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Abstract: Given the complexity of the operating conditions of rolling bearings in the actual rolling
process of a hot mill and the difficulty in collecting data pertinent to fault bearings comprehensively,
this paper proposes an approach that diagnoses the faults of a rolling mill bearing by employing the
improved sparrow search algorithm deep belief network (ISAA-DBN) with limited data samples. First,
the fast spectral kurtosis approach is adopted to convert the non-stationary original vibration signals
collected by the acceleration sensors installed at the axial and radial ends of the rolling mill bearings
into two-dimensional (2D) spectral kurtosis time–frequency images with higher feature recognition,
and the principal component analysis (PCA) technique is used to decrease the dimension of the data
in order to achieve a high diagnosis rate with a limited number of samples. Subsequently, the sparrow
search algorithm (SSA) is used to realize the intelligent optimized self-adaptive function of a deep
belief network (DBN). Furthermore, the firefly disturbance algorithm is employed to improve the
spatial search capability and robustness of SSA-DBN in order to achieve better performance of the
ISSA-DBN method. Finally, the proposed approach is experimentally compared to other approaches
used for diagnosis. The results show that the proposed approach not only retains the useful features of
the data through dimension reduction but also improves the efficiency of the diagnosis and achieves
the highest diagnosis accuracy with limited data samples. In addition, the optimal position of the
sensor for diagnosing rolling mill roll faults is identified.

Keywords: rolling mill; rearing fault diagnosis; 2D spectral kurtosis image; ISSA-DBN; limited samples

1. Introduction

The strip mill is the main piece of equipment in the iron and steel industry. It is a
highly automated system with a complex structure, and its running health determines its
rolling speed and the quality of the rolled products. As the rolling speed and strength
continue to increase, the rolling mill equipment suffers from frequent failures, which not
only pose a serious threat to the safety and normal production of the rolling production
line but also cause significant economic losses. Therefore, monitoring and diagnosing the
health status of the key equipment of the hot rolling mill has emerged as an urgent scientific
problem [1,2].

Research on the health status of rolling mill equipment requires not only deep theoret-
ical knowledge but also high-precision equipment fault diagnosis technology to identify
the causes of equipment faults and provide effective solutions. Initially, researchers had
established a flutter mechanical model to study the relationship between abnormal vibra-
tions of rolling mills and equipment failure. Monaco [3] conducted a long-term tracking
test on the working condition of a 2030 mm hot rolling mill, established a vibration model
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by combining electrical and mechanical systems, and obtained the relationship between the
amplification coefficient of the workpiece deformation fault and the torsional vibration of
the rolling mill. Roberts [4] suggested that transverse stripes on the surface of a workpiece
are caused by the rebound of the work roll to its backup roll. Furthermore, he established
a mathematical model to predict the resonance frequency and proposed that the rolling
mill vibration can be suppressed by appropriately changing the roll speed. Yarita [5] found
that abnormal vibration faults of a rolling mill are closely related to the rolling speed, strip
thickness, characteristics of the lubrication oil, and other factors by analyzing the measured
data on the rolling site. These studies have promoted research on abnormal vibrations of
rolling mills and rolling mill equipment faults. However, they mainly deal with rolling
mill equipment failure based on the phenomena after the failure. They cannot meet the
requirements of on-site rolling process monitoring and diagnosis, and their fault diagnosis
performance and identification performance are not ideal.

Since the 1980s, the development of signal processing technology has promoted the
rapid development of fault diagnosis technology, and researchers have applied it to the
iron and steel industry. In particular, it has been widely used in the detection, identification,
and prevention of rolling mill equipment fault signals. Kimura et al. [6] realized a new
lubrication system that can improve the rolling speed of thin strip steel and prevent severe
chatter faults. Lee et al. [7] used the fast Fourier transform (FFT) to diagnose eccentric
faults in the work roll of a rolling mill, thereby reducing the adverse impact of work
roll defects on the strip steel quality. He et al. [8] proposed a novel vibration signal
detection method for extracting the characteristics of weak chatter faults of the rolling
mill generated by chatter traces on the surface of strip steel. Shao et al. [9] proposed
an approach for recognizing chatter traces on the surface of strip steel using a kurtosis
probability density function and achieved good results through industrial application.
Rothera et al. [10] applied the wavelet transform and empirical mode decomposition
methods to hot rolling strip data in order to detect the factors affecting the strip quality.
Chen et al. [11] proposed a maximum-overlap multi-wavelet denoising method to identify
composite faults in the rolling mill reducer. Yuan et al. [12] proposed a technique for
diagnosing faults by adopting multi-wavelet sliding window neighborhood coefficient
denoising, which can efficiently derive the fault attributes of the main transmission gearbox
of the rolling mill. The aforementioned studies used various approaches pertinent to
modern signal processing in order to derive and analyze the fault attributes of rolling
mill equipment. However, owing to the complex working conditions of the strip mill and
several interference factors, the extraction and identification of the fault types and features
of rolling mill equipment require further investigation.

The rapid development of artificial intelligence technology has contributed to ad-
vancements in mechanical fault diagnosis technology. In particular, since the development
and progress of deep learning theory [13], new ideas have been developed for theoretical
studies, technical methods, and testing techniques for diagnosing faults of rolling mill
equipment. Some studies have examined the condition monitoring and fault diagnosis of
rolling mill equipment using deep learning theory. To explore and understand the factors
and conditions underlying rolling mill chatter, Perez et al. [14] used an automatic algorithm
to extract the dynamic behavior during normal operation as well as chatter faults from a
large amount of real data. Moreover, they used visualization technology to provide an inter-
active interface for effectively displaying the mechanism of mill chatter. Takami et al. [15]
applied principal component analysis (PCA) to multi-dimensional data in order to identify
faults in the rolling process of a rolling mill. The results showed that their approach can
reduce the occurrence of strip defects in the rolling process. Arinton et al. [16] proposed
a dynamic high-order neural network with good modeling characteristics, which can ef-
fectively identify and robustly detect faults and tension in mill stands. Serdio et al. [17]
proposed a residual-based fault detection method that validated three different test scenar-
ios of a steel rolling mill. Xu et al. [18] proposed transfer convolutional neural networks
using fault diagnosis online in order to achieve the required fault diagnosis accuracy within
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limited training epochs and adopted this approach for the fault detection of a rolling mill
bearing housing. Zhao et al. [19] combined the adaptive multi-variate variational mode de-
composition method with a convolution neural network model to derive fault information
based on vibration signals of rolling mill multi-row bearings. Compared to the available
approaches in the literature, the accuracy of diagnosing faults for rolling mill bearings using
this approach is improved when unbalanced data are encountered. Shi et al. [20] proposed
a novel multi-source sensor fusion method that monitors the health status of rolling mills.
Although studies on rolling mill equipment fault diagnosis using deep learning theory
have achieved some success, most of them are based on a common assumption: that the
marked data are sufficient and contain complete information on the health status of the
rolling mill equipment. However, in practice, this assumption is unrealistic, because the
data collected from the field rolling process have two characteristics. (1) It is difficult for
such data to contain sufficient information to reflect the integrity of the health and fault
status of the rolling mill equipment. Because most rolling mill equipment operates in a
healthy state and faults seldom occur, it is easier to collect health data than fault data, which
will lead to incomplete data collection. (2) Most of the collected data are unlabeled because
it is unrealistic to stop frequently to check the health status, which is time-consuming and
will lead to economic losses. Accordingly, it is necessary to develop a more reliable model
to diagnose faults of rolling mill equipment when limited samples are available.

