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Abstract: The lower limb rehabilitation robot is a typical man-machine coupling system. Aiming at
the problems of insufficient physiological information and unsatisfactory safety performance in the
compliance control strategy for the lower limb rehabilitation robot during passive training, this study
developed a surface electromyography-based gain-tuned compliance control (EGCC) strategy for the
lower limb rehabilitation robot. First, the mapping function relationship between the normalized
surface electromyography (sEMG) signal and the gain parameter was established and an overall
EGCC strategy proposed. Next, the EGCC strategy without sEMG information was simulated and
analyzed. The effects of the impedance control parameters on the position correction amount were
studied, and the change rules of the robot end trajectory, man-machine contact force, and position
correction amount analyzed in different training modes. Then, the sEMG signal acquisition and
feature analysis of target muscle groups under different training modes were carried out. Finally,
based on the lower limb rehabilitation robot control system, the influence of normalized sEMG
threshold on the robot end trajectory and gain parameters under different training modes was
experimentally studied. The simulation and experimental results show that the adoption of the EGCC
strategy can significantly enhance the compliance of the robot end-effector by detecting the sEMG
signal and improve the safety of the robot in different training modes, indicating the EGCC strategy
has good application prospects in the rehabilitation robot field.

Keywords: sEMG; lower limb rehabilitation robot; compliance control; training mode; MOTOmed;
continuous passive motion; straight leg raise; feature analysis

1. Introduction

Lower limb motor dysfunction is a common sequela of stroke patients. The elderly is
a high-risk group for stroke, and as the population ages, the incidence of stroke increases
dramatically [1,2]. The plasticity of the human brain and central nervous system is the basis
of rehabilitation medicine. Through the training exercise of specific tasks and the use of the
motor relearning program of the nervous system, the motor function of the patient’s lower
limbs can be effectively restored [3–5]. Rehabilitation robotics, as an emerging technology
developed in the rehabilitation field, has advantages in clinical and biomechanical mea-
surements compared with conventional therapy [6]. In addition, the rehabilitation robot
is relatively easy to manage and control, which can help patients perform predetermined
training actions accurately and repeatedly and improve the effectiveness of rehabilitation
treatment [7]. In recent years, the design and control strategies of rehabilitation robots have
become research hotspots in the fields of rehabilitation engineering and robotics.

With the development of robotics and rehabilitation theory, various lower limb reha-
bilitation robots have been designed. Lower limb rehabilitation robots are mainly divided
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into exoskeleton type and end-effector type [8]. In the exoskeleton robot system, there is a
one-to-one correspondence between the robot and human joints. The exoskeleton robot
system can be worn on the human body and usually has a compact structure [9]. The lower
limb exoskeleton robot MotionMaker adopts the integrated design of the seat and lower
limb motion mechanism, which can carry out passive, semi-active, and active training
modes [10]. Li et al. designed a lower limb exoskeleton rehabilitation robot which can
assist the patient in carrying out gait training [11]. Feng et al. designed a lower limb reha-
bilitation robot for passive training of stroke patients, and the moving seat can be adjusted
or separated from the robot to meet the rehabilitation demands of patients at different
stages [12]. Akdoğan et al. produced a therapeutic exercise robot Physiotherabot, which
can perform active and passive movements and learn specific exercise movements [13].
In the end-effector robot system, pedals or platforms are used to generate limb motion
from the distal end of the lower limb without requiring alignment between the robot and
human joints. Wang et al. designed a rigid-flexible end-effector lower limb rehabilitation
robot, which consists of a rigid mobile device and a flexible drive system, which can realize
the adduction/abduction and internal/external rotation movement of the lower limb [14].
Bouri et al. developed a parallel robot Lambda that can be used to guide the movement of
the lower limb and carry out rehabilitation training of the hip, knee, and ankle joints [15].
Saglia et al. developed a 3-UPS/U parallel mechanism, which can perform rehabilitation
training of the human ankle joint [16].

