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Abstract: Healthcare digitalization requires effective applications of human sensors, when various
parameters of the human body are instantly monitored in everyday life due to the Internet of Things
(IoT). In particular, machine learning (ML) sensors for the prompt diagnosis of COVID-19 are an
important option for IoT application in healthcare and ambient assisted living (AAL). Determining
a COVID-19 infected status with various diagnostic tests and imaging results is costly and time-
consuming. This study provides a fast, reliable and cost-effective alternative tool for the diagnosis of
COVID-19 based on the routine blood values (RBVs) measured at admission. The dataset of the study
consists of a total of 5296 patients with the same number of negative and positive COVID-19 test
results and 51 routine blood values. In this study, 13 popular classifier machine learning models and
the LogNNet neural network model were exanimated. The most successful classifier model in terms
of time and accuracy in the detection of the disease was the histogram-based gradient boosting (HGB)
(accuracy: 100%, time: 6.39 sec). The HGB classifier identified the 11 most important features (LDL,
cholesterol, HDL-C, MCHC, triglyceride, amylase, UA, LDH, CK-MB, ALP and MCH) to detect the
disease with 100% accuracy. In addition, the importance of single, double and triple combinations of
these features in the diagnosis of the disease was discussed. We propose to use these 11 features and
their binary combinations as important biomarkers for ML sensors in the diagnosis of the disease,
supporting edge computing on Arduino and cloud IoT service.

Keywords: COVID-19; biochemical and hematological biomarkers; routine blood values; feature
selection method; LogNNet neural network; machine learning sensors; Internet of Medical Things; IoT

1. Introduction

Identified in 2019, COVID-19 is an infectious disease caused by the novel severe
acute respiratory syndrome coronavirus (SARS-CoV-2) [1,2]. Since the World Health
Organization (WHO) declared the SARS-CoV-2 infection as a pandemic, the epidemic
still maintains its severity to this day [3,4]. The early diagnosis of patients is extremely
important to manage this unprecedented emergency [5,6]. The preferred gold standard
method for detecting SARS-CoV-2 infections is the reverse polymerase chain reaction
(PCR) or reverse transcriptase-PCR (RT-PCR) technique [7]. However, the execution of
the test is time consuming (not less than 4–5 h under optimum conditions) and many
favorable conditions must be met, such as the use of special equipment and reagents, the
collection of samples and the necessity of trained personnel [8]. Machine learning (ML) and
artificial intelligence (AI) models provide a powerful motivation to uncover insights from
patients’ data in tragic events such as the COVID-19 pandemic or in situations wherein
guidelines have not yet been created [9]. ML and AI methods select the relevant biomarkers,
revealing their predictive importance and consistently detecting their interactions with
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each other. Moreover, the diagnostic performance of these methods has the ability to be
improved [9–11]. AI studies for the early detection, diagnosis and prognosis of COVID-19
relied on computed tomography (CT) and RBVs. However, imaging-based solutions are
costly and require specialized equipment. Machine learning (ML) and AI studies based on
RBVs features are a more economical and rapid alternative method for the early detection,
diagnosis and prognosis of COVID-19 [7,11,12]. Previous studies have indicated that this
disease can accompany multi-organ dysfunction and cause a variety of symptoms [3,13–15].
COVID-19 can cause severe pneumonia and severe ARDS due to inflammatory cytokine
storms [5,14]. The excessive and uncontrolled release of proinflammatory cytokines was
considered the most important primary cause of death, similar to other infections caused
by pathogenic coronaviruses [16].

The pathogen may require special attention in intensive care units (ICUs) and cause
a serious respiratory disorder, in some cases leading to death [14,16]. Moreover, it is
difficult to distinguish symptoms of COVID-19 from known infections in the majority of
patients [14,17,18]. This predictive analytics is especially required in medical information
systems (MISs) to support clinical or managerial decisions.

COVID-19 may be part of a broader spectrum of hyperinflammatory syndromes char-
acterized by the cytokine release syndrome (CRS), such as secondary hemophagocytic
lymphohistiocytosis (sHLH) [19–21]. The activation of the monocyte–macrophage system
just before the disease leads to pneumonia [22,23]. During this period, changes in many
routine laboratory parameters such as D-dimer and fibrinogen have been reported in
COVID-19 patients [1,2,4,5,14,22,24]. High ferritin, D-dimer, lactate dehydrogenase and
IL-6 levels are indicators of poor prognosis and risk of death in patients [25–27]. In addi-
tion, Winata and Kurniawan [28] reported increased D-dimer and fibrinogen degradation
product (FDP) in all patients in the late stage of COVID-19. This indicates that D-Dimer and
FDP levels are elevated due to increased hypoxia in severe COVID-19 conditions and are
significantly associated with coagulation. Kurniawan et al. [29] reported that hyperinflam-
mation, coagulation cascade, multi-organ failure, which play a role in the etiopathogenesis
of COVID-19, and biomarkers associated with these conditions, such as CRP, D-Dimer,
LDH and albumin, may be useful in predicting the outcome of COVID-19.

The previous studies detected the clinical significance of changes in the routine blood
values (RBVs) in the diagnosis and prognosis of infectious diseases [1,2,4,5,30,31]. However,
Jiang et al. [32], Zheng et al. [33] and Huyut [11] noted that information on early predictive
RBVs should be supplemented with large samples, especially for severe and fatal cases of
COVID-19.

The uncontrolled spread of the disease in pandemics distresses health systems. The
early detection of patients in pandemics is an important but clinically difficult process in
terms of morbidity and mortality [14,24]. The diagnosis and prognosis of COVID-19 with
the use of advanced devices can provide support in improving patient comfort, health
system and tackling economic inadequacies [6,11,12]. In this context, studies are carried
out to diagnose and determine the severity of the disease in the early period by using ML
and AI-based methods as well as RBVs data [7,11,12]. The basic element in ML approaches
is to determine the feature vector with a linear classifier [30]. Since ML algorithms require
a sufficiently large number of samples, the problem of dimensionality in these methods
is inevitable. To minimize this problem, the dataset should be reduced by finding a less
dimensional attribute matrix. The dimensionality problem can be minimized by discarding
irrelevant features with the feature selection procedure [30,31].

Feature selection methods can be summarized under three main headings: embed-
ded methods, filters and wrappers (backward elimination, forward selection, recursive
feature elimination) [30,31]. Feature selection in embedded methods is part of the training
process and, therefore, this method lies between filters and wrappers. In the embedded
methods, the determination of the best subset of features is performed during the training
of the classifier (for example, when optimizing weights in a neural network). In terms of
computational cost, embedded methods are more economical than wrappers [30].
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Although we can find many case studies for all three feature selection methods, most
feature selection methods are filters [30]. The existence of a large number of available
feature selection methods complicates the selection of the best method for a particular
problem [31]. The popular feature selection methods include correlation-based feature
selection (CFS) [34], consistency-based filtering [35], INTERACT [36], information gain [37],
ReliefF [38], recursive feature elimination for support vector machines (SVM-RFE) [39],
Lasso editing [40] and minimum redundancy maximum relevance (mRMR) algorithm
(developed specifically for dealing with microarray data) [30].

We examined the SARS-CoV-2-RBV1 database using the LogNNet neural network [12].
LogNNet can be defined as a feed forward network that increases the classification accuracy
by chaotic mapping that fills a reservoir matrix. It is important to optimize the chaotic
map parameters in data analysis by applying the LogNNet neural network. In addition, by
taking advantage of chaotic mapping, it is possible to significantly reduce the RAM usage
by a neural network. These results show that LogNNet can be used effectively in Internet
of Things (IoT) mobile devices.

The main point for many digital health solutions during the pandemic process is the
production of effective, fast and inexpensive alternative methods for the early diagnosis and
treatment of COVID-19 patients. However, even the most knowledgeable and experienced
physicians can interpret little of the information contained in routine blood laboratory
results, and it is extremely difficult to determine the severity of COVID-19 patients based
on RBVs findings alone [41]. In this context, ML classification models run with RBV-based
data to determine the preliminary diagnosis of COVID-19 can be an effective tool in clinical
decision support systems with an accuracy of over 95%. In this study, 13 ML models
and LogNNet neural networks were applied in the diagnosis of suspected cases with
an alternative device, based on LogNNet and Andrunio solutions, as only RBV-based,
and the most important features were determined. We made a clinical interpretation of
the relationship between these features and their various combinations with the disease.
We achieved the performance of all models in detecting the diagnosis of the disease and
reached up to 99.8% accuracy. ML sensors (Sensors 1.0 type) for the diagnosis of the
COVID-19 disease have been successfully tested in the IoT environment, and the diagnosis
of the disease has been implemented in offline and online modes. In offline mode, ML
sensors were run on an Arduino board with a LogNNet neural network with a total RAM
consumption of ~4 kB. Obtaining the findings in this study over a large sample is an
important advantage in terms of the validity of the study. We believe that this study will
help to identify suspected patients with a high probability of being infected with COVID-19
at the time of admission to the hospital with a fast and economical method, which will
make important contributions to the detection of the disease before it progresses.