In summary, thus far, researchers have conducted numerous studies on rolling mill
vibration monitoring and bearing fault diagnosis. However, the problem of rolling mill
bearing faults has not been solved completely. With the rapid development of the strip
mill and the use of new technologies, many complex forms and characteristics of roll-
bearing faults in strip mills have emerged. Thus, it is necessary to develop new diagnostic
approaches in order to address this problem. The contributions of this research are as
follows: (1) A rolling mill vibration acquisition system is developed and designed, and
the layout position of the acceleration sensor on the rolling bearing is discussed. (2) The
basic theories of the fast spectral kurtosis method and PCA dimension reduction technique
are described. (3) The SSA is employed to realize the intelligent, optimized, self-adaptive
function of DBN. Furthermore, the firefly disturbance algorithm is used to improve SSA-
DBN. Thus, an improved SSA-DBN method is obtained to ensure comprehensive diagnosis
of faults. (4) According to the analysis of the data samples collected from the rolling mill
fault experimental platform, the proposed method achieves better diagnostic performance
than other methods. Finally, the optimal placement of sensors for rolling mill fault diagnosis
is experimentally demonstrated.

2. Vibration Data Acquisition System of a Hot-Rolling Mill

The 1780 mm hot tandem mill unit of Chengde Iron and Steel Company (Chengde,
China), consists of one roughing mill and five finishing mills. Among them, the finishing
mills F1–F5 are five high-rolling mills that are arranged constantly, and the distance between
adjacent stands is 6 m. It was found at the rolling site that F2 often vibrated and formed
vibration marks on the strip surface, which reduced the surface accuracy of the strip.
Therefore, we have designed and developed a system that monitors rolling mill vibration
to collect its signals. Figure 1 shows a schematic of the F2 mill housing structure of the
hot-rolling mill.

Through field observation and monitoring activities, technicians found that the most
obvious source of the F2 mill vibration was the location of the lower work roll drive side
bearing. Therefore, two acceleration sensors (I and II) are arranged here. Sensor I is located
at the axial end of the lower work roll bearing, while sensor II is located at the radial
end. A field server is used to store and display the vibration signals that are extracted by
the acceleration sensors instantaneously. Moreover, a production data monitoring system
records all the rolling process data of the F2 mill housing during the whole test period.
Thus, the conditions and the vibration conditions of the rolling process and the rolling mill
at each specific moment can be obtained, respectively, as shown in Figure 2.
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Figure 2. Vibration data acquisition system of the rolling mill.

3. Signal Processing and Data Dimensionality Reduction
3.1. Fast Kurtogram

The commonly used time–frequency representation methods are classified into linear
and nonlinear methods, both of which can map 1D time domain signals to 2D time-
frequency planes in order to comprehensively reflect the time–frequency joint attributes
of non-stationary signals [21,22]. Effective use of these methods can reveal the time and



Sensors 2022, 22, 7815 5 of 21

frequency performance of the energy contained in the rolling mill vibration signals. Some
widely implemented time–frequency investigation methodologies for vibration signals
include short-time Fourier transform (STFT), wavelet transform (WT), S transform, Hilbert–
Huang transform (HHT), and Wigner–Ville distribution (WVD). These methods have
their advantages and disadvantages. They must be used flexibly according to specific
problems; if they are not handled properly, they may cause significant errors and yield
unrealistic results.

The main drawback of STFT is that owing to the limitation of the uncertainty principle
in terms of the time–frequency resolution, it is impossible to optimize both time and
frequency concurrently. Moreover, the window mapping of STFT is constant and is not
self-adaptable. Although the WT method overcomes some of the shortcomings of STFT, its
division of the time–frequency plane is rather mechanical. There is no specific method for
selecting the primary function, which must be determined repeatedly experimentally or
through experience. The S-transform is a time–frequency analysis method developed by
combining STFT and WT. Although it has many advantages, its basic wavelet function is
fixed and has limited practical applications. The HHT method is suitable for non-linear
and non-stationary signal analysis. However, it lacks a strictly theoretical basis. Moreover,
it suffers from boundary effects and mode confusion in practical applications, and it can
easily produce false frequency components. Although WVD compresses the cross-term
interference of multi-component signals to a certain extent, some of its edge characteristics
are severely damaged, which reduces its time–frequency focusing. Compared to the
aforementioned methods, the fast spectral kurtosis method used in this study has obvious
advantages; it allows self-adaptive selection of the resonant demodulation band parameters
and does not require any set parameters. Hence, the model is easy to use. Therefore, fast
spectral kurtosis is selected in the method of rolling mill vibration signal extraction to
reduce the number of parameters that must be set.

Some researchers have imposed four constraints on the kurtosis analysis method to
increase the generalizability of the signal conversion procedure. This makes the model
more sensitive to signals having non-stationarity characteristics. The elaborate process of
the fast kurtosis approach has been described in Ref. [23]. It is denoted by

K( f ) =

〈
S|t, f |4

〉
〈

S|t, f |2
〉2 − 2 (1)

where f 6= 0, S(t, f ) represents the complex envelope of vibration signal x(t) at frequency f
and 〈.〉 denotes the computation for the average of the time [24]. Furthermore, S(t, f ) can
be computed by

S(t, f ) =
∫ +∞

−∞
x(t)w(t− τ)e−2π f tdt (2)

where w(t) represents the window mapping used in this method.
The fast spectral kurtosis method can effectively process the original vibration signals

of the rolling mill bearings, convert the rolling mill vibration time domain signals into
2D time–frequency images, improve signal recognition, and facilitate the characteristic
recognition of different vibration states of the rolling mill bearings.

3.2. PCA Dimension Reduction Theory

The original vibration signal of the rolling mill bearings recorded by the vibration
data acquisition system suffers from high data feature dimension and is difficult to process.
Therefore, PCA is adopted to decrease the number of dimensions in the original vibration
fault signal of the hot rolling mill in order to achieve rapid data processing [25,26]. The
detailed steps are as follows.

