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Abstract: The development of smart applications has benefited greatly from the expansion of wireless
technologies. A range of tasks are performed, and end devices are made capable of communicating
with one another with the support of artificial intelligence technology. The Internet of Things (IoT)
increases the efficiency of communication networks due to its low costs and simple management.
However, it has been demonstrated that many systems still need an intelligent strategy for green
computing. Establishing reliable connectivity in Green-IoT (G-IoT) networks is another key research
challenge. With the integration of edge computing, this study provides a Sustainable Data-driven
Secured optimization model (SDS-GIoT) that uses dynamic programming to provide enhanced
learning capabilities. First, the proposed approach examines multi-variable functions and delivers
graph-based link predictions to locate the optimal nodes for edge networks. Moreover, it identifies a
sub-path in multistage to continue data transfer if a route is unavailable due to certain communication
circumstances. Second, while applying security, edge computing provides offloading services that
lower the amount of processing power needed for low-constraint nodes. Finally, the SDS-GIoT model
is verified with various experiments, and the performance results demonstrate its significance for a
sustainable environment against existing solutions.

Keywords: sustainable computing; optimization; Internet of Things; blockchain; edge computing;
green process; technological development

1. Introduction

IoT is a network of “things” that share and collect data from the environment. These
“things” could be sensors, portable electronics, wearable technology, or any networked
item that can carry out certain tasks [1–3]. Similarly, a Wireless Sensor Network (WSN),
as a component of IoT, transfers the obtained data after detecting any incident. However,
there is limited security in the IoT environment due to its scale and heterogeneity, making
it vulnerable to various assaults, including WSN-inherited attacks [4–6]. Sustainable
computing has been extensively employed in social networks and IoT in the previous
decade [7–9]. IoT has social, economic, and commercial consequences on human life.
However, the open channel, i.e., the internet and IoT nodes used for data transmission
channels, is vulnerable to a wide range of intrusions and routing processes. Several
initiatives are underway in this area to cope with the developing security challenges in IoT
systems and make them self-sufficient in harvesting energy for smooth operation [10,11].
Cloud computing is essential in contemporary culture and allows various sustainable
applications, ranging from infrastructure to social media [12–14]. Guarantees of Quality
of Service (QoS) must be met by such a system, which must be able to handle variable
loads and use patterns that reflect the interaction and reliance of societies on automated
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computer systems [15–17]. These systems are enabled by a group of conceptual technologies
that have been synthesized to fulfill the requirement of growing computer applications.
However, with the increased proliferation of IoT devices, concerns such as security, privacy,
efficiency, and environmentally friendly computing infrastructure are growing daily [18,19].
Therefore, to develop a sustainable computing environment for future smart cities, it
is necessary to consider their whole life cycle, from design to production for recycling
and disposal, as well as their broader influence on people and places. Additionally, the
system should consider the vulnerable attacks on IoT networks with strong privacy and
authentication techniques [20,21].

The proposed SDS-GIoT model offers the following contributions.

i. It provides a data-driven approach for sustainable smart cities using multistage
graph-based structures and improves the system’s response time.

ii. Intelligent decisions are made based on dynamic programming, which allows for
effective computing with minimum complexity on the IoT networks.

iii. Edge computing and deterministic technique are combined to create and main-
tain system security. Using an offloading method lessens the burden of security
measures on the devices.

iv. The proposed SDS-GIoT model is verified in terms of green computing metrics
against existing work.

This research paper is structured in sections. Section 2 discusses the literature work.
The SDS-GIoT model, with its developed components and states, is explained in Section 3.
The network model and performance analysis are described in Section 4. Finally, Section 5
concludes with a summary.