The paper has the following structure. Section 2 present the related studies, Section 3
describes the data collection procedure, correlation analysis of features, machine learning
methods and the implementation of LogNNet on an Arduino board. Section 4 presents
the results from the correlation analysis of dataset, classification results, one, double, triple
and 11 feature combinations in the detection of sick and healthy individuals, and the ML
sensor concept for IoT. Section 5 discusses the results and compares them with known
developments. Section 6 presents the limitations of the study. In conclusion, a general
description of the study and its scientific significance are given.

2. Related Studies

The prompt diagnosis of COVID-19 seems to be a promising advancement for applying
at-home health care and AAL [42]. The digitalization of healthcare calls for effective
applications of human body sensors [43] and human sensing [44], including ML sensors,
to continuously monitor various parameters of the human body in everyday life with
the help of the IoT [45]. Everyday human body sensors testify to the growing number of
applications in IoT-enabled ambient intelligence (AmI) systems [46]. The paradigms of ML
sensors [47] and artificial intelligence (AI) sensors [48,49] are similar in meaning. The ML
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sensor paradigm was further developed by Warden et al. [47] and Matthew Stewart [50],
wherein the authors introduced the terms Sensors 1.0 and Sensors 2.0 devices. Sensors
2.0 devices are a combination of both a physical sensor and a machine learning module
in one package. Sensors 2.0 devices process data internally, ensuring data security, while
in Sensors 1.0 devices, these modules are physically separated. In addition, the authors
proposed the concept of creating a datasheet of ML sensors. Therefore, the development of
technology for creating ML sensors for the diagnosis of the COVID-19 disease is an urgent
problem.

In previous studies, the RBVs of people who lived and died from COVID-19, or
patients with COVID-19 and healthy individuals, were statistically compared [1,3,14,22–
24,26,51]. In addition, differences in many RBVs characteristics are known between mild
and severe COVID-19 patient groups according to statistical methods. However, this
study demonstrates that ML models using only one or two features can detect COVID-19
patients from a large group of patients with high accuracy. Therefore, this study will be
an alternative approach with extremely high sensitivity for the diagnosis of COVID-19.
ML algorithms allow for an easy interpretation of complex association structures in data
by simultaneously evaluating the cumulative effects of numerous biomarkers to discover
higher-order interactions [4,6,9]. With this benefit, the strengths of using ML in clinical
medicine are considered as an opportunity. Although various clinical studies [7,52,53]
have highlighted how blood test-based diagnosis can provide an effective and low-cost
alternative for the early detection of COVID-19 cases, relatively few ML models have been
applied to blood parameters [7,54].

An evaluation of lung CT images to predict lung cancer using deep learning with an
improved abundant clustering technique and instant trained neural networks approach
was performed in [55]. The authors achieved an accuracy of up to 98.42% in cancer
diagnosis with a minimum classification error of 0.038. Cui et al. [56] examined the
distribution of pixels in the images with the fuzzy Markov random field segmentation
approach using positron emission tomography (PET) and computed tomography (CT)
images of the affected area associated with lung tumor. The developed method provided
an accuracy of 0.85 in recognizing the lung tumor region. Tomita et al. [57] ran a logistic
regression (LR) analysis, support vector machine (SVM) and deep neural network (DNN)
models with biochemical findings, lung function tests and bronchial challenge test features
to predict the initial diagnosis of adult asthma. In the pre-diagnosis of adult asthma,
the DNN model showed 0.98%-ACC, the SVM model 0.82%-ACC and the LR model
0.94%-ACC. Ryu et al. [58] used various ML models and a deep neural network model
for the pre-diagnosis of diabetes mellitus using various physical and routine blood values
features. The deep neural network has been the most successful model with a value of 0.80-
AUC in diabetes mellitus. Kolachalama et al. [59] used a six-convolutional deep learning
architecture (CNN) with histological images, biopsy results and some clinical phenotypes
to classify kidney disease severity. The CNN model was found to be more successful
with AUC values of 0.878, 0.875 and 0.904, respectively, than the pathologist-predicted
fibrosis score (0.811, 0.800 and 0.786 AUC, respectively) for assessing 1-, 3- and 5-year
renal survival. In a study conducted to identify patients at risk of early diagnosis of fatty
liver disease, Wu et al. [60] used an artificial neural network model with three ML models.
The most successful model in the diagnosis of risky patients was the random forest with
87.48-ACC and 0.92-AUC values. Oguntimilehin et al. [61] used an ML technique on a
set of labeled typhoid fever contingent variables for the diagnosis of typhoid fever and
to establish explicable rules. The labeled database is divided into five different levels of
typhoid fever severity, with classification accuracies on both the training set and the test set
of 95% and 96%, respectively. The application was implemented using Visual Basic as the
front-end and MySQL as the back-end. Kouchaki et al. [62] used various ML methods to
predict the resistance to MTB in Mycobacterium tuberculosis (MTB) patients given a specific
drug in a timely manner and to identify resistance markers. Compared to the traditional
molecular diagnostic test, the AUC values of the best ML classifiers were higher for all
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drugs. Logistic regression and gradient tree reinforcement methods performed better than
other techniques. Taylor et al. [63] ran six machine learning algorithms with 10 features
consisting of patient demographics, RBVs results and drug information for the diagnosis of
and treatment decisions for urinary tract infection. The best performing model, XGBoost,
diagnosed the presence of a urinary tract infection with a high AUC value (0.826–0.904
confidence interval).

Yang et al. [64] ran four ML models on 3356 patients (42% COVID-19 positive) using
27 features covering both blood count and biochemical parameters. A gradient boosted
decision tree model was the most successful model in the diagnosis of the disease with a
value of 0.85-AUC. Booth et al. [9] operated 26 RBVs data elements with a support vector
machine to detect COVID-19 patients at high mortality risk and determined prognostic
biomarkers with a value of 0.93-AUC. Huyut [11] classified severely and mildly infected
patients from a large population of COVID-19 patients using 12 supervised ML models and
28 routine blood values. The models with the highest AUC for identifying mildly infected
patients were found to be local weighted learning at 0.95%, Kstar at 0.91%, Naive bayes
at 0.85% and K nearest neighbor at 0.75%. Brinati et al. [65] ran 13 RBVs with various ML
methods to detect COVID-19 patients (102 negative and 177 COVID-19 positive). They
noted that the models with the highest accuracy in the diagnosis of the disease were
random forest (82%) and logistic regression (78%). Huyut and Velichko [12] determined the
diagnosis and prognosis of the COVID-19 disease by running the LogNNet neural network
model on 51 RBVs features. The model achieved an accuracy of 99% in the diagnosis of
the disease and 84% in its prognosis. Zhang et al. [66] used a variety of demographic
indicators and 21 RBVs using a Lasso-based neural network model to detect predictors
of mortality from COVID-19. The success of the model in determining the clinical status
of the patients was 98%-AUC. Alle et al. [67] applied the XGboost and logistic regression
model on a dataset of various clinical and laboratory tests to predict COVID-19 mortality
and found accuracy rates of 83% and 92%, respectively. Gao et al. [68] applied an ensemble
model derived from support vector machine (SVM), gradient augmented decision tree
(GBDT) and neural network (NN) algorithms using 28 immune/inflammatory features to
detect COVID-19. The developed model reached 0.99 AUC in detecting infected patients.
Vaishnav et al. [69] used various machine learning models to predict mortality from COVID-
19, and the decision tree regression model produced a 70% accuracy and the random forest
regression model a 76% accuracy. Huyut and İlkbahar [5] used various biomarkers with
the CHAID decision tree to detect the diagnosis and prognosis of COVID-19. The model
produced an 81.6% accuracy in recognizing the disease and a 93.5% accuracy in determining
the prognosis of the disease. Huyut and Üstündağ [6] used 23 blood gas parameters with
the CHAID decision tree to predict the diagnosis and prognosis of COVID-19. The model
produced a 68.2% accuracy in recognizing the disease and a 65.0% accuracy in determining
the prognosis of the disease. Kukar et al. [70] constructed a machine learning model
based on 35 RBVs to diagnose 5333 negative and 160 positive COVID-19 patients with
various bacterial and viral infections. The model showed an 81.9% sensitivity and a 97.9%
specificity in detecting patients. Mei et al. [71] developed a model combining CNN and
multilayer sensor to detect COVID-19 using computed tomography (CT), various clinical
information elements and some RBVs data. The model reached an 84% sensitivity and an
83% specificity in recognizing the disease.