According to the active participation degree of patients, rehabilitation training can be
divided into three categories: passive training, semi-active training, and active training [17].
In the passive training process, the rehabilitation robot guides the affected limb to move
along a predetermined trajectory for rehabilitation training [18]. For the passive training
modes of lower limb rehabilitation robots, the typical ones include MOTOmed training
mode, continuous passive motion (CPM) training mode, and straight leg raise (SLR)
training mode [19–22]. In the MOTOmed training mode, the end trajectory of the robot is
a circular trajectory; In the CPM training mode, the end trajectory of the robot is a linear
trajectory; In the SLR training mode, the end trajectory of the robot is an arc trajectory. In
order to improve the safety and comfort of patients during passive rehabilitation training,
numerous studies have been conducted on the compliance control strategy of the lower limb
rehabilitation robot. Wang et al. [23] proposed a fuzzy sliding mode variable admittance
controller based on safety evaluation and supervision for the cable-driven lower limb
rehabilitation robot, which can switch between active training mode and passive training
mode and adjust the parameters of the admittance controller. Li et al. [24] designed a
multi-modal control scheme for exoskeleton rehabilitation robots, including robot-assisted
mode, robot-dominant mode, and safety-stop mode, and verified the effectiveness of the
scheme in upper-limb and lower-limb exoskeleton robot systems. Zhou et al. [25] proposed
a trajectory deformation algorithm, which can realize the desired trajectory planning of
participants based on the interaction force in the process of human-robot interaction and
improve robot compliance and motion smoothness. Chen et al. proposed a reference
trajectory adaptive compliance control algorithm, which combines impedance control and
motion trajectory planning [26]. Huo et al. developed a lower limb exoskeleton impedance
modulation strategy, which can provide proper power and balance assistance during sit-
to-stand movements [27]. Compared with the position control strategy, the compliance
control strategy is beneficial in avoiding excessive force between the human and the robot
and has a wider application in the field of rehabilitation robots [28].

The sEMG-based control strategies of the lower limb rehabilitation robot mainly
include the sEMG-based continuous control strategy and the sEMG-triggered control strat-
egy [29]. Many studies have been carried out on the sEMG-based continuous control
strategy, in which the lower limb motion intention recognition is performed using the
sEMG signal and torque assistance proportional to the sEMG signals is provided to gen-
erate the desired motions. Khoshdel et al. proposed an sEMG-based robust impedance
control strategy for the lower limb rehabilitation robots and the sEMG signals were used
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to estimate the exerted force [30]. Yao et al. developed an adaptive admittance control
scheme consisting of an admittance filter, an inner position controller, and an sEMG-driven
musculoskeletal model [31]. Xie et al. proposed an adaptive trajectory planning method
based on sEMG signals and interactive forces for lower limb rehabilitation robots and
planned three periodic trajectories using sEMG signals [32]. Different from the sEMG-based
continuous control, the robot assistance is triggered when the sEMG signals reach a certain
threshold in the sEMG-triggered control strategy. Meng et al. proposed an active interactive
controller based on motion recognition and adaptive impedance control. Using the root mean
square (RMS) feature of the sEMG signal integrated with the support vector machine (SVM)
classifier, it can predict the motion intention of the lower limbs and trigger robot assistance [33].
Lin et al. designed an sEMG-triggered controller for the artificial muscle-driven lower limb
rehabilitation robot, and the methods of discrete wavelet transformation and the support
vector machine are used to predict the lower limb movement intention [34]. Compared with
force and position signals, the sEMG signals can reflect the activity level of specific muscle
groups, which can monitor and control the movement of limbs in more detail [35].

However, the above-mentioned compliance control strategies for lower limb rehabil-
itation robots using sEMG signals are mainly aimed at active training scenarios. Existing
passive training control strategies mainly rely on force and position information and lack the
intelligent sEMG-based compliance adjustment function, resulting in an unsatisfactory safety
performance of lower limb rehabilitation robots [36]. Moreover, in the passive training process
of lower limbs, the essential purpose of adopting different training modes is to perform
specific training effects on different muscle groups. The fusion of the force, position and sEMG
signals in the compliance control strategy, monitoring the muscle activation degree in real
time, and controlling the motion of the robot, encompass a significant problem to be solved in
the control strategy development of the lower limb rehabilitation robot [36].