2. Literature Review

The development of information and communication technologies over the past few
decades has sparked a trend toward smartening everyday things to improve human
comfort. The paradigm of smart cities is a reaction to the objective of building future cities
for quality assurance and sustainable development [22–24]. Smart devices and dynamic
wireless systems offer various benefits for developing heterogeneous networks. Using
these kinds of technologies, smart sensing, network automation, and resource management
is made feasible around us. However, due to the energy and other constraints on IoT
devices, researchers are still searching for recommended green solutions for IoT networks.
Another important research goal is to ensure the safety of network data from potential
threats [25,26]. In [27], the authors presented a power-efficient tree-based routing algorithm
that decreases end-to-end latency in energy-efficient green-IoT networks with a mobile
sink. The proposed protocol offers two new distinct ways of controlling network routing.
The first mechanism uses a more dependable and energy-efficient version of the geographic
routing algorithm. The second mechanism uses a tree-based structure, which can be built
with the fewest possible control packets and updated efficiently. According to simulation
findings, the proposed routing protocol is superior to the existing solutions in terms of
energy consumption, network longevity, delay, and throughput.

The authors in [28] developed a Mobility-Aware Dynamic Clustering-based Routing
(MADCR) protocol for the Internet of Vehicles (IoV) to optimize the lifetime of networks and
decrease the end-to-end communication latency. The MADCR protocol includes methods
for cluster formation and Cluster Head (CH) selection. The formation of a cluster is based
on Euclidean distance. The CH is then selected using the Mayfly Optimization Algorithm
(MOA). The CH then receives vehicle data and transmits this information to the Road Side
Unit (RSU). In addition, the proposed MADCR protocol reduced the end-to-end delay and
improved the packet delivery ratio as compared to other studies. Authors in [29] proposed
a Secure Routing Protocol by using Multi-objective Ant-colony-optimization (SRPMA) for
WSN. They upgraded the ant colony method to be a multi-objective routing algorithm
using the residual energy of nodes. First, a routing path is formed by exploring multi-
pheromone and multi-heuristic information. The node trust assessment model enhances
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the D-S evidence concept with conflict preparation. Second, multi-objective routing results
were generated by employing crowd distance criteria.

A novel routing protocol termed Secured QoS aware Energy Efficient Routing Protocol
is presented to improve WSN security and energy efficiency [30]. Trust modeling employed
a key-based authentication approach to provide trust ratings in this suggested study. This
study calculated direct, indirect, and total trust ratings to improve communication security.
They also proposed a cluster-based safe routing method where the cluster head is chosen
based on QoS measurements and trust ratings. The ultimate secure routing route is based
on path trust, energy, and hop count. The Software-Defined Network (SDN) approach
has recently been combined with IoT to address prospective scalability and flexibility
needs to create SDN-IoT. As SDN-IoT grows, efficient routing methods with low latency
and robust security are required. However, the default SDN routing protocols are subject
to dynamic flow control rule changes when the network is under attack. The Internet
of Things Cloud (IoTC) may enhance the sensing capabilities of IoT devices, while fog
computing can circumvent IoT devices’ processing and storage constraints. Accordingly,
the authors [31] proposed a fog-assisted IoTC data collecting and delivery architecture
to minimize IoTC-based data transfer costs and increase success rates. Their framework
utilized named data networking to provide IoTC-based data, allowing numerous IoT
devices to obtain data from the closest provider through a single data delivery mechanism.
In addition, the framework provided mobility support for IoT devices to ensure adequate
data reception. They employed a neuro-fuzzy rule-based clustering technique for cluster-
based routing. In their method, the cluster creation in WSNs used energy modeling to
effectively route packets using machine learning with a convolutional neural network and
fuzzy rules for weight modification, extending the network lifespan. As a result, their
routing algorithm exhibited better efficiency in terms of usage, packet delivery ratio, latency,
and network lifespan.

The technology of IoT networks with SDN architecture is being explored for the
formation of smart cities. It senses the data from the targeted area and sends it to remote
sites for processing and analysis. Many solutions have been recommended by researchers
based on the aforementioned discussed work for coping with resource constraints with
computing capabilities; however, the management of network data over the presence
of huge traffic flow is one of the main research problems. Moreover, providing prompt
responses on remote sites with affordable delay is also considered a significant research
problem. It was also noticed that optimizing the routing process coped with the support of
intelligent strategies; however, it exposed additional costs to the IoT devices as the network
grew. This research proposed a reliable model for IoT technologies with the support
of dynamic programming, leading to optimized efficiency. The states of the SDS-GIoT
model are evaluated each time before announcing the optimal decision for data sending.
Furthermore, edge computing integrates with blockchain technology to ensure data privacy
and authentication. Edge computing provides an offloading method for decreasing the
network burden in terms of applying security on the constraint devices.