AI studies on the risk of poor outcome for COVID-19 patients need further validation
with larger samples [11,25,72]. Furthermore, previous AI studies using RBVs for COVID-19
diagnosis and prognosis which covered the early stages of the outbreak included less blood
values and reported poorer performance. Therefore, to detect the disease in the later stages
of the epidemic, it is necessary to study ML models on a larger sample, which can achieve
higher accuracy and use most RBVs.
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3. Data and Methods

The data used in this study were collected retrospectively from the information system
of Erzincan Binali Yıldırım University Mengücek Gazi Training and Research Hospital
(EBYU-MG) between April and December 2021. The data used in this study are shared as
open access under the name of “SARS-CoV-2-RBV1” in [12].

During the dates covered by this study, a diagnosis of SARS-CoV-2 was made by
real-time reverse transcriptase polymerase chain reaction (RT-PCR) on nasopharyngeal
or oropharyngeal swabs at the EBYU-MG hospital. RBVs results at first admission were
recorded to prevent various complications.

3.1. Characteristic of Participants, Workflow and Datasets

Between the specified dates, the digital system of our hospital was scanned and
patients diagnosed with COVID-19 (n = 2648) were selected from a large patient population
(a dataset of approximately 80 thousand patients was scanned). The routine laboratory
information of these patients was examined. The parameters (features) that were measured
from at least 80% of the patients were used. Missing data were completed with the mean
of the distribution and normalized. A total of 51 routine blood values calibrated from
approximately 70 parameters were recorded. In addition, a group (control group) with the
same number of negative COVID-19 tests (n = 2648) was identified and 51 characteristics of
these individuals were recorded. Our control group arrived at the hospital only with the
suspicion of COVID-19. Chronic disease information of the patients could not be reached.
Only data of individuals over the age of 18 were recorded.

These two datasets were combined and named “SARS-CoV-2-RBV1” dataset. The
SARS-CoV-2-RBV1 dataset includes immunological, hematological and biochemical RBVs
parameters and consists of 51 features (Table 1). In the SARS-CoV-2-RBV1 dataset, positive
COVID-19 test results were coded as 1 and negative test results as 0 (COVID-19 = 1,
non-COVID-19 = 0).

Table 1. Feature numbering for SARS-CoV-2-RBV1 dataset [12].

№ Feature № Feature № Feature № Feature № Feature

1 CRP 12 NEU 23 MPV 34 GGT 45 Sodium

2 D-Dimer 13 PLT 24 PDW 35 Glucose 46 T-Bil

3 Ferritin 14 WBC 25 RBC 36 HDL-C 47 TP

4 Fibrinogen 15 BASO 26 RDW 37 Calcium 48 Triglyceride

5 INR 16 EOS 27 ALT 38 Chlorine 49 eGFR

6 PT 17 HCT 28 AST 39 Cholesterol 50 Urea

7 PCT 18 HGB 29 Albumin 40 Creatinine 51 UA

8 ESR 19 MCH 30 ALP 41 CK

9 Troponin 20 MCHC 31 Amylase 42 LDH

10 aPTT 21 MCV 32 CK-MB 43 LDL

11 LYM 22 MONO 33 D-Bil 44 Potassium

CRP: C-reactive protein; INR: international normalized ratio; PT: prothrombin time; PCT: procalcitonin; ESR: ery-
throcyte sedimentation rate; aPTT: activated partial prothrombin time; LYM: lymphocyte count; NEU: neutrophil
count; PLT: platelet count; WBC: white blood cell count; BASO: basophil count; EOS: eosinophil count; HCT:
hematocrit; HGB: hemoglobin; MCH: mean corpuscular hemoglobin; MCHC: mean corpuscular hemoglobin con-
centration; MCV: mean corpuscular volume; MONO: monocyte count; MPV: mean platelet volume; PDW: platelet
distribution width; RBC: red blood cells; RDW: red cell distribution width; ALT: alanine aminotransaminase;
AST: aspartate aminotransferase; ALP: alkaline phosphatase; CK-MB: creatine kinase myocardial band; D-Bil:
direct bilirubin; GGT: gamma-glutamyl transferase; HDL-C: high-density lipoprotein cholesterol; CK: creatine
kinase; LDH: lactate dehydrogenase; LDL: low-density lipoprotein; T-Bil: total bilirubin; TP: total protein; eGFR:
estimating glomerular filtration rate; UA: uric acid.
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The features in this dataset are calibrated and contain almost all of the routine blood
values that are the subject of studies on COVID-19 in the literature. Therefore, we believe
that the bias of our study using this dataset was minimized in comparison to the literature.
In addition, the use of our dataset, which we share as open access, is important in terms of
showing the reproducibility and auditability of the results.

3.2. Correlation Analysis of Features

To determine the level of correlation between diagnosis and biochemical blood pa-
rameters, the original dataset was analyzed using the point-biserial correlation test [73].
Pearson correlation coefficient was calculated for each feature–feature pair, and a correla-
tion matrix was compiled. The correlation matrix makes it possible to judge the strength
and structure (positive or negative) of the linear relationship between diagnosis–feature
and feature–feature pairs. The correlation matrix was created using the pandas software
package [74].

3.3. Machine Learning Methods, Hyperparameters, Accuracy Estimation

Machine learning algorithms can be applied to a wide range of problems such as
classification, clustering, regression analysis, time series forecasting, etc. [75]. The SARS-
CoV-2-RBV1 dataset under study has an output parameter divided into two classes (positive
or negative diagnosis for COVID-19), so the task of the machine learning algorithm is re-
duced to binary classification based on 51 features. This study compared the accuracy of
the most popular binary classification algorithms: multinomial naive Bayes (MNB), Gaus-
sian naive Bayes (GNB), Bernoulli naive Bayes (BNB), linear discriminant analysis (LDA),
K-nearest neighbors (KNN), support vector machine classifier with linear kernel (LSVM),
support vector machine classifier with non-linear kernel (NLSVM), passive-aggressive (PA),
multilayer perceptron (MLP), decision tree (DT), extra trees (ETs) classifier, random forest
(RF), histogram-based gradient boosting (HGB).

Each classifier model has hyperparameters, for which optimization is necessary to ob-
tain the most accurate models. For optimization, the software package “auto-sklearn” [76]
was used.

Before training the models, the initial data were subjected to preprocessing, which
makes it possible to speed up the training of the models and improve the accuracy of the
classification. Preprocessing includes two stages: (1) normalization of numerical values of
the input data, (2) generation of additional features. Normalization is a procedure consisting
of bringing numerical data to a single format, which has the following options: quantile
transformer (QT)—transforms feature values so that they correspond to a uniform or normal
distribution; robust scaler (RS)—subtracts the median values for each feature and scales
according to the interquartile range; MinMax (MM)—scales feature values so that they are
all in the range from the minimum to the maximum value. The procedure for generating
additional features transforms the original set of features into a set of features with a
different dimension. This helps to select the most important features, compose additional
features from them or present the input data in a special format for the ML algorithm.
The following methods for generating additional features were used: polynomial (PN)—
creates features that are polynomial combinations of the original features; random trees
embedding (RTE)—creates a multidimensional sparse feature representation, in which
the data in each new feature are represented by binary values; extra trees preprocessor
(ETP)—selects a part of the most important features that are evaluated using the extra trees
algorithm; linear SVM preprocessor (LSVMP)—selects some of the most important features
that are evaluated using the support vector machine algorithm; independent component
analysis (ICA)—selects a set of statistically independent features from the entire original
set; Nystroem sampler (NS)—transforms a set of initial features using a low-rank matrix
approximation by the Nystroem method.

The accuracy of models ANF was assessed by the K-fold cross-validation method
(K = 5) encapsulated in software packages, wherein the designation ANF refers to the
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classification accuracy when using NF features. K-fold cross-validation method splits the
original dataset into K parts and sequentially trains the model. One of the K parts of the
dataset is used as a test sample, and the other parts as a training sample. Then, the obtained
values of the classification accuracy on the test samples are averaged. The division of the
base into parts is performed using stratification. Such approach makes it possible to reliably
estimate the accuracy of models.

In this study, we used a less common ML algorithm based on the LogNNet neural
network. The LogNNet 51:50:20:2 configuration was used, and a detailed configuration
description is given in [75]. The LogNNet architecture is IoT-oriented and can run on
devices with low computing resources (Section 3.4).

Each algorithm was given the same amount of time (1 h) to optimize the hyperparam-
eters. A computer with an AMD Ryzen 9 3950X processor and 64 GB DDR-4 RAM was
used to train the models.