The acquisition system is set up to record m pieces of n-dimensional original rolling
mill vibration signal data.
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Step 1: Form the original rolling mill vibration signal into matrix X =
{

xi,j : xi,j ∈ Rn×m},
where each row of vector xi ∈ R1×m, i = 1, . . . , n, represents a measure. Further, each
column vector xj ∈ Rn×1, j = 1, . . . , m, denotes a sample. In addition, calculate the mean of
xj, defined by

xj =
1
m

m

∑
j=1

xj (3)

Step 2: Subtract the average value of each dimensional feature xj, i.e., standardize the
data. Then, calculate the covariance matrix C, which is a symmetric matrix; it is expressed
as follows:

C =
1

m− 1

m

∑
j=1

(
xj − xj

)(
xj − xj

)T (4)

Then, calculate the eigenvalues λi, i = 1, . . . , n of matrix C and the corresponding
eigenvectors vi, i = 1, . . . , n.

Step 3: Sort the eigenvalues in descending order and select the maximum Z. Sub-
sequently, the cumulative contribution ratio of the first Z principal components can be
calculated as α, which is denoted by

α =
z

∑
i=1

λi
/ n

∑
i=1

λi (5)

Step 4: A cumulative contribution rate of α ≥ 0.85 can ensure minimum loss of the
original rolling mill vibration data. At this time, the previous Z eigenvectors can be formed
into a new matrix, and the data can be transformed into the space of matrix P, where
P = (v1, v2 · · · , vz). Then, the data matrix reduced to Z dimensions can be obtained.

X′ = PX (6)

Thus, a new dataset of rolling mill-bearing vibration signals is generated. Compared
to the original vibration signal, the new signal dataset has a lower dimension, retains
the most important data features, consumes less time, and reduces the computational
cost significantly.

4. Proposed Model
4.1. Sparrow Search Algorithm (SSA)

Intelligent optimization algorithms constitute a type of random search algorithm
inspired by biological swarm intelligence or physical phenomena. Several conventional
optimization methodologies, such as particle swarm optimization, grey wolf optimizer, and
genetic algorithm, have been widely implemented. These methods are used to optimize the
super-parameters of neural networks because of their simplicity, flexibility, and efficiency.
In 2020, Xue and Shen [27] proposed the SSA, a new optimization method. This algorithm is
principally inspired by sparrows’ foraging behavior. It outperforms all the aforementioned
methods in terms of accuracy, convergence speed, stability, and robustness.

The algorithm has three main components: producers, scroungers, and vigilantes.
The producers are mainly responsible for searching an area with a large amount of food
and supplying the foraging area and environment for the scroungers. As long as better
food sources can be found, every sparrow could become a producer, which means that
the identities of producers and scroungers change dynamically; however, their ratio in the
entire population remains the same. The sparrows (vigilantes) at the edge of the group will
send an alarm signal once they encounter a predator. When the alert level is higher than
the safety level, the sparrow at the edge of the group will move toward the inside of the
group and find a safer position.
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The sparrows find the optimal parameters by calculating the fitness function to con-
stantly update their position. The sparrow position matrix is expressed as follows:

X =


x1,1 x1,2 · · · · · · x1,d
x2,1 x2,2 · · · · · · x2,d

...
...

...
...

...
xn,1 xn,2 · · · · · · xn,d

 (7)

where d and n represent the number of variables and observations (sparrows) to be opti-
mized, respectively. The function that measures the fitness value is denoted by

FX =


f ([x1,1 x1,2 · · · · · · x1,d])
f ([x2,1 x2,2 · · · · · · x2,d])

...
...

...
...

...
f ([xn,1 xn,2 · · · · · · xn,d])

 (8)

where f (.) represents the individual’s fitness number.
According to Equations (7) and (8), the updated location for the producers is denoted by

Xt+1
i,j =

{
Xt

i,j · exp
(
− i

δ·itermax

)
i f R2 < ST

Xt
i,j + Q · L i f R2 ≥ ST

(9)

where Xi,j denotes the ith sparrow in the jth dimension, t denotes the iteration numbers,
j = 1, 2, 3, . . . , d, itermax is a constant representing the maximum number of iterations,
δ ∈ [0, 1] denotes a randomly generated number, R2 and ST denote the warning and safety
values, respectively, Q is a randomly generated number with a normal distribution, and L
equals 1 with all elements being a 1 × d matrix.

Xt+1
i,j =

 Q · exp
(
−

Xt
worst−Xt

i,j
i2

)
i f i > n

2

Xt+1
P +

∣∣∣Xt
i,j − Xt+1

P

∣∣∣ · AT(AAT)−1 · L otherwise
(10)

where XP denotes the best position occupied by the current producers and Xworst denotes the
current global worst position. Further, A denotes a 1 × d matrix, and AT is the transposed
determinant of A. Whenever i > n/2, the ith follower having a low fitness number cannot
obtain food. At this time, it must fly elsewhere to feed.

When danger is detected, the location update of the vigilantes is expressed as follows:

Xt+1
i,j =


Xt

best + β ·
∣∣∣Xt

i,j − Xt
worst

∣∣∣ i f fi > fg

Xt
i,j + K ·

( ∣∣∣Xt
i,j−Xt

worst

∣∣∣
( fi− fw)+ε

)
i f fi = fg

(11)

where Xbest denotes the current global optimal location; β and K are random numbers
having normal distributions with an average of 0 and variance of 1 and are also control
parameters of the step size; fi denotes the fitness value of the current individual sparrow;
fg and fworst represent the current global optimal and worst fitness values, respectively;
and ε represents a constant used to avoid the zero denominator case. Furthermore, fi > fg
indicates that the sparrows at the edge of the entire population are sensitive to predators,
whereas fi = fg denotes that the sparrows in the center of the entire population are aware of
the danger and must move closer to the other members of the population to avoid being
potential prey.
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4.2. Deep Belief Network (DBN)

The restricted Boltzmann machine is a random neural network composed of visible
and hidden layers. Independent neurons exist in the same layer, while dependent neurons
are connected in different layers, as shown in Figure 3, where m and n are the nodes of the
visual and hidden layers, respectively, and vi and hj are the input of the visual layer and
the output of the hidden layer, respectively.
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The energy mapping for the RBM is defined by

E(v, h|θ ) = −
m

∑
i=1

n

∑
j=1

hjwijvi−
m

∑
i=1

aivi −
n

∑
j=1

bjhj (12)

where θ =
{{

wij
}

, a, b
}

represents the vector parameter of the RBM, wij denotes the
weighted relationship between the nodes of the visible and hidden layers and ai and bj
denote the coefficient of bias for the visible and hidden layers, respectively.