3. Sustainable Data-Driven Secured Decision Protocol with Dynamic Programming

In this Section, we present the system model and detail of the SDS-GIoT model. The
SDS-GIoT model comprises sensors, edge nodes, IoT devices, and wireless systems. IoT
devices and sensors are utilized for collecting and transmitting environmental data. IoT
devices and sensors explore the proposed routing algorithm for sustainable communication
with minimum data damage. Additionally, the multi-variable objective function helps link
predictions and facilitates dynamic programming for optimal decisions. The data is routed
from the consistent and reliable nodes toward edge devices based on the decisions. The
decisions are dynamic because they change each time the source node needs to send Route
Request (RREQ). Later, the security layer is used to identify the potential threats in the IoT
system. The main sub-sections of the SDS-GIoT model are discussed as follows.
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3.1. System Model

The proposed network model consists of sensors interacting with each other using
wireless communication standards. The sensors denote by Xi, where i = 0, 1, 2, . . . , n. The
nodes are arranged in the form of directed and weighted multistage Graph G(N, E), so
adjacent nodes are directly connected using edge E. Each stage is comprised of various
sensor nodes. Additionally, edges have a weight known as cost and are updated on certain
conditions. All the devices have some kind of restrictions regarding resources, especially
energy, transmission power, and memory. Edge computing performs the offloading services
in terms of security analysis and ultimately decreases the additional overhead of the nodes.
The edge devices are more powerful than ordinary nodes. Following are some network
assumptions for the SDS-GIoT model.

i. The sensor nodes can only communicate with edge devices and are not mobile.
ii. There are no resource restrictions on the network edges or sink nodes.
iii. At the edge of a sensor’s vicinity, edge devices are randomly positioned.
iv. No more nodes or devices can be included after deployment.
v. Malicious nodes can generate false information and compromise the sending data

and wireless channels.

3.2. States of the SDS-GIoT Model

This Section provides a brief introduction to the states in the SDS-GIoT model. Figure 1
depicts the various states and their association with each other.

Sensors 2022, 22, x FOR PEER REVIEW 5 of 14 
 

 

 
Figure 1. States of the SDS-GIoT model. 

3.3. Model Discussion  
In this Section, we present a novel solution for routing the IoT data with the sup-

port of dynamic programming. The sensors sense the surrounding data and execute the 
next-hop selection process in a distributed way, unlike most of the proposed solutions 
that do not track the congestion and traffic-related information in the decision system. 
Our proposed data-driven model keeps such information while reaching an optimal de-
cision. Accordingly, the SDS-GIoT model offers a sustainable approach to attaining a 
timely wireless system with load balancing. In the SDS-GIoT model, the nodes are ar-
ranged in the multistage graph such that each node has some neighbors until it reaches 
the destination state. We consider states are denoted by 𝑆  that comprised on 𝑁  and cost 𝐶 . The nodes in the same stages cannot communicate with each other. The objective 
function can be computed by exploring dynamic programming as given in Equation (1). 𝑓(𝑆 , 𝑁 ) →  (𝑆 , 𝐾) :  min 𝐶(𝑁 , 𝐾  )) (1)

subject to: 𝐾 ε 𝑆  

In Equation (1), 𝑆  is the current stage, 𝑁  denotes visited vertex, 𝑆  is the next 
stage, and 𝐾 denotes the visited vertex in the next stage. 𝐶(𝑁 , 𝐾 ) represents the cost 
from the vertex 𝑁  to vertex 𝐾 . It is an iterative process and is executed until achieving 
optimal end-to-end routing performance. The SDS-GIoT model performs the main role 
by cost value to select the optimal path. Unlike most of the existing approaches that 
choose the routes without adopting the realistic factors for the formulation of the route, 
the SDS-GIoT model explores traffic prediction for the computation of cost value. With 
the support of traffic prediction 𝑇𝑃, the SDS-GIoT model efficiently identifies the most 
optimal link for forwarding IoT data. Moreover, along with traffic prediction, it also in-
tegrates the priority of link status 𝐿𝑆 for nodes 𝑖, 𝑗, as given in Equation (2). 𝐶(𝑖, 𝑗) =  𝑇𝑃 +  𝐿𝑆 (2)