Aiming at the problems above, based on the hybrid end-effector lower limb reha-
bilitation robot (HE-LRR) developed in our research group [37], this paper proposes an
sEMG-based gain-tuned compliance control (EGCC) strategy. In the passive training pro-
cess, the lower limbs follow the robot end effector to move in three-dimensional space. The
human body keeps the lower limbs relaxed and does not actively contract muscles. The
sEMG signal collected under this condition is intended to monitor the muscle condition
and protect the patient by enhancing robot compliance. The rationality of the control
strategy is verified through simulation and experimental research under three training
modes: MOTOmed, CPM, and SLR. The rest of this paper is organized as follows. Section 2
contains the introduction of the configuration design of the HE-LRR. The EGCC strategy
is proposed in Section 3. The simulation research of the EGCC strategy without sEMG
information is performed in Section 4. In Section 5, the sEMG acquisition and feature
analysis are carried out, and the EGCC strategy comprehensive experiment is conducted.
Section 6 presents the conclusions and prospects for the EGCC strategy.

2. Robot Configuration

There are mainly three types of lower limb movement for the human body, namely
moving in the sagittal plane, stepping in the coronal plane, and turning around the longi-
tudinal axis of the human body [38]. HE-LRR is designed in accordance with ergonomic
considerations, which includes a base frame, a hybrid (2UPS+U)&(R+RPR) mechanism,
and a pedal unit. Here U, P, R, and S represent a universal pair, a prismatic pair, a revolute
pair, and a spherical pair, respectively. Figure 1 shows the virtual prototype of the HE-
LRR and the pedal unit. The HE-LRR allows people to sit or lie on the opposite side
of the machine while their feet are connected to the robot end effector, and they receive
rehabilitation training.
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According to the simplified rotation characteristics of the hip joint where two rotation
axes are orthogonal, the parallel part of the lower limb rehabilitation robot is designed as a
(2-UPS+U) mechanism, including two UPS branches and one U branch chain. Using linear
actuators, the parallel part is driven to rotate around the cross axis, thereby assisting the
lower limbs in achieving rehabilitation training in the sagittal and coronal planes. In order
to realize the rotary motion of the knee joint, the RPR branch chain is introduced into the
parallel part, and the linear actuator is used as the driving unit. Rehabilitation training
requirements for patients with multiple degrees of freedom can be met by the coordinated
movements of (2-UPS+U)&(R+RPR) mechanisms. The (R+RPR) mechanism is superior to
rotary motor driving, and it can reduce the mass and inertia of the kinematic joint of the
robot and increase its bearing capacity.

The pedal unit is composed of a foot pedal, a pedal shaft, connecting plates, a tension
compression sensor, and an angle sensor. The foot pedal is utilized to guide the distal end
of the lower limb to move while the pedal shaft is used to connect the pedal unit with
the hybrid mechanism. The tension compression sensor is embedded in the pedal unit to
record the man-machine contact force, and the angle force is installed on the connecting
plate to acquire the angle information of the pedal unit.

3. EGCC Strategy

There are two typical impedance control strategies applied in rehabilitation robots: the
force-based impedance control strategy and the position-based impedance control strategy.
Although the force-based impedance control strategy can realize force tracking, the con-
troller relies on the dynamic characteristics between the robot and the environment, making
it difficult to implement control in practice. Compared with the force-based impedance
control, the position-based impedance control has more stable performance [39,40]. In this
section, the passive training of the lower limb rehabilitation robot adopts a position-based
impedance control strategy. The impedance control model is as follows:

Md∆
..
X + Bd∆

.
X + Kd∆X = F (1)

where, Md, Bd, Kd are the target inertia matrix, damping matrix, and stiffness matrix of the
impedance model; F is the man-machine contact force acting on the robot end effector; ∆X
is the position correction amount of the robot end effector.

Using Laplace transformation, the position correction amount in the Laplace domain
can be derived as follows:

∆X(s) =
F(s)

Mds2 + Bds + Kd
(2)

where, s is the complex number frequency parameter.
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The block diagram of the position-based impedance control is shown in Figure 2. The
man-machine contact force F passes through the impedance control model to generate the
position correction amount ∆X, which is superimposed on the reference position Xr to
generate the desired position Xd, which is sent to the position controller after the inverse
kinematics solution, so that the actual position tracks the desired position.
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Figure 2. Position-based impedance control strategy diagram.

