDoS attacks. We could use
this information to develop detection algorithms.

The experiment results suggest that the consequences of the attack in a real-world
environment could be much worse because of the attack’s stealthiness and ability to use
ordinary players as the receivers of malicious traffic, thus consuming their and, therefore,
the server’s bandwidth without their knowledge. In real-life applications, these attacks
would allow the selective disconnection of players or can shut down the entire server,
resulting in possible cyberbullying or extortion, prompting the need to find solutions
against these attacks.



Sensors 2022, 22, 7791 14 of 15

6. Conclusions

Online gaming is omnipresent, and MMO games are a considerable part of the IT
industry. The money, fame, and excitement involved in ubiquitous MMO games naturally
attract hackers. Traditional application-layer DDoS attacks rely on known patterns and
protocols, and there are many suggested defense approaches against such attacks. How-
ever, this research has shown that strategic cooperation between attackers who play MMO
games in undesirable ways is still not considered to the required extent. For this reason, we
introduced and analyzed a novel application-layer DDoS attack that exploits interrelation-
ships between the players on the game server. Moreover, we demonstrated its effects in
two scenarios on an emulated MMO game server to prove its feasibility and impact.

Additionally, we introduced the multiplayer-relations graph to display the information
relevant to the attack comprehensively. We modeled the demonstrated attacks using
the multiplayer-relations graph and showed that the modeled expectations accurately
portrayed the attacks. Hence, we believe that this graph will contribute to the future
research of application-layer DDoS attacks.

The results displayed the MMO server application’s vulnerabilities, thus indicating
the need for an adequate DDoS detection system that would consider cooperative player
efforts instead of solely relying on inspecting individual actions per player. The subject
of our future work will be a detection system that can identify a group of players whose
combined actions contribute to a significant bandwidth demand. Ideally, this system would
inspect every possible group of players and find the most critical ones. However, the
complexity of such a detection system is the primary issue, especially considering that there
are too many ways to group players. The real-time nature of the detection systems poses
an additional constraint, in addition to the hardware required for the detection algorithm.
The algorithm could easily demand more hardware than the gaming server application,
resulting in significant additional DDoS protection expenses, considering that this system
only protects against some types of application-layer attacks. In future studies, we will
attempt to create a suboptimal detection algorithm using the multiplayer-relations graph to
obtain relevant information to identify most attacks originating from the displayed attack’s
idea while satisfying the constraints mentioned above.

Author Contributions: Methodology, N.G. and Ž.B.; investigation, N.G.; software, N.G.; writ-
ing—original draft preparation, N.G. and Ž.B.; writing—review and editing, N.G. and Ž.B.; project
administration, Ž.B. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the European Union’s Horizon 2020 research and innovation
program under Grant Agreement number 856967.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

API Application programming interface
DDoS Distributed denial of service
HTTP HyperText Transfer Protocol
MBps Megabytes per second
Mbps Megabits per second
MMO Massively multiplayer online



Sensors 2022, 22, 7791 15 of 15

References
1. Gonzalez, H.; Gosselin-Lavigne, M.A.; Stakhanova, N.; Ghorbani, A.A. The impact of application-layer denial-of-service attacks.

Case Stud. Secur. Comput. Achiev. Trends 2014, 261. Available online: http://www.cs.unb.ca/~natalia/ApplDDoS.pdf (accessed on
5 May 2021).

2. The Growing Threat of Application-Layer DDoS Attacks. Available online: https://dsimg.ubm-us.net/envelope/126712/324232/
1298913706623_AB_ALDDoS_EN_LGQ1.pdf (accessed on 5 January 2021).

3. Notable Actions. Available online: https://en.wikipedia.org/wiki/Lizard_Squad#Notable_actions (accessed on 14 January 2021).
4. Hughes, J. An Analysis of Cybercrime Activity within an Underground Gaming Forum July 2019. Available online: https:

//www.cambridgecybercrime.uk/slides-2019-hughes.pdf (accessed on 20 January 2021).
5. Imperva Research Labs. 2019 Global DDoS Threat Landscape Report, Impreva Research Labs, San Mateo, California, United

States, 4 February 2020. Available online: https://www.imperva.com/blog/2019-global-ddos-threat-landscape-report/ (accessed
on 24 January 2021).

6. NSFOCUS. 2020 Mid year DDoS Attack Landscape Report, NSFOCUS, Milpitas, California, United States, 18 August 2020.
Available online: https://nsfocusglobal.com/wp-content/uploads/2020/08/2020-Mid-Year-DDoS-Attack-Landscape-Report-
V4.pdf (accessed on 25 January 2021).

7. Innab, N.; Alamri, A. The Impact of DDoS on E-commerce. In Proceedings of the IEEE 2018 21st Saudi Computer Society National
Computer Conference (NCC), Riyadh, Saudi Arabia, 25–26 April 2018; pp. 1–4.