To evaluate priority 𝑃𝑟 for 𝐿𝑆, the SDS-GIoT model utilizes the waiting time and 
packet reception information, as defined in Equation (3). 𝑃𝑟 (𝐿𝑆) = 𝑛𝑜. 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡𝑠/𝑤𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒  (3)

Figure 1. States of the SDS-GIoT model.

i. Multistage graph: This stage organizes the nodes in the form of multiple stages,
and stages are interconnected with edges.

ii. Tables’ initialization: In this state, nodes’ information and network conditions are
recorded along with the identities of devices.

iii. Iterative function: The repeated function is performed to determine the optimal
routing strategy in this state.

iv. Edge cost: Nodes compute the cost, and accordingly, the minimum value offers the
optimal decisions. In case the outcome is not optimal, then the iterative function is
executed again.

v. Authentic nodes: This state determines the validity of devices in terms of authen-
tication. If nodes are declared authentic, then communication is allowed by the
system; otherwise, alert messages are recorded in the local tables.
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vi. Secured sessions: In this state, the system attains data privacy with integrity using
session keys and security methods.

3.3. Model Discussion

In this Section, we present a novel solution for routing the IoT data with the support of
dynamic programming. The sensors sense the surrounding data and execute the next-hop
selection process in a distributed way, unlike most of the proposed solutions that do not
track the congestion and traffic-related information in the decision system. Our proposed
data-driven model keeps such information while reaching an optimal decision. Accordingly,
the SDS-GIoT model offers a sustainable approach to attaining a timely wireless system
with load balancing. In the SDS-GIoT model, the nodes are arranged in the multistage
graph such that each node has some neighbors until it reaches the destination state. We
consider states are denoted by Si that comprised on Ni and cost Ci. The nodes in the same
stages cannot communicate with each other. The objective function can be computed by
exploring dynamic programming as given in Equation (1).

f (Si, Ni)→ (Si+1, K) : min C(Ni, Ki )) (1)

subject to:
K ε Si+1

In Equation (1), Si is the current stage, Ni denotes visited vertex, Si+1 is the next stage,
and K denotes the visited vertex in the next stage. C(Ni, Ki) represents the cost from the
vertex Ni to vertex Ki. It is an iterative process and is executed until achieving optimal
end-to-end routing performance. The SDS-GIoT model performs the main role by cost
value to select the optimal path. Unlike most of the existing approaches that choose the
routes without adopting the realistic factors for the formulation of the route, the SDS-GIoT
model explores traffic prediction for the computation of cost value. With the support of
traffic prediction TP, the SDS-GIoT model efficiently identifies the most optimal link for
forwarding IoT data. Moreover, along with traffic prediction, it also integrates the priority
of link status LS for nodes i, j, as given in Equation (2).

C(i, j) = TP+ LS (2)

To evaluate priority Pr for LS, the SDS-GIoT model utilizes the waiting time and
packet reception information, as defined in Equation (3).

Pr(LS) = no. o f packets/waiting time (3)

A connection is not taken into account by the decision-making algorithm if the Pr of LS
is less than a certain threshold. In Equation (3), if waiting time increases, then, accordingly,
the priority for a specific link decreases. On the other hand, to determine the Pr for TP on
the communication link, the SDS-GIoT model utilizes bandwidth B and queued packets P
as Equation (4).