The RBM has the joint probability distribution defined in Ref. [28] by

p(v, h|θ ) = 1
Z(θ)

e−E(v,h|θ) (13)

where Z(θ) denotes the normalization term expressed by

Z(θ) = ∑
v,h

e−E(v,h|θ) (14)

The visible and hidden layers have conditional probability distributions defined by

p
(
hj = 1|v

)
= σs

(
bj +

m

∑
i=1

wijvi

)
(15)

p(vi = 1|h ) = σs

(
ai +

n

∑
j=1

wijhj

)
(16)

where the activation mapping is denoted by θ, and the vector parameters above can be
obtained as the optimal parameters through the maximum likelihood function. The formula
is expressed by

θ̂ = argmax ln P(θ|x1, x2, · · · , xk ) =
1
k

k

∑
i=1

ln P(xi|θ ) (17)
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where the number of training data is represented by k. To prevent premature convergence
of the algorithm or instability after multiple iterations, Professor Hinton proposed the
contrast divergence (CD) algorithm [29], which can accelerate the calculation and further
obtain the estimated parameters. The update process of parameters θ =

{{
wij
}

, a, b
}

is
expressed by

∆wij = η
(〈

vihj
〉

data −
〈
vihj

〉
recon

)
∆ai = η(〈vi〉data − 〈vi〉recon)

∆bj = η
(〈

hj
〉

data −
〈

hj
〉

recon

) (18)

where η ∈ (0, 1) represents the learning rate, 〈.〉data denotes the expected value based on the
defined distribution of the training dataset, and 〈.〉recon denotes the expected value based
on the defined distribution of the reconstructed deep belief network model. When k = 1,
the contrast divergence algorithm has an ideal effect; hence, the form of the CD-1 method
is generally employed to obtain the best parameters.

The existing literature shows that the representation ability of a single RBM for com-
plex raw data is often insufficient. Hence, multiple RBMs are generally stacked into a deep
confidence network to extract deep-seated features one layer at a time. The basic structure
of DBN is presented in Figure 4. As can be seen, the first and second layers (visible and
hidden layers) constitute the first RBM, namely RBM1, and the second and third layers
constitute the second RBM, namely RBM2. The construction process continues in this
manner. Thus, the stacking forms multiple RBMs. Multiple RBMs can obtain essential
features by using the original vibration signals; however, they cannot directly cluster the
data. Therefore, a back propagation (BP) layer should be added to the top of the stacked
RBM for reverse fine-tuning to obtain a final model of the DBN.
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Figure 4 shows that the training procedure of DBN consists of two processes: forward
unsupervised pre-training and backward supervised fine-tuning. In the forward training
stage of DBN, the greedy unsupervised learning mechanism is employed for bottom-to-
top transfer, and the feature extraction of the rolling mill bearing vibration data is finally
completed. After the unsupervised training, the BP algorithm is employed. The objective
of back-propagation is to minimize the residual between the reconstructed classification
outcomes and the real observations. The super-parameter θ = {w, a, b} of the whole
network is fine-tuned to achieve the optimal solution.
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4.3. Deep Belief Network Based on Improved Sparrow Search Algorithm (ISSA-DBN)

Producers, scroungers, and vigilantes are prone not only to population aggregation
and falling into local optima but also to reduced population diversity in the SSA. Therefore,
after running the sparrow search, this study uses the firefly algorithm to disturb the
optimization of all the sparrows, and if a better result is found, the sparrow position is
updated. Firefly disturbance is a global intelligent optimization method that simulates the
flashing behavior of fireflies [30]. The improved sparrow search algorithm (ISSA) improves
not only the diversity of the population location transformation but also the spatial search
and robustness of the sparrow optimization algorithm. The specific step is to add firefly
disturbance after the sparrow population location is updated. The disturbed sparrow
location is expressed as follows:(

Xt+1
i,j

)∗
= Xt+1

i,j + β0e−γr2
+ αε (19)

where r represents the distance between the same sparrow before and after the disturbance,
β0e−γr2

is the attraction, β0 represents the maximum attraction when the disturbance
distance is zero, γ is the attraction attenuation parameter, γ ∈ [0,+∞) , and αε is a random
item. The flow of the sparrow optimization algorithm based on firefly disturbance is shown
in Figure 5.
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In the process of rolling mill vibration fault diagnosis, the diagnostic performance of
DBN plays a critical role. In particular, it affects the outcomes of the data classification or
prediction. As is well known, the performance of a DBN mainly depends on its structure
and the setting of various parameters; the number of neurons in the hidden layer is a
significant parameter in the network structure. Too many or too few neurons will reduce
the generalization ability and the fitting effect of a neural network, and the feature extraction
will not be effective. Therefore, selecting the optimal number of hidden layer neurons is
important for detecting the health state of the rolling mill. The general method is based on
expert experience; however, this will lead to significant overhead and randomness in the
network performance. Therefore, this study adjusts the number of neurons available in the
hidden layer of the DBN using the improved SSA (ISSA). Thus, the DBN can rapidly find
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the best structure to realize the intelligent optimization self-adaptive function of the neural
network, so that the rolling mill bearing fault can be accurately diagnosed in the case of
limited data samples. The rolling mill fault diagnosis process based on ISSA-DBN is shown
in Figure 6.
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5. Arrangement of Rolling Mill Experimental Platform and Sensors
5.1. Experimental Platform and Data Acquisition of Rolling Mill Faults

Figure 7 shows the rolling mill fault diagnosis test platform and fault bearing types.
The platform is scaled equally and used for the experiment according to the actual 1780 mm
hot rolling mill; hence, it is the same as the fault representation in Figure 2. The rolling
mill fault diagnosis test platform mainly consists of the drive motor, coupling, reduction
gearbox, gear base, four high rolling mills, and related control parts. The lower-work
roll bearing can be replaced freely, which facilitates the replacement of different types
of faulty bearings. The two sensors installed at the axial and radial ends of the lower-
work roll bearing seat can collect the bearing vibration signals. According to the different
experimental scenarios designed, the collected bearing vibration data are marked as follows:
normal (NOR), inner ring fault (IRF), outer ring fault (ORF), and rolling element fault (REF).

The original vibration signals of the rolling mill are collected at three distinct rolling
speeds of 600 rpm, 900 rpm, and 1200 rpm, and the sampling rate is 10,240 Hz. The
collected data are cut and segmented to form training and test datasets. Each fault type in
the training dataset A/B/C/D contains 20/40/60/80 training samples, respectively, and
the number of data points in the test dataset is 100. The specific sample allocation strategy
is shown in Table 1.

When the rolling mill rolls the strip steel, a defective bearing will cause a series
of vibrations in the work roll, and the acceleration sensor installed on the roll bearing
pedestal will receive a series of vibration signals. The time domain waveforms of the
signals collected by the axial and radial end sensors of the bearing pedestal under 10 fault
vibration states are shown in Figures 8 and 9. Starting from the time domain waveform,
although preliminary fault identification can be conducted, there are still some faults that
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are difficult to distinguish, such as NOR0, IRF2, IRF3, ORF5, and REF9 in Figure 8 and
IRF2, ORF5, ORF6, and REF9 in Figure 9. Therefore, better methods should be adopted for
feature extraction and fault diagnosis of the vibration signals.
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Table 1. Description of experimental datasets.