3.4. Implementing LogNNet on an Arduino Board

The Arduino Nano 33 IoT board was chosen as a prototype IoT edge device with
limited computing resources. It is based on a 32-bit Microchip ATSAMD21G18 microcon-
troller with an ARM Cortex-M0+ computing core, a clock frequency of 48 MHz, 256 KB of
flash memory and 32 KB of RAM. The neural network LogNNet 51:50:20:2 from [12] was
programmed on the Arduino board and tested. Arduino Nano 33 IoT test circuit, LogNNet
architecture and board are presented in Figure 1.
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3.4.1. LogNNet Program for Arduino Board

LogNNet transforms the input feature vector d into a normalized vector Y, which is
multiplied with the reservoir matrix W filled with a chaotic mapping. We used the mapping
congruent generator (1) with the parameters indicated in Table 2 and the data [12]. Then,
the transformed vector passes the output classifier (two-layer feed-forward neural network
with two hidden layers).

Table 2. Chaotic map equation and list of parameters with limits.

Chaotic Map List of Parameters Equation

Congruent generator

K = 93
D = 68

L = 9276
C = 73

{
xn+1 = (D − K · xn) mod L
x1 = C

(1)

Let us denote the matrix of weight coefficients between the layers Sh and Sh2 as W1,
and the matrix between the layers Sh2 and Sout as W2. At the output, there are two neurons



Sensors 2022, 22, 7886 9 of 29

for two classes (COVID-19 and non-COVID-19). Matrices of weight coefficients and values
of normalization coefficients were calculated on a computer with high performance and
saved in a separate library file. In addition, the library file (supplementary materials)
contains the values of K, D, L and C required for calculating the W matrix, as well as data
on configuration of the LogNNet 51:50:20:2 neural network.

When LogNNet is running, the values of the elements of the matrix W (2550 values)
are sequentially calculated using the congruent generator method (1) each time a feature
vector is input. This approach does not store the matrix W in the RAM memory of the
controller, and it leads to memory saving; however, it slows down the calculations of the
neural network.

The Arduino IDE development environment was used to implement the algorithm.
The library file with the matrices W1 and W2 and other coefficients necessary for the
operation of the neural network were loaded at the beginning of the program. The complete
code of the program is presented in Appendix A, Algorithm A1. The algorithm is divided
into functions and procedures:

• Function “Fun_activ”—activation function, lines 10–12;
• Procedure “Reservoir”—calculation of coefficients of reservoir matrix W by congruent

generator formula, multiplication of arrays and calculation of neurons in layer Sh,
lines 14–28;

• Procedure “Hidden_Layer”—calculation of neurons in the hidden layer Sh2, lines
30–39;

• Function “Output_Layer_Layer”—calculation of the output layer Sout, lines 41–54;
• The “void loop” block is an executable loop, lines 61–77;
• “void setup” block—initialization block, lines 61–77.

The scaling factor “scale_factor = 1000” makes it possible to convert data from a
floating point type to an integer (and vice versa), by multiplying (dividing) by a factor
and rounding. In the Arduino, a float variable takes 4 bytes of RAM, and an integer
variable takes 2 bytes of RAM. Therefore, storing matrices W1, W2 and other data in integer
format are more efficient, and during library initialization, the data takes 2 times less RAM
memory.

3.4.2. Test Scheme

Neural network testing is the serial sending of SARS-CoV-2-RBV1 data to the Arduino
board and counting the correct network responses. The data is generated on an external
computer (Figure 1). For sending data, a protocol was implemented that separates the
elements of the feature vector Y using the symbol “T” to avoid data gluing. At the end of
the vector Y, special characters “FN” are placed, indicating the end of the data transfer. On
the Arduino side, a protocol is implemented that recognizes the input data. In the “void
loop” block, a loop is organized to check the availability of data in the serial port buffer
using the Serial.Available function. This function returns “True” as soon as the Arduino
receives data.

4. Results
4.1. Correlation Analysis of Dataset SARS-CoV-2-RBV1

Figure 2 presents the results of the correlation analysis of the diagnosis–feature and
feature–feature pairs in the form of a “heatmap” over the entire volume of the SARS-CoV-
2-RBV1 database. The first column of Table 3 shows the features most highly associated
with the survivors and non-survivors of COVID-19 with a point-biserial correlation (rpb)
coefficient exceeding 0.5. Here, the negative or positive result of the point-biserial correla-
tion coefficient provides information about the direction of the relationship between the
diagnosis of the disease and the quantitative characteristics. As seen in the first column of
Table 3, the features most associated with disease diagnosis are MCHC, HDL-C, cholesterol
and LDH. The second column of Table 3 shows the accuracy of the cut-off values calculated
by the threshold approach [12] for each trait in classifying COVID-19 patients. The features
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presented in the second column are the predictors that classify patients with the highest
accuracy. For comparison, the results of the threshold classification Ath from [12] are pre-
sented, and features with Ath ≥ 70% are shown. The threshold classification method and
the point-biserial correlation method give an intersecting set of features, but the threshold
classification provides more diagnosis-related features. While the point-biserial correlation
coefficient reveals the level of association between living and deceased COVID-19 patient
traits, the diagnosis has only two values (1 and 0). However, when separating these two
classes, the threshold method considers all the data of the relevant feature, and it has high
sensitivity.

Table 3. Features most strongly correlated with the diagnosis according to the point-biserial correla-
tion coefficient and the threshold correlation method.

Feature
(Point-Biserial Correlation Coefficient (rpb))

Feature
(Threshold Accuracy of Classification Ath

from [12])

MCHC (0.8) MCHC (94.35%)

HDL-C (−0.77) HDL-C (94.73%)

Cholesterol (−0.71) Cholesterol (94.47%)

LDL (−0.68) LDL (96.47%)

Triglyceride (90.96%)

Amylase (85.1%)

UA (81.12%)

TP (79.68%)

CK-MB (78.91%)

LDH (74.98%)

Albumin (72.91%)
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An analysis of the correlation of features among themselves (Figure 2) reveals several
features that are linearly dependent on each other. The most strongly correlated pairs
with the Pearson coefficient exceeding 0.6 modulo are shown in Table 4. The same table
presents Pearson’s coefficients separately for a variety of COVID-19 positive and negative
participants. Full heatmaps by class (COVID-19, non-COVID-19) are shown in Figures 3
and 4.

Table 4. The features most strongly correlated with each other by the Pearson coefficient for the entire
database and separately for classes (positive or negative COVID-19 status).

Pair
Feature–Feature

Pearson’s Coefficient
for COVID-19

Diagnosis

Pearson’s Coefficient
for Positive
COVID-19

Pearson’s Coefficient
for Negative
COVID-19

Type High–High

HCT–HGB 0.96 0.95 (High) 0.97(High)

MPV–PDW 0.93 0.94 0.92

HCT–RBC 0.87 0.88 0.87

MCH–MCV 0.84 0.84 0.84

HGB–RBC 0.83 0.83 0.83

NEU–WBC 0.74 0.71 0.81

Albumin–TP 0.64 0.67 0.5

MCH–MCHC 0.53 0.62 0.99

MCH–RDW −0.55 −0.61 −0.51

Type High–Low

Fibrinogen–LYM −0.77 −0.78 (High) −0.01 (Low)

Cholesterol–LDL 0.65 0.59 0.012

Cholesterol–HDL-C 0.64 0.39 −0.024

Chlorine–Sodium 0.18 0.63 −0.025

Type Low–High

MCHC–MCV 0.41 0.09 1(Low) 0.84 (High)

ALT–AST 0.6 0.48 0.76

eGFR–Urea −0.55 −0.49 −0.63

INR–PT 0.12 0.075 1

D-Bil–T-Bil 0.6 0.33 0.91

HDL-C–LDL 0.63 0.19 0.3

Three main types of pair correlations can be distinguished. The High–High type is the
pairs of features for which the correlation has a high value does not depend on the presence
or absence of COVID-19 disease. The High–Low type is the pairs of features that are highly
correlated only in sick patients. The Low–High type is the pairs of features that are highly
correlated only in healthy patients. In general, the features are more correlated in patients
with COVID-19 (Figure 3). From a medical point of view, pair correlation will be reviewed
in the Discussion Section.
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4.2. Classification Results for Dataset SARS-CoV-2-RBV1

Table 5 presents the results of the machine learning algorithms optimized to obtain
the maximum classification values using 51 features. The results are sorted in descending
order of algorithm efficiency. For each algorithm, the average training and inference time
of the model and methods for preprocessing of the input data are given.
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Table 5. Results of assessing the classification accuracy of machine learning models for the SARS-
CoV-2-RBV1 dataset.