8. World of Warcraft. Available online: https://worldofwarcraft.com/en-us/ (accessed on 3 February 2021).
9. Sharding (Term). Available online: https://wow.gamepedia.com/Sharding_(term) (accessed on 5 February 2021).
10. Rossow, C. Amplification Hell: Revisiting Network Protocols for DDoS Abuse. In NDSS; 2014; pp. 1–15. Available online:

https://www.christian-rossow.de/publications/amplification-ndss2014.pdf (accessed on 8 June 2022).
11. Mantas, G.; Stakhanova, N.; Gonzalez, H.; Jazi, H.H.; Ghorbani, A.A. Application-layer denial of service attacks: Taxonomy and

survey. Int. J. Inf. Comput. Secur. 2015, 7, 216–239. [CrossRef]
12. Studer, A.; Perrig, A. The coremelt attack. In European Symposium on Research in Computer Security; Springer: Berlin/Heidelberg,

Germany, 2009; pp. 37–52.
13. Kang, M.S.; Lee, S.B.; Gligor, V.D. The crossfire attack. In Proceedings of the 2013 IEEE Symposium on Security and Privacy,

Berkeley, CA, USA, 19–22 May 2013; pp. 127–141.
14. Demoulin, H.M.; Pedisich, I.; Vasilakis, N.; Liu, V.; Loo, B.T.; Phan, L.T. Detecting Asymmetric Application-layer Denial-of-Service

Attacks In-Flight with FineLame. In Proceedings of the 2019 USENIX Annual Technical Conference (USENIX ATC 19), Renton,
WA, USA, 10–12 July 2019; pp. 693–708.

15. Aura, T.; Nikander, P.; Leiwo, J. DOS-resistant authentication with client puzzles. In International Workshop on Security Protocols;
Springer: Berlin/Heidelberg, Germany, 2000; pp. 170–177.

16. Wu, Y.; Zhao, Z.; Bao, F.; Deng, R.H. Software puzzle: A countermeasure to resource-inflated denial-of-service attacks. IEEE Trans.
Inf. Forensics Secur. 2014, 10, 168–177.

17. Bhuyan, M.H.; Bhattacharyya, D.K.; Kalita, J.K. An empirical evaluation of information metrics for low-rate and high-rate DDoS
attack detection. Pattern Recognit. Lett. 2015, 51, 1–7. [CrossRef]

18. Özçelik, İ.; Brooks, R.R. Deceiving entropy based DoS detection. Comput. Secur. 2015, 48, 234–245. [CrossRef]
19. Beitollahi, H.; Deconinck, G. Tackling application-layer DDoS attacks. Procedia Comput. Sci. 2012, 10, 432–441. [CrossRef]
20. Praseed, A.; Thilagam, P.S. DDoS attacks at the application layer: Challenges and research perspectives for safeguarding web

applications. IEEE Commun. Surv. Tutor. 2018, 21, 661–685. [CrossRef]
21. Yang, G.; Hosseini, H.; Sahab, U.D.; Clark, A.; Hespanha, J.; Poovendran, R. Modeling and mitigating the coremelt attack. In

Proceedings of the IEEE 2018 Annual American Control Conference (ACC), Milwaukee, WI, USA, 27–29 June 2018; pp. 3410–3416.
22. Cheat Engine. Available online: https://www.cheatengine.org/ (accessed on 7 February 2021).
23. Winsock Packet Editor. Available online: https://winsock-packet-editor-wpe-pro.apponic.com/ (accessed on 7 February 2021).
24. Trinity Core. Available online: https://github.com/TrinityCore/TrinityCore (accessed on 9 February 2021).
25. World of Warcraft API List. Available online: https://wow.gamepedia.com/World_of_Warcraft_API (accessed on 12 February 2021).
26. SendAddonMessage. Available online: https://wow.gamepedia.com/API_C_ChatInfo.SendAddonMessage (accessed on 13

February 2021).
27. Tcpdump. Available online: https://www.tcpdump.org/ (accessed on 22 February 2021).

http://www.cs.unb.ca/~natalia/ApplDDoS.pdf
https://dsimg.ubm-us.net/envelope/126712/324232/1298913706623_AB_ALDDoS_EN_LGQ1.pdf
https://dsimg.ubm-us.net/envelope/126712/324232/1298913706623_AB_ALDDoS_EN_LGQ1.pdf
https://en.wikipedia.org/wiki/Lizard_Squad#Notable_actions
https://www.cambridgecybercrime.uk/slides-2019-hughes.pdf
https://www.cambridgecybercrime.uk/slides-2019-hughes.pdf
https://www.imperva.com/blog/2019-global-ddos-threat-landscape-report/
https://nsfocusglobal.com/wp-content/uploads/2020/08/2020-Mid-Year-DDoS-Attack-Landscape-Report-V4.pdf
https://nsfocusglobal.com/wp-content/uploads/2020/08/2020-Mid-Year-DDoS-Attack-Landscape-Report-V4.pdf
https://worldofwarcraft.com/en-us/
https://wow.gamepedia.com/Sharding_(term)
https://www.christian-rossow.de/publications/amplification-ndss2014.pdf
http://doi.org/10.1504/IJICS.2015.073028
http://dx.doi.org/10.1016/j.patrec.2014.07.019
http://dx.doi.org/10.1016/j.cose.2014.10.013
http://dx.doi.org/10.1016/j.procs.2012.06.056
http://dx.doi.org/10.1109/COMST.2018.2870658
https://www.cheatengine.org/
https://winsock-packet-editor-wpe-pro.apponic.com/
https://github.com/TrinityCore/TrinityCore
https://wow.gamepedia.com/World_of_Warcraft_API
https://wow.gamepedia.com/API_C_ChatInfo.SendAddonMessage
https://www.tcpdump.org/

	Introduction
	Related Work
	Attacks
	Defense

	The DDoS Attack
	The blackMultiplayer-Relations Graph
	Orchestrating The Attack
	Detectability

	Experiment and Results
	Attack Setup
	Theoretical Background
	Testbed
	Results

	Discussion
	Conclusions
	References