Condition Rpm Label
Training Samples of Sensor I/II

Test Data
The Dataset A The Dataset B The Dataset C The Dataset D

NOR 600 0 20 40 60 80 100
IRF 600 1 20 40 60 80 100

900 2 20 40 60 80 100
1200 3 20 40 60 80 100

ORF 600 4 20 40 60 80 100
900 5 20 40 60 80 100

1200 6 20 40 60 80 100
REF 600 7 20 40 60 80 100

900 8 20 40 60 80 100
1200 9 20 40 60 80 100

Total 200 400 600 800 1000

Figures 10 and 11 show 2D spectral kurtosis diagrams of different fault signals of
the rolling mill collected by sensor I and sensor II of the rolling mill work roll bearing,
respectively. Spectral kurtosis is highly sensitive to the transient impact in the rolling mill
bearing fault signal. Thus, it can effectively identify and determine the frequency band
position and interval of the fault signal and has a strong fault feature extraction ability.
Compared with the time domain waveform, the spectral kurtosis can display the time–
frequency information of different bearing fault signals through the chromatic graph grid,
and there is no case in which it is difficult to distinguish the time-domain signal. However,
2D spectral kurtosis cannot easily determine the fault type to which a time–frequency
signal belongs; hence, it is necessary to implement the proposed ISSA-DBN approach to
determine the bearing fault of the rolling mill.
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Figure 8. Time domain waveform of different fault signals of rolling mill bearings collected by
sensor I.

5.2. Selection of Optimal Diagnosis Position of the Sensor

As the characteristic dimension of the 2D spectral kurtosis diagram is set to be 32× 32× 3,
expanding it into 1D data and inputting it into the ISSA-DBN method proposed in this study
may cause dimension explosion and gradient disappearance when the gradient decreases.
To better retain the original vibration signal characteristics of the rolling mill bearings and
reduce the computational burden, the PCA method is used to decrease the number of
dimensions. Figures 12 and 13 show the contribution rate curves cumulatively. After the
PCA technology is adopted, the cumulative contribution rate of the first 512 dimensional
principal components exceeds 92%; the important features of the 2D spectral kurtosis image
are retained. Therefore, the first 512 dimensional features are input into the ISSA-DBN
method for fault classification.
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Figure 9. Time domain waveform of different fault signals of rolling mill bearings collected by
sensor II.

In the experiment, the learning rate of this method is 0.001, and each experiment is
repeated 10 times to reduce the influence of randomness. All the experiments are carried
out using MATLAB on an I5-7500 CPU with 4 GB RAM. After intelligent optimization
self-adaptation, the final number of DBN layers is five, i.e., input, output, and three hidden
layers. The number of input layer nodes is set to 512, and the number of output layer
nodes is set according to the fault type, i.e., 10. Therefore, the optimal structure of DBN
is 512-390-251-89-10. Table 2 presents the comparison results of the proposed method
and other available methods in terms of the average accuracy of rolling mill bearing
fault classification.



Sensors 2022, 22, 7815 15 of 21

Sensors 2022, 22, x FOR PEER REVIEW 14 of 21 
 

 

  

  

Figure 9. Time domain waveform of different fault signals of rolling mill bearings collected by sen-
sor II. 

Figures 10 and 11 show 2D spectral kurtosis diagrams of different fault signals of the 
rolling mill collected by sensor I and sensor II of the rolling mill work roll bearing, respec-
tively. Spectral kurtosis is highly sensitive to the transient impact in the rolling mill bear-
ing fault signal. Thus, it can effectively identify and determine the frequency band posi-
tion and interval of the fault signal and has a strong fault feature extraction ability. Com-
pared with the time domain waveform, the spectral kurtosis can display the time–fre-
quency information of different bearing fault signals through the chromatic graph grid, 
and there is no case in which it is difficult to distinguish the time-domain signal. However, 
2D spectral kurtosis cannot easily determine the fault type to which a time–frequency sig-
nal belongs; hence, it is necessary to implement the proposed ISSA-DBN approach to de-
termine the bearing fault of the rolling mill. 

     
NOR0 IRF1 IRF2 IRF3 ORF4 

     
ORF5 ORF6 REF7 REF8 REF9 

Figure 10. Two-dimensional spectral kurtosis of different fault signals of rolling mill bearings collected 
by sensor I. 

     
NOR0 IRF1 IRF2 IRF3 ORF4 

Figure 10. Two-dimensional spectral kurtosis of different fault signals of rolling mill bearings
collected by sensor I.

Sensors 2022, 22, x FOR PEER REVIEW 14 of 21 
 

 

  

  

Figure 9. Time domain waveform of different fault signals of rolling mill bearings collected by sen-
sor II. 

Figures 10 and 11 show 2D spectral kurtosis diagrams of different fault signals of the 
rolling mill collected by sensor I and sensor II of the rolling mill work roll bearing, respec-
tively. Spectral kurtosis is highly sensitive to the transient impact in the rolling mill bear-
ing fault signal. Thus, it can effectively identify and determine the frequency band posi-
tion and interval of the fault signal and has a strong fault feature extraction ability. Com-
pared with the time domain waveform, the spectral kurtosis can display the time–fre-
quency information of different bearing fault signals through the chromatic graph grid, 
and there is no case in which it is difficult to distinguish the time-domain signal. However, 
2D spectral kurtosis cannot easily determine the fault type to which a time–frequency sig-
nal belongs; hence, it is necessary to implement the proposed ISSA-DBN approach to de-
termine the bearing fault of the rolling mill. 

     
NOR0 IRF1 IRF2 IRF3 ORF4 

     
ORF5 ORF6 REF7 REF8 REF9 

Figure 10. Two-dimensional spectral kurtosis of different fault signals of rolling mill bearings collected 
by sensor I. 

     
NOR0 IRF1 IRF2 IRF3 ORF4 

Sensors 2022, 22, x FOR PEER REVIEW 15 of 21 
 

 

     
ORF5 ORF6 REF7 REF8 REF9 

Figure 11. Two-dimensional spectral kurtosis of different fault signals of rolling mill bearings collected 
by sensor II. 

5.2. Selection of Optimal Diagnosis Position of the Sensor 
As the characteristic dimension of the 2D spectral kurtosis diagram is set to be 32 × 

32 × 3, expanding it into 1D data and inputting it into the ISSA-DBN method proposed in 
this study may cause dimension explosion and gradient disappearance when the gradient 
decreases. To better retain the original vibration signal characteristics of the rolling mill 
bearings and reduce the computational burden, the PCA method is used to decrease the 
number of dimensions. Figures 12 and 13 show the contribution rate curves cumulatively. 
After the PCA technology is adopted, the cumulative contribution rate of the first 512 di-
mensional principal components exceeds 92%; the important features of the 2D spectral 
kurtosis image are retained. Therefore, the first 512 dimensional features are input into 
the ISSA-DBN method for fault classification. 