Classification Algorithm Average Model
Accuracy A51,%

Average Learning
Time, s

Average
Inference Time, µs

Normalization
Method

Methods for Generating
Additional Features

Histogram-based Gradient
Boosting 100 6.39 11.6 - -

Random Forest 99.943 13.15 21.9 QT -

K-nearest neighbors 99.924 3.17 22.1 QT ETP

Extra Trees classifier 99.905 18.73 24.5 RS -

Multilayer Perceptron 99.886 3.99 2.2 RS LSVMP

Multinomial Naive Bayes 99.792 2.48 11.7 QT RTE

Linear Discriminant Analysis 99.773 9.15 7.5 QT PN

Support Vector Machine with
non-linear kernel 99.754 222.41 43.2 QT NS

Decision Tree 99.660 1.46 1.2 RS LSVMP

Passive-Aggressive 99.641 2.91 13.1 QT RTE

Bernoulli Naive Bayes 99.622 2.59 11.3 QT RTE

Support Vector Machine with
linear kernel 99.584 5.21 1242 MM PN

Gaussian Naive Bayes 98.565 1.68 3.5 QT ICA

LogNNet [12] 99.509 100 3 - -

The accuracy of the algorithms A51 ranged from 98.56% to 100%, indicating that all
models were good at identifying the association of features with the diagnosis of COVID-19.
The most efficient model is based on the histogram-based gradient boosting classifier with
a 100% accuracy.

Figure 5 presents the learning curves for the HGB model using all the features from
the dataset. The red curve (training accuracy) shows the training ability of the model, and
the green curve (cross-validation accuracy) shows the generalization ability of the model
depending on the number of training examples. Each point on the graph was obtained
using five different splits into a test (20%) and training (80%) subsets.
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The red curve represents the accuracy of the model on the training samples. The model
has sufficient complexity to recognize all training samples with a 100% accuracy. The green
curve represents the accuracy of the model on the test subset, the samples of which were
not involved in model training. With an increase in training samples, the cross-validation
accuracy of the model grows. The curves converge with each other and completely coincide
when the number of training samples is more than 2500. The dots on the graph represent
the average accuracy using five different splits, and the shaded areas represent the standard
deviation.

Unlike other models, HGB does not require data preprocessing. The training time
of the HGB model is about 6 s, which makes it possible to effectively use it to enumerate
input features when searching for optimal combinations. The LogNNet model was used to
implement the classification on the Arduino board, so its algorithm has a compact form
suitable for IoT devices.

The HGB model was used to study the most significant combinations of the first,
second and third features.

4.2.1. Investigation of the Effectiveness of the HGB Model Operating on One Feature

Table 6 presents the classification result of the SARS-CoV-2-RBV1 dataset for the HGB
model using a single input feature. The features are sorted in descending order of A1
classification accuracy. The most effective features are the first six features: LDL (№ 43),
cholesterol (№ 39), HDL-C (№ 36), MCHC (№ 20), triglyceride (№ 48) and amylase (№ 31).
The same features are dominant in assessing the correlation between the sign and the
diagnosis from Table 3.

Table 6. Classification efficiency of SARS-CoV-2-RBV1 datasets using the single feature for the
Histogram-based Gradient Boosting classifier.

№ Feature A1,% № Feature A1,% № Feature A1,% № Feature A1,%

43 LDL 96.84 4 Fibrinogen 76.03 50 Urea 68.10 21 MCV 56.43

39 Cholesterol 95.07 29 Albumin 75.3 7 PCT 63.25 22 MONO 56.26

36 HDL-C 94.99 44 Potassium 75.22 27 ALT 62.33 5 INR 56.19

20 MCHC 94.35 3 Ferritin 74.45 35 Glucose 62.17 6 PT 56.04

48 Triglyceride 93.76 38 Chlorine 73.18 49 eGFR 62.04 17 HCT 55.75

31 Amylase 90.01 46 T-Bil 72.77 14 WBC 61.91 26 RDW 55.62

51 UA 87.91 34 GGT 72.62 16 EOS 61.40 9 Troponin 54.07

42 LDH 85.76 41 CK 70.97 13 PLT 61.25 18 HGB 53.94

47 TP 80.41 2 D-
Dimer 70.46 28 AST 60.55 25 RBC 53.43

37 Calcium 80.40 33 D-Bil 70.37 8 ESR 59.12 23 MPV 53.13

32 CK-MB 79.73 11 LYM 69.90 15 BASO 58.72 24 PDW 53.09

1 CRP 77.81 45 Sodium 69.35 12 NEU 57.51 19 MCH 52.13

30 ALP 77,71 40 Creatinine 69,24 10 aPTT 56.53

4.2.2. Investigation of the Effectiveness of the HGB Model Operating on Two Features

Table 7 presents the classification result of the SARS-CoV-2-RBV1 dataset for the HGB
model using two input features. The pairs of features are sorted in descending order of
classification accuracy A2.
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Table 7. Classification efficiency of SARS-CoV-2-RBV1 dataset using 2 features for the Histogram-
based Gradient Boosting classifier.

№ First Feature Second Feature Average Accuracy
A2,%

20-19 MCHC MCH 99.81
43-32 LDL CK-MB 99.62
36-32 HDL-C CK-MB 99.49
48-32 Triglyceride CK-MB 99.45
43-39 LDL Cholesterol 99.43
43-20 LDL MCHC 99.22
39-36 Cholesterol HDL-C 99.18
39-48 Cholesterol Triglyceride 99.11
43-42 LDL LDH 99.05
43-31 LDL Amylase 99.03
36-20 HDL-C MCHC 98.98
43-51 LDL UA 98.86
36-31 HDL-C Amylase 98.81
39-20 Cholesterol MCHC 98.73
20-48 MCHC Triglyceride 98.65
39-38 Cholesterol Chlorine 98.62
43-38 LDL Chlorine 98.43
20-31 MCHC Amylase 98.28
36-42 HDL-C LDH 98.16
48-42 Triglyceride LDH 98.14

The resulting pairs contain the most effective features: LDL (№ 43), cholesterol (№ 39),
HDL-C (№ 36), MCHC (№ 20), triglyceride (№ 48) and amylase (№ 31), which have the
best A1 score (Table 7). The best result (A2 = 99.81) was obtained for the MCHC–MCH
feature pair. At the same time, the pair contains the MCH (№ 19) feature with low efficiency
(A1 = 52.13) and Pearson correlation ~0.041. Such a combination of features with high and
low correlation is observed very often, and this combination results in a high classification
efficiency. Among the features from Table 7, the following have a low linear correlation
with the diagnosis: MCH (0.041), UA (0.066), amylase (0.03) and LDH (0.071). Pearson’s
coefficient from the distribution in Figure 3 is indicated in brackets.

There are pairs consisting entirely of effective features, for example, LDL–MCHC
(№ 43-№ 20), HDL-C–MCHC (№ 36-№ 20), etc. Figure 6 shows the relationship between
the feature pairs for the top 50 results. The main six features are in the center. Asterisks
indicate the features that most often form a pair with the main features: UA (№ 51), LDH
(№ 42), CK-MB (№ 32) and ALP (№ 30). The main feature LDL (№ 43) forms the largest
number of effective pairs for classification.
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To find the reasons for the effectiveness of the pairs of features from Table 7, two-
dimensional distributions of the diagnosis (attractors) were constructed for the first six pairs
(Figure 7). For the healthy patients (non-COVID-19), there are clear linear and cruciform
attractors, while for people diagnosed with COVID-19, these attractors shift and become
chaotic. This difference in the shape of the attractors allows for classifiers to effectively
distinguish between the two classes. The best separation of attractor shapes is observed
for the MCHC–MCH pair (Figure 7a) that explains its highest classification ability. For the
pairs in Figure 7b–e, shifted cruciform attractors are observed, which also contributes to
their effective separation by classifiers. In Figure 7f, two attractors are blurred, but due to
their weak intersection, the classification efficiency is high.
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When using two features, the maximum accuracy is A2 = 99.81% and this value is
lower than when using the 51 features A51 = 100%. However, feature reduction is important
to simplify the classification of patients in practical terms. More accurate models can be
obtained using three features.

4.2.3. The Study of the Most Significant Combination of Three Features of the HGB Model

Table 8 presents the classification result of the SARS-CoV-2-RBV1 dataset for the HGB
model using three input features.

Table 8. Classification efficiency of SARS-CoV-2-RBV1 dataset using 3 features for the Histogram-
based Gradient Boosting classifier.