Pr(TP) = B/P (4)

According to Equation (4), when the queued packets increase, the priority value of
TP decreases. Also, if TP is below a specified threshold, the decision-making mechanism
excludes that particular communication channel. In the SDS-GIoT model, each node
establishes and maintains its routing table and updates it when certain conditions occur.
All the nodes are associated with their edge devices and can be monitored intelligently.
Whenever residual energy e of any forwarded node f n is less than the predefined threshold,
then the edge device initiates the request to the source node for route re-formulation, as
defined in Equation (5).

e( f n) < threshold; RREQ = true (5)
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Figure 2 depicts the flowchart of the SDS-GIoT model for sustainable routing using
dynamic programming. The main phases are multistage graphs, initiate iterative routing,
cost function, and route updating. In the beginning, nodes are arranged in multistage
graphs and divide the network structure into stages. Then, the source node needs to
determine the optimal node in the next stage dynamically, and this process is iterative until
data are delivered to their destination. Moreover, the cost function is a key parameter in
achieving a sustainable and efficient routing scheme. The cost function is based on the
traffic load and link status; accordingly, the routing phase can be re-formulated dynamically,
and information in the routing tables is updated.
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Afterward, the SDS-GIoT model develops a security algorithm for devices with limited
constraints. In this phase, edge devices act as a central hub for their associate sensors, and
they help authenticate the peer devices before data transmission. Let us consider that i and
j are sensor nodes that need to collaborate for data routing. The edge device is denoted
by ED, E is any symmetric encryption algorithm. Firstly, i intends to communicate with
ED and j. Protocol messages are initiated, and security functions are applied accordingly
to achieve this. Then, i encrypts message D using ki,ED along with the identity of the
intended recipient idj, and sends this to ED with its identifier idi, as defined in Equation (6).

i→ ED : ki,ED
(
idj, D

)
+idi (6)

Upon decrypting the message, ED determines it is intended for j, looks up the k j,ED of
the indicated recipient, and re-encrypts D for j. Later, ED returns the translated message
for i to send towards j, as defined in Equations (7) and (8).

ED → i : k j,ED (idi, D) + t (7)

i→ j : k j,ED (idi, D) + t′ (8)
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where t and t′ denote time stamps to avoid reply attacks. Once nodes are identified as
authentic, they initiate the data transmission process with the support of blockchain. In
this phase, nodes generate their new session keys and share them with associated devices
for communication. ki

′ and k j
′ are generated session keys for nodes i and j. Afterward,

both devices send the keys with encryption using associated private keys assigned by the
edge device. The process for exchanging keys using the encryption function is defined in
Equations (9) and (10).

i→ j : k j,ED
(
ki
′) (9)

j→ i : ki,ED
(
k j
′) (10)

Later, using received keys, the SDS-GIoT model performs data encryption on data
blocks Bi as defined in Equation (11).

i→ j(xor(Bi , ki
′) ; j→ i(xor(Bi , k j

′) (11)

This process continued in the form of various increments for maintaining the integrity
and privacy of data blocks. Figure 3 illustrates the flowchart of the proposed security
algorithm. Initially, network authentication is performed with the intelligence of the central
hub. Edge devices perform offloading security functions with their processing capabilities,
and only lightweight operations are allowed in constrained devices. When nodes are de-
clared authentic, they generate session keys to initiate the data routing with their associated
devices. Also, session keys are encrypted with the private key of nodes that are distributed
by edge devices. Later, data blocks are encrypted incrementally by exploring blockchain
technology. Algorithm 1 shows the pseudocode in the development of the SDS-GIoT model.

Algorithm 1: Data-driven secured optimization model using dynamic programming

Step 1: Procedure Sec_data_driven
Step 1: Network-setup
Step 2: Multistage graphs with nodes and edges
Step 3: Compute the traffic by exploring TL = B/P
Step 4: Compute Pr(LS) = no. o f packets/waiting time
Step 5: Cost using objective function C(i, j) = TL + LS
Step 6: Threshold evaluation for sending route request e( f n) < threshold; RREQ = true
Step 7: If the neighbor state is not equal to the destination then
Repeat Steps 3 to 6
End if
Step 8: Performs network authentication
Step 9: If authenticity is verified then data transmission
Else
Drop the request packet
End if
Step 10: Generate random keys and perform a security function
Step 11: If all data packets are delivered to the destination then
Send ACK to the source device
Else
Perform incremental encryption
End if
Step 12: End procedure
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4. Simulations