10
0

20
0

30
0

40
0

50
0

51
2

 
Figure 12. Contribution rate of data characteristics in sensor I. 

10
0

20
0

30
0

40
0

50
0

51
2

 
Figure 13. Contribution rate of data characteristics in sensor II. 

Figure 11. Two-dimensional spectral kurtosis of different fault signals of rolling mill bearings
collected by sensor II.

Sensors 2022, 22, x FOR PEER REVIEW 15 of 21 
 

 

     
ORF5 ORF6 REF7 REF8 REF9 

Figure 11. Two-dimensional spectral kurtosis of different fault signals of rolling mill bearings collected 
by sensor II. 

5.2. Selection of Optimal Diagnosis Position of the Sensor 
As the characteristic dimension of the 2D spectral kurtosis diagram is set to be 32 × 

32 × 3, expanding it into 1D data and inputting it into the ISSA-DBN method proposed in 
this study may cause dimension explosion and gradient disappearance when the gradient 
decreases. To better retain the original vibration signal characteristics of the rolling mill 
bearings and reduce the computational burden, the PCA method is used to decrease the 
number of dimensions. Figures 12 and 13 show the contribution rate curves cumulatively. 
After the PCA technology is adopted, the cumulative contribution rate of the first 512 di-
mensional principal components exceeds 92%; the important features of the 2D spectral 
kurtosis image are retained. Therefore, the first 512 dimensional features are input into 
the ISSA-DBN method for fault classification. 

10
0

20
0

30
0

40
0

50
0

51
2

 
Figure 12. Contribution rate of data characteristics in sensor I. 

10
0

20
0

30
0

40
0

50
0

51
2

 
Figure 13. Contribution rate of data characteristics in sensor II. 

Figure 12. Contribution rate of data characteristics in sensor I.



Sensors 2022, 22, 7815 16 of 21

Sensors 2022, 22, x FOR PEER REVIEW 15 of 21 
 

 

     
ORF5 ORF6 REF7 REF8 REF9 

Figure 11. Two-dimensional spectral kurtosis of different fault signals of rolling mill bearings collected 
by sensor II. 

5.2. Selection of Optimal Diagnosis Position of the Sensor 
As the characteristic dimension of the 2D spectral kurtosis diagram is set to be 32 × 

32 × 3, expanding it into 1D data and inputting it into the ISSA-DBN method proposed in 
this study may cause dimension explosion and gradient disappearance when the gradient 
decreases. To better retain the original vibration signal characteristics of the rolling mill 
bearings and reduce the computational burden, the PCA method is used to decrease the 
number of dimensions. Figures 12 and 13 show the contribution rate curves cumulatively. 
After the PCA technology is adopted, the cumulative contribution rate of the first 512 di-
mensional principal components exceeds 92%; the important features of the 2D spectral 
kurtosis image are retained. Therefore, the first 512 dimensional features are input into 
the ISSA-DBN method for fault classification. 

10
0

20
0

30
0

40
0

50
0

51
2

 
Figure 12. Contribution rate of data characteristics in sensor I. 

10
0

20
0

30
0

40
0

50
0

51
2

 
Figure 13. Contribution rate of data characteristics in sensor II. Figure 13. Contribution rate of data characteristics in sensor II.

Table 2. Average accuracy comparison.

Methods (%)
The Dataset A The Dataset B The Dataset C The Dataset D

Sensor 1 Sensor 2 Sensor 1 Sensor 2 Sensor 1 Sensor 2 Sensor 1 Sensor 2

DNN 73.3 74.8 77.9 78.6 79.1 83.2 86.5 91.3
SAE 81.1 82.9 84.2 84.9 85.9 89.7 89.7 93.4
DBN 83.6 85.7 86.4 88.1 88.7 89.3 91.7 93.5
CNN 85.3 87.8 89.5 91.8 91.7 93.0 93.5 94.1

ISSA-DBN 90.1 92.4 92.1 94.8 93.5 95.3 95.0 97.9

The accuracy of fault diagnosis using the proposed ISSA-DBN method is higher than
that of the other methods, regardless of whether the data collected by sensor I or sensor II
are considered. Moreover, the data collected by sensor II have higher accuracy in terms
of the fault classification rate compared to sensor I, i.e., the data collected by the sensor
attached at the radial end of the work roll bearing are better than the data collected by the
sensor attached at the axial end. Further observation shows that in dataset D, i.e., when the
number of samples is large, the data collected by sensor II are used for the experiments, and
the accuracy of the four-fault diagnosis methods is higher than 91%. However, in the more
challenging small sample dataset A, higher classification accuracy is achieved for the ISSA-
DBN, which is 17.6% higher than that of the deep neural network (DNN) with the worst
performance. Compared with the DBN before improvement, the diagnostic performance of
ISSA-DBN is 6.7% higher and 4.6% higher than that of the convolutional neural network
(CNN) with the best performance. Therefore, the following conclusions can be drawn:
(1) This method achieves excellent results for all the sensors, with the highest accuracy
and the lowest deviation. (2) The accuracy of all the methods with sensor II is higher than
that with sensor I. (3) In particular, as the task becomes more severe, the accuracy of this
method becomes significantly lower than that of the other methods, indicating that it is
more suitable for small samples.

To better reflect the superiority of the data collected by sensor II, further verification
is conducted from the perspective of rolling speed change. Figure 14 shows the influence
of different rolling speeds on the sensor amplitude. As can be seen, when the rolling
speed increases, the amplitude of both the sensors increases; however, sensor II is more
sensitive to vibration, indicating that the data it collects contain more useful information.
This is because the radial end of the bearing is affected by the rolling force from the vertical
direction of the rolling mill as well as by many vibration parameters and process parameters
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between the rolling mill roll systems. Therefore, the data collected by sensor II of the rolling
mill bearing are used to compare the fault classification accuracy in different situations.
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6. Case Analysis and Discussion

Under the same computer configuration environment, the dataset A/B/C/D is input
into ISSA-DBN using different processing methods, and the average epochs required on
the training dataset can be recorded, as shown in Figure 15.
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As can be seen, for different data samples, the original vibration data require more
training epochs, and as the number of samples increases, the number of epochs necessary
also increases. Moreover, the number of epochs required on the training dataset for 2D
spectral kurtosis image information is smaller than that for the original signal. After
using PCA technology to reduce the dimension, the number of training epochs of different
datasets decreases rapidly owing to the data dimension reduction. Among them, the
PCA-2D kurtogram images require the fewest epochs, which shows that the dimensionality
reduction method used in this study can accelerate the training procedure and enhance the
calculation efficiency significantly.