№ First Feature Second Feature Third Feature Average Accuracy
A3,%

39-48-32 Cholesterol Triglyceride CK-MB 99.91
39-36-32 Cholesterol HDL-C CK-MB 99.91
43-20-19 LDL MCHC MCH 99.91
20-31-19 MCHC Amylase MCH 99.85
43-51-32 LDL UA CK-MB 99.85
39-20-19 Cholesterol MCHC MCH 99.83
48-42-32 Triglyceride LDH CK-MB 99.83
36-20-19 HDL-C MCHC MCH 99.79
36-42-32 HDL-C LDH CK-MB 99.79
43-38-51 LDL Cholesterol UA 99.79
20-48-19 MCHC Triglyceride MCH 99.77
39-48-31 Cholesterol Triglyceride Amylase 99.77
39-36-38 Cholesterol HDL-C Chlorine 99.75
36-31-51 HDL-C Amylase UA 99.75
39-36-42 Cholesterol HDL-C LDH 99.75
20-51-19 MCHC UA MCH 99.74
39-48-38 Cholesterol Triglyceride Chlorine 99.72
39-31-51 Cholesterol Amylase UA 99.70
39-48-42 Cholesterol Triglyceride LDH 99.66
48-31-42 Triglyceride Amylase LDH 99.51

An analysis of Table 8 reveals that no new features have been added in the first twenty
most accurate models compared to Table 7. The MCH and MCHC features are found
only in pairs. With the addition of the third feature, the maximum classification efficiency
increased from A2 = 99.81% to A3 = 99.91%.

4.2.4. The Study of the Most Significant Combination of 11 Features of the HGB Model

Tables 7 and 8 include only 11 features: LDL (№ 43), cholesterol (№ 39), HDL-C (№ 36),
MCHC (№ 20), triglyceride (№ 48), amylase (№ 31), UA (№ 51), LDH (№ 42), CK-MB
(№ 32), ALP (№ 30) and MCH (№ 19). The classification accuracy of the HGB model using
11 features was A11 = 100%. Therefore, 11 features are sufficient to determine the presence
of COVID-19 using machine learning methods based on the histogram-based gradient
boosting classifier.

4.3. LogNNet Implementation on Arduino for Edge Computing

A compact 77-line LogNNet algorithm was created for diagnosing and predicting
COVID-19 disease using routine blood values on an Arduino controller.

LogNNet testing on Arduino revealed an accuracy of A51 = 99.7%, which coincides
with the accuracy on the model computer program [46]. The classification time for the
input vector is about 0.1 s. An estimate of the RAM used by the Arduino controller is
shown in Figure 8.
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Figure 8. Estimation of the RAM used by the Arduino controller when working with the neural
network LogNNet 51:50:20:2.

Global variables (arrays Sh, Sh2 and variables) occupy 294 bytes of RAM, and incoming
data is written to array Y, which occupies 208 bytes. The Arduino uses the Serial system
library to operate the serial port. It is loaded at initiation in the “void setup” block and takes
310 bytes of RAM. The data stored in the LogNNet.h library are also loaded into the RAM
during the program’s initialization and take 2526 bytes, the maximum contribution made
by the matrix W1—2142 bytes. For local computations within functions and procedures, at
least 1012 bytes must be reserved. The total RAM consumption is of 4350 bytes.

4.4. Machine Learning COVID-19 Sensor for IoT

The LogNNet network can be easily imported to various microcontrollers and used to
predict a diagnosis based on blood biochemical parameters. However, our experimental
results in Sections 3.2 and 3.3 are significantly inferior in accuracy to resource-intensive
machine learning algorithms. Therefore, we proposed two architectures of the IoT system
(Figure 9), which include an IoT device with LogNNet implementation (edge computing)
and a cloud service containing a trained HGB model (AI computing). These configurations
implement the prognosis of the disease in offline and online modes with ML sensors for
diagnosis of the COVID-19 disease (Sensor 1.0 type).
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Figure 9. Two architectures of the IoT system, which includes an IoT device with LogNNet imple-
mentation (edge computing) and a cloud service containing a trained HGB model (AI computing).
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In the IoT device, the results of a biochemical blood test are entered manually or
transmitted directly from the laboratory equipment. If the cloud service is unavailable
or if the blood tests are performed on site using a mobile laboratory in remote areas, the
diagnosis is made by the LogNNet network. If the IoT device has access to the network, it
sends a network request to the cloud service, wherein the diagnosis is determined using
the HGB model. The cloud service sends a response with a diagnosis, which is displayed
on the IoT device using an LED indication or on an LCD display.

5. Discussion
5.1. Analysis of Results from a Medical Perspective

COVID-19 has a higher mortality and infectivity than influenza [3,13]. The disease
still causes death and continues to spread [1,6,15]. The use of vaccines did not stop the
spread of the disease, and important mutations were detected in the structure of the virus
during the epidemic [1]. Most of the infected patients had mild symptoms and a good
prognosis. However, some patients developed severe symptoms, such as severe pneumonia,
acute respiratory distress syndrome (ARDS) and multiple organ dysfunction syndromes
(MODSs) [2,5,24]. A need for studies to determine the prognosis and immune conditions of
the COVID-19 disease remains [3,74]. Therefore, the early evaluation of patients who need
intensive care and have high mortality expectations as well as the effective identification of
relevant biomarkers are important to reduce the mortality of the disease [5,6,25].

Various complications may be encountered during the treatment process of COVID-19
and, therefore, the course of the disease should be predicted earlier [64,77]. It is important
to diagnose and predict the prognosis of the disease at an early stage so that the first
response to severely infected COVID-19 patients can be conducted properly [2,5].

Although many studies on COVID-19 have been published, the relationships between
the pathological aspects of the disease and routine blood values have not been fully deter-
mined [77]. Previous studies have reported that changes in many RBVs and hematological
abnormalities are observed during the course of the disease [14,77].

In this study, according to the Ath threshold classification result based on [12], the most
effective features in the diagnosis of the disease were found to be LDL with 96.47%, HDL-C
with 94.73%, cholesterol with 94.47% and MCHC with 94.35% (Table 3). Indeed, in previous
studies, large changes in these features were reported in severe and fatal COVID-19 patients,
and these features may be important biomarkers for the prognosis of the disease [1,2,5,14].

Considering the linear dependency structures of the features among each other, the
most effective combinations of dual features in the diagnosis of the disease were obtained
and the Pearson correlation values were calculated (Table 4). The highly positive linear
correlation structure of some trait pairs with positive and negative individuals was remark-
able. The highest positive and negative linearly correlated trait pairs (High–High) were
HCT–HGB, MPV–PDW and HCT–RBC (96%, 93% and 87%, respectively). These features
vary greatly in severe COVID-19 patients and may be associated with the prognosis and
mortality of the disease [1,2,14]. The high positive association of trait pairs expressed as the
High–High type with both positive and negative COVID-19 individuals led us to believe
that various comorbidities such as hypertension, obesity and diabetes may exist in our
negative COVID-19 population. Considering hospital admissions of negative COVID-19
patients, these trait pairs are highly associated not only with COVID-19 but also with
various inflammatory syndromes and infections [1,2,78]. Djakpo et al. [79] stated that the
abnormalities of HGB, HCT and RBC or anemia observed in patients with comorbidities
are due to the inability of the bone marrow to produce enough RBCs to carry oxygen and
lung damage caused by COVID-19 which complicates gas exchange.

Considering the relationship of the patients with these features, the presence of pos-
sible comorbid conditions prevents erythrocyte production due to existing inflammation.
Since the variation in these trait pairs is hypersensitive to the immune response in indi-
viduals, these trait pairs were highly correlated with sick and healthy individuals. The
MCH–MCHC trait pair was found to be highly positively correlated, especially with healthy
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individuals, and this pair may be used as an important marker to distinguish healthy in-
dividuals in the diagnosis of the disease. Changes in these characteristics may indicate
the suppression of lymphocytic and erythrocyte series or platelet and erythrocyte deformi-
ties [1]. In addition, in this study, a highly positive association of the MCH–MCV trait pair
with COVID-19 was found. Mertoğlu et al. [2], Huyut et al. [14] and Karakike et al. [21]
stated that this was due to the decrease in the size of erythrocytes and anisocytosis in
patients. The high positive association of the HGB–RBC trait pair with sick individuals may
be related to impaired erythropoiesis in the later stages of the disease. The High–High type
feature set provides important clues in the isolation of both sick and healthy individuals.

In Table 4, a high (77%) negative relationship between the fibrinogen–LYM feature
pair and COVID-19 patients is seen, and we believe that this level of relationship is due
to the fibrinogen feature. Indeed, Winata and Kurniawan [28] noted that the degradation
product of fibrinogen (FBU) was increased in all patients in the late stage of COVID-19 and
that this was significantly associated with coagulation. In addition, the high correlation of
the cholesterol–LDL, cholesterol–HDL-C and chlorine-sodium trait pairs (High–Low type
in Table 4) with sick individuals showed that these trait pairs were important markers in
identifying sick individuals. Fang et al. [80] and Mertoğlu et al. [1] stated that this feature
set may be associated with multi-organ involvement in COVID-19 and the widespread
distribution of angiotensin-converting enzyme receptors in the body.