This Section describes the network scenarios and the performance results of the SDS-
GIoT model with MADCR and SRPMA. We perform various tests in two scenarios. One is
varying IoT devices and the second is varying data generation rates. IoT devices range in
number from 25 to 125, and data generation rates range from 1000–5000 bits/s. The varying
number of nodes is considered in experiments to identify the effectiveness of the SDS-GIoT
model under different sizes. The data generation rate indicates the amount of data that
is produced by the nodes with time. The size of the control packet is set to 256 bits. We
consider 10 edge devices and 2 sink nodes. The initial energy of nodes varies from 3 j to 6 j.
The distance between nodes is measured using Euclidean distance. All the devices have
limited constraints except edge devices and sink nodes. The simulations are carried out
using NS-2.35 on the Ubuntu platform. The network dimension is set to 1000 m × 1000 m.
A total of 30 simulations were run to take an average of the performance metrics. The
transmission power of the IoT nodes is set to 10 m. Furthermore, varying malicious nodes
are deployed in the simulation environment. The data were obtained from trace files after
various simulations, and stored in log files for further analysis and determining the efficacy
of the SDS-GIoT model. Table 1 mentions the parameters list with their default values
for simulation.

Table 1. List of simulation parameters.

Parameters Values

Simulation area 1000 m × 1000 m

Devices distribution Random

IoT devices 25–125

Data generation rates 1000–5000 bits/s

Transmission power 10 m

Initial energy 3–6 j

Simulations 30

Round interval 20 s

Data flow CBR

Sink node 2

Edge nodes 10

Size of control packet 256 bits
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Results and Discussion

This Section provides the simulated graphs and their discussion of the SDS-GIoT
model and other related studies. The performance is evaluated for network throughput,
latency, packet drop ratio, and the maximum number of rounds in a green IoT system.
The proposed SDS-GIoT model remarkably improved green computing using the dynamic
structure and the least overhead. It consumes less energy in sensing, aggregation, and
transmission phases with the support of intelligent decision systems. The usage of multi-
stage graphs explicitly shows a better outcome for the proposed sustainable solution in
the light of dynamic programming. Moreover, the authentication and security operation
also protect the green system by exploring lightweight cryptographic operations. The
SDS-GIoT model maintains the efficiency of IoT resources in terms of energy constraints
and increases its performance as compared to existing work. Unlike the majority of the
existing work, which does not consider the intelligent approaches for the identification of
suitable nodes and links in the data forwarding processes, to determine the most reliable
circumstances and make the IoT system more sustainable, the proposed SDS-GIoT model
makes use of dynamic programming. In Figure 4a,b, the performance of the SDS-GIoT
model is compared with other work in network throughput. It can be defined as success-
fully transmitting sensor data packets to sink nodes. Based on the experiment’s results, it
is clear that the SDS-GIoT model greatly increased network throughput by an average of
22% for varying IoT devices and 27% for varying data generation rates. This is because the
dynamic programming is by the SDS-GIoT model and identifies the most optimal routes
for forwarding the IoT systems. Its link prediction significantly increases the chosen routes’
strength and improves the system’s performance. Moreover, the boundary of the edges
collaborates with the sink node and reduces the security overhead for limited constraint
devices. Thus, it balances the energy depletion for sensors and explicitly provides the most
stable communication link for the delivery of data.
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The performance of the SDS-GIoT model is evaluated in comparison with existing
approaches. Figure 5a,b illustrates the performance of network latency, and it has been
noticed that as nodes and data generation rates grow, the latency ratio is also increased.
According to the experimental findings, the SDS-GIoT model has improved the latency
ratio by an average of 21% in terms of varying IoT devices and 24% in terms of varying
data generation rates. It results from the effective cost function evaluation and extracts the
robust routes from the multistage graphs. Additionally, dynamic programming chooses
nearby states that place the least burden on communication and trains the system with
timely delivery. By utilizing the blockchain and authentic techniques, the SDS-GIoT model
eliminates the most malicious attacks on the links and accordingly provides efficient
forwarding of IoT messages.
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(a) network latency and IoT devices. (b) network latency and data generation rates.