Figure 16 compares the fault diagnosis performance of different methods. As can
be seen, in the small sample dataset A, the classification accuracies of DBN, PSO-DBN,
and SSA-DBN are 61.1%, 68.2%, and 80.6%, respectively, and the classification accuracy
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of ISSA-DBN is 92.4%. As the data samples increase in dataset D, the fault diagnosis
performance of different methods improves considerably. The accuracy of DBN is 87.8%,
and that of PSO-DBN is 92%. The diagnosis and classification results of SSA-DBN before
and after improvement are the same, i.e., both are above 96%. Moreover, the error of the
proposed approach is small, which indicates that the method has a more stable training
process, which further shows that ISSA-DBN has more advantages in the classification of
rolling mill bearing faults under small sample data.
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To further demonstrate the classification performance of the proposed approach, the
t-distributed stochastic neighbor embedding (t-SNE) methodology was adopted to visually
examine the features of a small sample dataset A, as shown in Figure 17. Figure 17a
shows the original test sample. As can be seen, almost all the data points are doped and
overlapped together. The visualization effect of t-SNE after using ISSA-DBN to extract
the data features is shown in Figure 17b. The proposed method can separate the mixed
fault data and gather similar features. Although there is a small amount of overlap, the
classification effect is relatively good overall.
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To demonstrate the classification of various samples more intuitively, Figure 18 shows
the confusion matrix of the diagnosis results using the test data of a few samples of rolling
mill bearing faults. The ordinate represents the real label, and the abscissa represents the
forecast label. As can be seen, labels 0, 3, 4, and 7 have the highest accuracy, while label 5
has the lowest accuracy.
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Figure 18. Confusion matrix of rolling mill bearing fault diagnosis results.

Figure 19 shows the outcomes of hot-rolling bearing fault diagnosis using the receiver
operating characteristic (ROC) curve of the proposed approach as well as the diagnosis
results of hot-rolling mill bearings. As can be seen, there are 10 categories. The area under
the curve (AUC) of categories 0, 3, 4, 7, and 9 reaches 100%, and the AUC of the remaining
categories is 99.95% or more. The AUC of both macro- and micro-ROC curves is 99.99%,
indicating that ISSA-DBN has the characteristics of high sensitivity and low error rate and
has a good diagnostic effect for rolling mill bearings.
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7. Conclusions

This study proposed a method that diagnoses the faults of rolling mill bearings using
limited data samples, namely the ISSA-DBN. The rolling production process was used to
illustrate the proposed approach. The key contributions are as follows:

(1) The 2D spectral kurtosis image obtained using the fast spectral kurtosis method was
shown to have richer data characteristics compared with the images generated by the
original vibration signals of the rolling mill bearing. To further improve its diagnostic
efficiency, the PCA method was employed to decrease the data dimension, which
can not only prevent overfitting but also ensure good diagnostic performance of
the network.

(2) The SSA algorithm can realize the intelligent optimization self-adaptive effect of
DBN and achieve the best network structure configuration to enhance the general-
ization ability and classification accuracy of the network. Moreover, using the firefly
disturbance algorithm to improve SSA can improve the spatial search ability and
robustness of ISSA-DBN. Thus, the ISSA-DBN method was finally obtained to realize
true fault diagnosis.

(3) A comparison of the fault classification accuracy of multiple diagnosis methods
and the amplitude changes of sensors at different speeds showed that the proposed
method achieves optimal performance at both sensor positions. Moreover, through
experimental phenomena, it was found that the sensor installed at the radial end of
the rolling mill bearing contains more effective information than the sensor installed
at the axial end. Thus, this study provided empirical guidance for finding the best
sensor position on the rolling mill bearing.

(4) Finally, the computational efficiency of the proposed method under different data pro-
cessing methods and the classification performance with different diagnosis methods
were discussed, which further proved that the proposed method has high accuracy
and effectiveness in rolling mill bearing fault diagnosis with limited collected samples.

Future research will focus on the multi-source sensor fusion method that can be used
to diagnose the faults of rolling mill bearings, roll vibration marks, and gearbox gears more
accurately in order to ensure healthy operation of the rolling mills.

Author Contributions: Conceptualization, data curation, writing—original draft, R.P.; supervision,
writing—review and editing, X.Z.; software, project administration, writing—review and editing, P.S.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Science and Technology Research Project of Jiangxi Educa-
tion Department, grant number GJJ212504; the National Natural Science Foundation of China, grant
number 61973262; the Natural Science Foundation of Hebei Province, grant numbers E2019203146,
E2020203128; the Science and Technology program of Colleges of Hebei Education Department, grant
number ZD2021106; and the Nonlinear Dynamics and Application Research Center of Nanchang
Institute of Science and Technology under Grant NGYJZX-2021-04.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare that they have no competing interest.

References
1. Yukio, K.; Yasuhio, S.; Nobuo, N.; Naoki, I.; Yutaka, M. Analysis of chatter in tandem cold rolling mills. ISIJ Int. 2003, 43, 77–84.
2. Tian, J.; Han, D.; Li, M.; Shi, P. A multi-source information transfer learning method with subdomain adaptation for cross-domain

fault diagnosis. Knowl.-Based. Syst. 2022, 243, 108466. [CrossRef]
3. Monaco, G. Dynamics of rolling mills-mathematical models and experimental results. Iron. Steel. Eng. 1977, 54, 35–46.
4. Roberts, W.L. Four-h mill-stand chatter of the fifth-octave mode. Iron. Steel. Eng. 1978, 55, 41–47.
5. Yarita, I.; Furukawa, K.; Seino, Y.; Takimoto, T. An analysis of chattering in cold rolling for ultrathin gauge steel strip. Trans. ISIJ.

1978, 18, 1653–1659. [CrossRef]

http://doi.org/10.1016/j.knosys.2022.108466
http://doi.org/10.2355/isijinternational1966.18.1


Sensors 2022, 22, 7815 21 of 21

6. Kimura, Y.; Fujita, N.; Matsubara, Y.; Kobayashi, K.; Amanuma, Y.; Yoshioka, O.; Sodani, Y. High-speed rolling by the hybrid-
lubrication system in tandem cold rolling mills. J. Mater. Process. Tech. 2015, 216, 357–368. [CrossRef]

7. Lee, C.W.; Kang, H.Y.; Shin, K.H. Fault diagnosis of roll shape under the speed variation in hot rolling mill. J. Mech. Sci. Tech.
2006, 20, 1410–1417. [CrossRef]

8. He, R.Y.; Yu, W.N.; Chen, Z.G.; Shao, Y.M.; Yuan, Y.L. Study on the chatter vibration of a steel plate mill based on second order
cyclic autocorrelation demodulation. Int. J. Des. Eng. 2011, 4, 351–363. [CrossRef]

9. Shao, Y.M.; Deng, X.; Yuan, Y.L.; Mechefske, C.K.; Chen, Z.G. Characteristic recognition of chatter mark vibration in a rolling mill
based on the non-dimensional parameters of the vibration signal. J. Mech. Sci. Tech. 2014, 28, 2075–2080. [CrossRef]