The fact that the Low–High trait pair MCHC–MCV was found to be highly positively
correlated with COVID-19 negative individuals in Table 4 suggested the importance of the
size of erythrocyte and anisocytosis in healthy individuals [80]. In addition, the functional
properties of the ALT–AST, eGFR–Urea and D-Bil–T-Bil pairs were found to be important
markers in the isolation of COVID-19 negative individuals. Mertoğlu et al. [1], Huyut
et al. [14] and Zhou et al. [27] stated that the decrease in ALT, AST, GGT, total bilirubin
and eGFR indicated that the patients had serious damage to organs such as pancreas and
kidney. In another study, Bertolini et al. [81] stated that AST, GGT, ALP and bilirubin may
be frequently elevated in COVID-19 and that the main underlying causes of this condition
may be hyper inflammation and thrombotic microangiopathy. In addition, the high positive
correlation of the INR–PT trait pair with negative COVID-19 individuals suggested that it is
important to monitor these individuals for the development of disseminated intravascular
coagulopathy and acute respiratory distress [80,82].

In this study, 13 popular classifier machine learning models and the LogNNet neural
network model were run on 51 routine blood values to detect patients infected with COVID-
19. Histogram-based gradient boosting (HGB) was the model with the fastest and highest
accuracy in determining the diagnosis of the disease (accuracy: 100%, time: 6.39 sec).

For the HGB model using a single input feature (A1), the most effective features in
the diagnosis of the disease were LDL 96.87% (№ 43), cholesterol 9507% (№ 39), HDL-C
94.99% (№ 36), MCHC 94.35% (№ 20), triglyceride (№ 48) and amylase (№ 31) (Table 6).
For the HGB model using the dual entry feature (A2), the most effective trait pair in the
diagnosis of the disease was MCHC–MCH (A2 = 99.81) (Table 7). The success of MCH
as a single-entry feature in the diagnosis of the disease is low (A1 = 52.13). Huyut and
Velichko [12] found an accuracy rate of 99.1% in the diagnosis of the disease by running the
MCHC–MCH features with LogNNet. The HGB model operated with MCHC–MCH was
found to be more successful than the LogNNet model in the diagnosis of the disease.

Since low values of MCH and high values of MCHC were associated with COVID-
19 [83], it was expected that the use of these two features together in the diagnosis of the
disease would produce higher classification success. The most effective dual trait pairs
(Table 7) were similar to the most effective single traits (Table 6) for the HGB model for
the diagnosis of the disease. This provides important information about the functional
properties of the binary trait pairs obtained with the HGB model in the diagnosis of the
disease. Six basic features, that is LDL (№ 43), cholesterol (№ 39), HDL-C (№ 36), MCHC
(№ 20), triglyceride (№ 48) and amylase (№ 31), among the combinations of binary features
used in the diagnosis of the disease and four features, that is UA (№ 51), LDH (№ 42),
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CK-MB (№ 32) and ALP (№ 30), that most frequently pair with these features are given
in Figure 6. The main feature LDL (№ 43) generated the largest number of effective pairs
for classification. The effectiveness of these feature pairs (Table 7) in detecting patients is
visualized in two-dimensional space (Figure 7). Classification is most clearly visible in the
MCHC–MCH pair (Figure 7a), which explains the higher classification ability.

In the binary feature combinations used by HGB in the diagnosis of the disease, the
maximum accuracy was A2 = 99.81% which is slightly lower than the use of 51 features
(A51 = 100%). However, feature reduction provides more cost effective and rapid results
in interpreting the classification of patients from a practical point of view and identifying
the most effective features. The highest classification success obtained for the HGB model
using three feature combinations was A3 = 99.91 (Table 8).

Analysis of Table 8 showed that no new features were added to the top twenty models
with the highest accuracy compared to Table 7. The binary combinations in Table 7 were
sufficient for the diagnosis of the disease. In addition, the co-existence of MCH and MCHC
features in all combinations reveals hidden association structures between these features
and contains important clues in the diagnosis of the disease.

In this study, the most important 11 biomarkers were found with the HGB model used
to determine the diagnosis of the disease, and with these features, all patients and healthy
individuals were correctly identified with high performance (A11 = 100%). In addition,
the importance of various combinations of these features in the diagnosis of the disease
was recognized. The performance of these 11 features, namely LDL (№ 43), cholesterol (№
39), HDL-C (№ 36), MCHC (№ 20), triglyceride (№ 48), amylase (№ 31), UA (№ 51), LDH
(№ 42), CK-MB (№ 32), ALP (№ 30) and MCH (№ 19) and their various combinations in
the diagnosis of the disease was higher than the individual performances, suggesting that
there is a high level of confidential information between these feature combinations and
COVID-19.

Kocar et al. [84] and Zinellu et al. [85] presented evidence of significant changes in
the lipid profile of severe COVID-19 patients, particularly in total cholesterol, LDL and
HDL-C concentrations. They also reported that increased cholesterol concentrations in the
cell membrane increased the binding activity of SARS-CoV-2, facilitated membrane fusion
and enabled the successful entry of the virus into the host. Therefore, Kocar et al. [84]
and Wei et al. [86] indicated that total cholesterol, LDL and HDL-C characteristics may aid
in early risk stratification and clinical decisions. However, conflicting results have been
reported for changes in triglyceride levels of severe COVID-19 patients [85]. Stephens
et al. [87] stated that in severe COVID-19 patients, the elevated serum amylase value is
often not attributable to acute pancreatitis or a clinically significant pancreatic injury, but is
more likely to be a nonspecific manifestation of shock/critical illness. Mao et al. [83] stated
that changes in leukocytes, neutrophils, lymphocytes, platelets, hemoglobin levels, MCV
and MCHC are generally associated with lung involvement, oxygen demand and disease
activity. They also noted that high MCV and low MCHC are associated with advanced
anemia and are independent predictors of disease worsening [83].

Wu et al. [88] stated that an increase or decrease in LDH is indicative of radiographic
progression or improvement. They also demonstrated the potential usefulness of serum
LDH as a marker for assessing clinical severity, monitoring treatment response and thus
aiding risk stratification and early intervention in COVID-19 pneumonia. Hu et al. [89]
stated that SARS-CoV-2 infection is associated with low serum uric acid (SUA) levels, and
this feature may be an independent risk factor for the disease. They also noted that male
patients with COVID-19 accompanied by low SUA levels are at higher risk of developing
severe symptoms than those with high SUA levels at admission. Zinellu et al. [90] found
that high CK-MB concentrations were significantly associated with severe morbidity and
mortality in COVID-19 patients. They stated that this biomarker of myocardial damage
may be useful for the classification of patients with severe COVID-19, and that high CK-MB
values may reflect excessive inflammation status. They also stated that the evaluation of CK-
MB in COVID-19 patients provides specific clinical information for early risk stratification,
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independent of myocardial necrosis and cardiac complications. Afra et al. [91] showed the
incidence of abnormal liver tests in severe COVID-19 patients and reported the association
of elevated AST, ALT and total bilirubin levels with liver injury in severe COVID-19
patients [13,91,92]. However, conflicting results have been reported regarding the ALP
levels of mild and severe COVID-19 patients [91]. In addition, Afra et al. [91] showed that
elevated liver enzymes can effectively predict hospital-critical COVID-19 cases.

The accuracy of ML algorithms is difficult to determine when used without any
physician input [93,94]. A major limitation of ML is that it is difficult to explain how these
algorithms arrive at their conclusions [95]. An ML algorithm can be likened to a black box
that takes inputs and produces outputs without any explanation as to how it produces the
outputs [94].

Additionally, if an algorithm misdiagnoses a malignant lesion, the algorithm cannot
explain why it chose a particular diagnosis [94,95]. While the printouts can aid interpreta-
tion, it can be a potential danger and problem to the patient if the model fails to explain
to a patient why he or she has diagnosed a lesion as benign or malignant, or how it has
chosen a particular treatment [94].

Physician interpretation is necessary for choosing a diagnosis or treatment. In addition
to the black box nature of these algorithms, machine learning is also prone to the “garbage
in, garbage out” motto [94]. This maxim indicates that the quality of the dataset input
determines the quality of the output. Therefore, if the data inputs are badly labeled, the
outputs of the algorithm will reflect these inaccuracies [93–95].

In addition, all the devices should be evaluated in prospective clinical trials and made
publicly available in the peer-reviewed literature.

5.2. Analysis of Results from IoT Perspective

The aim of this study is the feasibility analysis of a fast, reliable and cost-effective
digital tool for the diagnosis of COVID-19 based on the RBV values measured at admission.
The proposed solution is based on the concept of ML sensors for diagnosis of the COVID-19
disease (Sensor 1.0 type). The concept makes a step towards “smart sensorics of human”
with promising opportunities for AI applications in healthcare.