The performance of the SDS-GIoT model in comparison to the existing approaches is
shown in Figure 6a,b. According to the research, the ratio of communication complexity also
increases when the number of nodes and data generation rates have increased. However,
the SDS-GIoT model improved the complexity rate by an average of 23% and 27% in
terms of varying IoT devices and data generation rates as compared to other existing
work. It is due to efficiently managing network resources and training the system using
dynamic programming to avoid unreliable nodes. Additionally, the nodes are not frequently
generated by the routing requests until and unless the energy level crosses the predefined
threshold. Furthermore, unlike most of the existing work, the communication links are
monitored regularly, and whenever any malicious action is performed, appropriate alert
messages are recorded in the forwarding tables. Accordingly, the SDS-GIoT model reduces
the affected data packets over the wireless medium. As a result, the SDS-GIoT model
efficiently tackles the misbehaving threats from the nodes and decreases the communication
complexity for data transmission and resources management.
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Figure 7a,b illustrates the experimental results of the SDS-GIoT model as compared to
existing work in terms of the number of rounds. It was noticed that the number of rounds
decreases with the message of time. It is due to the excessive energy consumption of the
nodes and frequently generated data packets. However, it is revealed that the SDS-GIoT
model improved the network’s lifetime by an average of 42% and 32% in terms of varying
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IoT devices and data generation rates. It is due to the following aspects. Firstly, intelligent
computing for developing a sustainable system increases the strength of the chosen routes
and efficiently balances the load distribution. Secondly, dynamic programming always
tries to attempt the most reliable forwarders to route the system data toward the sink node
using edge efficacy. Additionally, the dynamic decision effectively prevents the system
from entering the incorrect states and controls the flooding of fake control packets. Such a
process leads to reduce complexity and improves the system’s lifetime.
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A comparison of the SDS-GIoT model with alternative studies is shown in Figure 8a,b.
According to the revealed results, it was observed that the SDS-GIoT model significantly
increases the efficient utilization of energy resources of the nodes by an average of 31%
and 30% in terms of varying IoT devices and data generation rates. It has been found
that as the IoT network grows, the network medium is also busy forwarding the huge
nodes’ data, which greatly decreases the performance of the network in terms of energy
consumption. On the other hand, the SDS-GIoT model provides an intelligent solution
using dynamic programming and explores the routes in the graphs for the formulation of
the routing phase. Additionally, edge computing balances the load distribution for its closer
nodes and transmits the data on time. The blockchain-based technology in the SDS-GIoT
model also avoided the probability of route breaches and minimized the additional energy
consumption in frequent route requests.
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5. Conclusions

Recently, the development of a sustainable IoT system solution using a combination
of storage and communication devices has experienced rapid growth. Although IoT
nodes are self-configuring and inexpensive, they have energy, transmission, and memory
limitations. Most of the solutions have been vulnerable to numerous network threats and
compromised information as a result of faulty communication connectivity. This paper
presents a communication protocol for an IoT-based system using dynamic programming
in multistage graphs and extracts the optimal information for the transmission of network
data. Additionally, it decreases the response time and efficiently manages the nodes’
energy resources. Additionally, the proposed security mechanism is controlled by edge
devices without additional overhead to the IoT nodes. The secret keys and data blocks
are securely forwarded toward the sink using authentic blockchain technologies. The
simulation results have proven the efficacy of the proposed protocol with related studies in
terms of performance metrics. However, it was observed that moving the IoT nodes from
their initial deployment points causes frequent data interruption and connectivity issues.
As a result, the loss rate of packet reception increases. In the future, we aim to improve the
proposed protocol in terms of the mobility model and would like to integrate deep learning
intelligent techniques for coping with distributed network attacks.
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