10. Rothera, A.; Jelali, M.; Soffker, D. A brief review and the first application of time-frequency-based analysis methods for monitoring
of strip rolling mills. J. Process. Contr. 2015, 35, 65–79. [CrossRef]

11. Chen, J.L.; Wan, Z.G.; Pan, J. Customized maximal-overlap multiwavelet denoising with data-driven group threshold for
condition monitoring of rolling mill drivetrain. Mech. Syst. Signal Process. 2016, 68, 44–67. [CrossRef]

12. Yuan, J.; He, Z.J.; Zi, Y.Y.; Liu, H. Gearbox fault diagnosis of rolling mills using multiwavelet sliding window neighboring
coefficient denoising and optimal blind deconvolution. Sci. China. Ser. E Technol. Sci. 2009, 52, 2801–2809. [CrossRef]

13. Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507.
[CrossRef] [PubMed]

14. Perez, D.; Diaz, I.; Cuadrado, A.A.; Rendueles, J.L.; Garcia, D. Interactive data visualization of chatter conditions in a cold rolling
mill. Comput. Ind. 2018, 103, 86–96. [CrossRef]

15. Takami, K.M.; Mahmoudi, J.; Dahlquist, E. Multivariable data analysis of a cold rolling control system to minimize defects. Int. J.
Adv. Manuf. Tech. 2011, 54, 553–565. [CrossRef]

16. Arinton, E.; Caraman, S.; Korbicz, J. Neural networks for modeling and fault detection of the inter-stand strip tension of a cold
tandem mill. Control Eng. Pract. 2012, 20, 684–694. [CrossRef]

17. Serdio, F.; Lughofer, E.; Pichler, K.; Buchegger, T.; Efendic, H. Residual-based fault detection using soft computing techniques for
condition monitoring at rolling mills. Inf. Sci. 2014, 259, 304–320. [CrossRef]

18. Xu, G.; Liu, M.; Jiang, Z.; Shen, W.; Huang, C. Online fault diagnosis method based on transfer convolutional neural networks.
IEEE. Trans. Instrum. Meas. 2020, 69, 509–520. [CrossRef]

19. Zhao, C.; Sun, J.L.; Liu, S.L.; Peng, Y. Fault diagnosis method for rolling mill multi-row bearing based on AMVMD-MC1DCNN
under unbalanced dataset. Sensors 2021, 21, 5494. [CrossRef] [PubMed]

20. Shi, P.M.; Yu, Y.; Gao, H. A novel multi-source sensing data fusion driven method for detecting rolling mill health states under
imbalanced and limited datasets. Mech. Syst. Signal Process. 2022, 171, 108903. [CrossRef]

21. Xu, Y.; Zhen, D.; Gu, J.X.; Rabeyee, K.; Ball, A.D. Autocorrelated envelops for early fault detection of rolling bearings. Mech. Syst.
Signal Process. 2021, 146, 106990. [CrossRef]

22. Zhao, S.; Shi, P.M.; Han, D.Y. A novel mechanical fault signal feature extraction method based on unsaturated piecewise tri-stable
stochastic resonance. Measurement 2021, 168, 108374. [CrossRef]

23. Antoni, J. Fast computation of the kurtogram for the detection of transient faults. Mech. Syst. Signal Process. 2007, 21, 108–124.
[CrossRef]

24. Shlens, J. A tutorial on principal component analysis. Int. J. Remote Sens. 2014, 52, 1100.
25. Wang, Y.X.; He, Z.J.; Zi, Y.Y. Enhancement of signal denoising and multiple fault signatures detecting in rotating machinery using

dual-tree complex wavelet transform. Mech. Syst. Signal. Process. 2010, 24, 119–137. [CrossRef]
26. Zhu, J.; Hu, T.Z.; Jiang, B.; Yang, X. Intelligent bearing fault diagnosis using PCA-DBN framework. Neural Comput. Appl. 2019, 32,

10773–10781. [CrossRef]
27. Xue, J.K.; Shen, B. A novel swarm intelligence optimization approach: Sparrow search algorithm. Syst. Sci. Control Eng. 2020, 8,

22–34. [CrossRef]
28. Fishier, A.; Igel, C. Training restricted Boltzmann machines: An introduction. Pattern Recogn. 2014, 47, 25–39. [CrossRef]
29. Hinton, G.E. Training products of experts by minimizing contrastive divergence. Neural Comput. 2002, 14, 1771–1800. [CrossRef]
30. Wang, H.; Zhou, X.; Sun, H.; Yu, X.; Zhao, J.; Zhang, H.; Cui, L. Firefly algorithm with adaptive control parameters. Soft Comput.

2017, 21, 5091–5102. [CrossRef]

http://doi.org/10.1016/j.jmatprotec.2014.10.002
http://doi.org/10.1007/BF02915964
http://doi.org/10.1504/IJDE.2011.048132
http://doi.org/10.1007/s12206-014-0106-6
http://doi.org/10.1016/j.jprocont.2015.08.010
http://doi.org/10.1016/j.ymssp.2015.07.022
http://doi.org/10.1007/s11431-009-0253-7
http://doi.org/10.1126/science.1127647
http://www.ncbi.nlm.nih.gov/pubmed/16873662
http://doi.org/10.1016/j.compind.2018.08.008
http://doi.org/10.1007/s00170-010-2946-2
http://doi.org/10.1016/j.conengprac.2012.03.007
http://doi.org/10.1016/j.ins.2013.06.045
http://doi.org/10.1109/TIM.2019.2902003
http://doi.org/10.3390/s21165494
http://www.ncbi.nlm.nih.gov/pubmed/34450936
http://doi.org/10.1016/j.ymssp.2022.108903
http://doi.org/10.1016/j.ymssp.2020.106990
http://doi.org/10.1016/j.measurement.2020.108374
http://doi.org/10.1016/j.ymssp.2005.12.002
http://doi.org/10.1016/j.ymssp.2009.06.015
http://doi.org/10.1007/s00521-019-04612-z
http://doi.org/10.1080/21642583.2019.1708830
http://doi.org/10.1016/j.patcog.2013.05.025
http://doi.org/10.1162/089976602760128018
http://doi.org/10.1007/s00500-016-2104-3

	Introduction 
	Vibration Data Acquisition System of a Hot-Rolling Mill 
	Signal Processing and Data Dimensionality Reduction 
	Fast Kurtogram 
	PCA Dimension Reduction Theory 

	Proposed Model 
	Sparrow Search Algorithm (SSA) 
	Deep Belief Network (DBN) 
	Deep Belief Network Based on Improved Sparrow Search Algorithm (ISSA-DBN) 

	Arrangement of Rolling Mill Experimental Platform and Sensors 
	Experimental Platform and Data Acquisition of Rolling Mill Faults 
	Selection of Optimal Diagnosis Position of the Sensor 

	Case Analysis and Discussion 
	Conclusions 
	References