In our study, we are not targeting IoT systems for telemedicine, wherein any procedure
is performed by a physician using telecommunication means of transmitting medical data.
Solutions of clinical telemedicine are subject to strict certification. Telemedicine is prescribed
by a doctor and is administered via a medical device (never via a smartphone). Instead, we
focus on promising IoT systems for telehealth/telecare and mobile health (m-Health) [45].
First, data from ML sensors support the prognosis of the disease in offline and online
modes. Second, ML sensors can be used in AAL and other IoT environments to support a
person in his/her everyday life. Importantly, COVID-19 is not the only disease to apply
ML sensors in IoT systems.

AI methods become effective for the prognosis of various diseases. COVID-19 has
opened the new era for AI methods to mitigate future pandemics. The rapidly growing
number of publications confirms the potential of ML sensors for collecting datasets for
further analysis with AI methods. Predictive analytics uses available retrospective data and
various predictive models (including ML-constructed) to aid in answering the question
“What could happen?”. Prognosis from the sensed data is required not only for clinical
medicine (to support clinical medical decisions). Managerial predictive analytics supports
managers in healthcare at various levels to assess possible scenarios for the development of
diseases, the budgets of medical organizations, the need for medicines, etc.

In AAL, ML sensors are useful in personal use as digital assistance (recommendations,
including prognosis). In fact, the five natural human sensors (vision, hearing, touch, smell,
taste) are extended by ML sensors. A person can develop health insight from their own
RBVs in real time or collect the data for retrospective analysis. Humans themselves can
act as complicated sensors [44]. A human traditionally finds a way to enhance her/his
function, e.g., glasses (optical tool) to advance the vision or thermometer (physical tool)
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to regularly sense body temperature. Now the era of digital tools for personal health
assistance is coming.

The implemented prototype of the diagnosis tool demonstrates that the LogNNet
network can be imported to various microcontrollers. Many IoT devices can be made
smarter, opening a way to develop advanced AmI healthcare with essential parts of IoT
and edge intelligence [96]. A LogNNet-equipped ML sensor can be effectively employed in
future IoT applications for healthcare and for other problem domains that require active
digitalization and emerging AmI methods [46].

The LogNNet network can be used to predict a diagnosis based on blood biochemical
parameters. This result is an important step in smart human sensors for IoT application,
as the COVID-19 status and other blood-related health parameters are difficult to analyze
on the IoT edges (in contrast to more widespread parameters, such as temperature or
heartbeat) [97–99]. Our approach is applicable to the development of personalized bionic
systems (smart suit for a person or AmI environment with people), wherein disease status
recognition is a regular digital service for healthcare or well-being applications in everyday
life [45].

Although the small IoT devices cannot provide such high accuracy as resource-
intensive ML algorithms on powerful computer systems, AAL systems are intended for
everyday life settings (e.g., at home, workspace, outdoor). Where strict medical decisions
and critical medical support are not mandatory, the digital services may provide attention
points and optional recommendations for personal use. We believe this type of smart
human sensors will soon diffuse from the restricted medical lab setting toward the wide
market of smart consumer electronics and digital services [100].

6. Limitations of the Study

The data primarily represent a single institution (EBYU-MG) and the Turkish popula-
tion. Secondly, our dataset does not include comorbidities of patients and other diagnostic
information of patient subgroups. In practice, the data in retrospective studies collected in
a certain period cannot meet all data sample requirements. We suggest the findings in this
study be supported by a retrospective cohort study setup.

7. Conclusions and Future Studies

Determining a COVID-19 infected status with diagnostic tests and imaging results
is costly and time-consuming. If this process is prolonged, the patient’s health may be at
greater risk by being exposed to different complications. This study provides a fast, reliable
and cost-effective alternative mobile tool for the diagnosis of COVID-19 based on the RBVs
measured at the time of admission.

In this study, 13 popular classifier machine learning models and the LogNNet neural
network model were run on 51 routine blood values to detect patients infected with
COVID-19. The histogram-based gradient boosting (HGB) model was the most successful
classification model in terms of accuracy and time in detecting the diagnosis of the disease
(accuracy: 100%, time: 6.39 s). In addition, the absence of any normalization method and
additional feature selection procedure for the HGB model contributes to the speed and
efficiency of the model.

The eleven most important biomarkers in the diagnosis of the disease were found
with the HGB classifier: LDL (№ 43), cholesterol (№ 39), HDL-C (№ 36), MCHC (№ 20),
triglyceride (№ 48), amylase (№ 31), UA (№ 51), LDH (№ 42), CK-MB (№ 32), ALP (№ 30)
and MCH (№ 19). Using only these 11 RBVs features, the HGB model accurately detected
all COVID-19 patients (A11 = 100%).

The high accuracy of the single, double and triple combinations of these 11 features
selected by the HGB model in the diagnosis of the disease showed the importance of
these features in the diagnosis of the disease. In addition, the performance of double and
triple combinations of these features in the detection of sick and healthy individuals was
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higher than the individual performances, suggesting that there is a high level of hidden
information between these blood feature combinations and COVID-19.

The HGB model reveals that 11 features are sufficient for the diagnosis of the presence
of COVID-19 using the HGB classifier. These features and their binary combinations are
an important source of variation in the diagnosis of COVID-19. We propose to use these
features and their binary combinations to be run with HGB as important biomarkers in the
diagnosis of the disease.

The study results can be effectively used in IoT medical edge devices with low RAM
resources, ML sensors, portable point-of-care blood testing devices [101], decision support
systems, telecare and m-Health. This opportunity empowers the development of many
innovative applications for predictive analytics in clinical MIS or everyday AAL systems.

The artificial intelligence models for the early prediction of the diagnosis and pro-
gression of COVID-19 and other diseases produce satisfactory results. Future artificial
intelligence studies for the early diagnosis and prognosis of fatal, costly and severe diseases
will ease the burden of healthcare professionals and increase patient comfort. In addition,
the use the physiological, comorbidity and demographic features of the patients together
with the RBVs data may provide interesting insights. Testing the results of this study on
multi-racial, multi-center and larger patient groups may improve the generalizability of
the findings. In this context, this study may pave the way for many exciting subsequent
investigations.
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Appendix A

Algorithm A1. LogNNet neural network executable code on Arduino Nano IoT

1 #include “LogNNet.h” 40
2 41 byte Output_Layer() {
3 float Y[S+1]; 42 float Sout[N+1]; byte digit = 0;
4 float Sh[P+1]; 43 for (int j = 0; j <= N; j++) {
5 float Sh2[M+1]; 44 Sout[j] = 0;
6 45 for (int i = 0; i <= M; i++)
7 int i = 0; 46 Sout[j] = Sout[j] + Sh2[i] *

8 String data; 47
((float)W2[i][j]/scale_factor);

9 48 Sout[j] = Fun_activ(Sout[j]);
10 float Fun_activ(float x) { 49 }
11 return 1 / (1 + exp(-1*x)); 50 for (int j = 0; j <= N; j++) {
12 } 51 if (Sout[j] > Sout[digit])
13 52 digit = j;
14 void Reservoir(float *Y) { 53 }
15 long W = C; 54 return digit;
16 Sh[0] = 1; 55 }
17 for (int j = 1; j <= P; j++) { 56
18 Sh[j] = 0; 57 void setup() {
19 for (int i = 0; i <= S; i++) { 58 Serial.begin(115200);
20 W = (D - K * W) % L; 59 }
21 Sh[j] = Sh[j] + ((float)W/L) * Y[i]; 60
22 } 61 void loop() {
23 Sh[j] = ((Sh[j] - (float)minS[j-1]/ 62 if (Serial.available() > 0) {

24
scale_factor) /

((float)(maxS[j-1]
63 data = Serial.readStringUntil(‘T’);

25 - minS[j-1])/scale_factor)) - 0.5 64

26
-

(float)meanS[j-1]/(scale_factor*10);
65 if (data != “FN”) {

27 } 66 Y[i] = data.toFloat();
28 } 67 i++;
29 68 }
30 void Hidden_Layer() { 69 else {
31 Sh2[0] = 1; 70 i = 0;
32 for (int j = 1; j <= M; j++) { 71 Reservoir(Y);
33 Sh2[j] = 0; 72 Hidden_Layer();
34 for (int i = 0; i <= P; i++) 73 byte Digit = Output_Layer();
35 Sh2[j] = Sh2[j] + Sh[i] * 74 Serial.print(String(Digit));

36
((float)W1[i][j]/scale_factor);

75 }

37 Sh2[j] = Fun_activ(Sh2[j]); 76 }
38 } 77 }
39 } 78
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