The above position-based impedance control strategy is suitable for not only control-
ling the robot to move along a preset trajectory, but also maintaining a certain flexibility
during the movement. The method is to convert the end contact force into the position cor-
rection amount through the impedance control model. In order to improve the compliance
and safety of the control strategy, the sEMG information needs to be integrated into the
above position-based impedance control strategy. The modified EGCC strategy diagram is
shown in Figure 3.
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From the original sEMG signal of the patient’s target muscle group to the gain parame-
ter, it needs to go through two processes: data preprocessing and function mapping. In the
process of data preprocessing, the high-frequency and low-frequency signals are filtered
out of the sEMG signal through the band-pass filter, and then the time-domain features
with the intuitive physical significance are obtained through feature extraction. The root
mean square (RMS) can reflect the average power of the sEMG signal, so the RMS feature
value is used to evaluate the characteristics of the sEMG signal, and the calculation formula
is as follows:

RMSj =

√√√√ 1
W

W

∑
i=1

x2
i (3)
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where j represents the j-th segment in the original sEMG data sequence, xi is the i-th original
data in the segment data, and W is the sliding window width.

In order to improve the generalization ability of the model, the sEMG signals after feature
extraction need to be normalized. The normalization calculation formula is as follows:

RMSn =
RMS − RMSmin

RMSmax − RMSmin
(4)

where RMS represents the sEMG signal after feature extraction; RMSmin and RMSmax are
the minimum and maximum values of RMS, respectively; RMSn is the normalized sEMG
signal. RMSmin and RMSmax are constants in different training modes and can be obtained
through sEMG signal acquisition and feature analysis (see Section 5.2). Here the gain
parameter G is set to be 1, that is, the sEMG signal is not included in the control strategy
during the sEMG acquisition experiment.

After the normalization processing, the normalized sEMG signals RMSn of different
muscle groups can be obtained according to Equation (4) respectively. In the “Function
mapping” block, the maximum value of the muscle groups’ normalized sEMG signals is
compared with the threshold value of the normalized sEMG signal RMSt, and the gain
parameter G can be calculated according to the following equation:

G =

{
1 RMSn ≤ RMSt

a(RMSn − RMSt)
2 + 1 RMSn > RMSt

(5)

When the normalized sEMG signal does not exceed the threshold value, the gain
parameter is equal to 1. Otherwise, there is a quadratic functional relationship between the
gain parameter and the normalized sEMG signal. Thus, in the passive training process of
the lower limb rehabilitation robot, the position correction amount is jointly affected by
the inertia parameter, damping parameter, stiffness parameter, and gain parameter. When
the normalized sEMG threshold is constant, the maximum value of the gain parameter G
is determined by the parameter a. If the parameter a is too large, the position correction
amount will be too large, it will become more difficult for the robot end effector to move
near the set trajectory, and the patient will not be able to receive standardized rehabilitation
training. If the parameter a is too small, the position correction amount is too small, and
the robot end effector will have no apparent sEMG-based compliance enhancement effect
in the EGCC strategy. Therefore, the parameter a should be kept within a moderate range.

4. Simulation and Results
4.1. Impedance Control Parameter Influence Analysis

In the passive training process, it is important to select appropriate inertia parameters,
damping parameters, and stiffness parameters when applying the impedance control
model. Therefore, it is necessary to analyze the influence of impedance control parameters
on the control performance. The transfer function of the impedance control model is:

G(s) =
∆X(s)
F(s)

=
1

Mds2 + Bds + Kd
(6)

For the convenience of analysis, considering the impedance control model in a single
direction, Equation (6) can be simplified to Equation (7):

G(s) =
1

ms2 + bs + k
(7)

where, m, b, and k are the inertia parameter, damping parameter, and stiffness parameter,
respectively. Equation (7) is transformed into the standard form:

G(s) =
1
k

ω2
n

s2 + 2ξωns + ω2
n

(8)
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where, ωn is the undamped natural frequency; ξ is the damping ratio.
The response curves of position correction amount under different inertia parameters

are shown in Figure 4. The simulation parameters are set to {F = 1 N, b = 0.10 N·s/mm,
k = 0.25 N/mm}. When m = 0.001 N·s2/mm, ξ > 1, the system is in the overdamped state;
when m = 0.01 N·s2/mm, ξ = 1, the system is in the critically damped state; when m = 0.02,
0.03 N·s2/mm, ξ < 1, the system is in the underdamped state. The response curves of the
position correction amount under different damping parameters are shown in Figure 5.
The simulation parameters are set to {F = 1 N, m = 0.01 N·s2/mm, k = 0.25 N/mm}. When
b = 0.20 N·s/mm, ξ > 1, the system is in the overdamped state; when b = 0.10 N·s/mm,
ξ = 1, the system is in the critically damped state; when b = 0.03, 0.05 N·s/mm, ξ < 1, the
system is in the underdamped state. When the system is in the overdamped or critically
damped state, the response curve has no overshoot and oscillation, and the rise time and
settling time of the critically damped system are shorter than those of the overdamped
system. When the system is in the underdamped state, as the damping ratio decreases, the
overshoot increases and the settling time becomes longer.
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The response curves of the position correction amount under different stiffness parame-
ters are shown in Figure 6. The simulation parameters are set to {F = 1 N, m = 0.005 N·s2/mm,
b = 0.06 N·s/mm}. When k = 0.12 N/mm, ξ > 1, the system is in the overdamped state;
when k = 0.18 N/mm, ξ = 1, the system is in the critically damped state; when k = 0.24,
0.30 N/mm, ξ < 1, the system is in the underdamped state. With the change of the stiffness



Sensors 2022, 22, 7890 8 of 19

parameter, it is found that the steady-state value of the response curve changes significantly.
As the stiffness parameter increases, the steady-state value decreases, that is, the position
correction amount becomes smaller, thus the robot’s compliance worsens.
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Through the above analysis, applying the impedance control model to the passive
training of the rehabilitation robot is to improve the compliance of the rehabilitation robot
and achieve the purpose of protecting the patient. The response curve needs to show no
overshoot and no oscillation. In addition, the settling time should be shortened as much as
possible. Therefore, the impedance model parameters should be set to the critically damped
state. Since the steady-state value of the position correction amount is only affected by the
stiffness parameter, the stiffness parameter can be reduced to increase the robot’s compliance.

4.2. Impedance Control Strategy Simulation

When simulating the passive training impedance control strategy, it is necessary to
add the impedance control model on the basis of the previous position control simulation.
In the simulation environment, the man-machine contact force is set to be:{

Fy = sin t + sin 2t + sin 4t
Fz = cos t + cos 2t + cos 4t

(9)

where, Fy and Fz are the components of the man-machine contact force in the Y-direction
and Z-direction, respectively.

In the MOTOmed training mode, the reference trajectory of the robot end effector is
a circular trajectory. The reference trajectory parameters are set to {the center coordinates
(x0, y0, z0) = (0, −670, 470) and the radius r = 90.00 mm}. The impedance model parameters
are selected from a set of parameters in the critically damped state: {m = 0.01 N·s2/mm,
b = 0.10 N·s/mm, k = 0.25 N/mm}. The comparison between the reference trajectory and
the simulated trajectory of MOTOmed training is shown in Figure 7a. It can be seen that
under the action of the man-machine contact forces Fy and Fz, the simulated trajectory has
a certain degree of offset compared with the reference trajectory, the coordinate where the
maximum position offset occurs is (0, −689.77, 567.59) and the maximum offset is 9.73 mm
(Y-direction: −0.32 mm, Z-direction: 9.72 mm). In the CPM training mode, the reference
trajectory of the robot end effector is a beeline trajectory, and the coordinates of the starting
point and the end point are set to be (0, −575, 300) and (0, −775, 300), respectively. The
impedance control parameters and the contact force function are the same as those of the
circular trajectory. The comparison between the CPM training reference trajectory and the
simulated trajectory is shown in Figure 7b. Compared with the reference trajectory, the
coordinate of the maximum position offset on the simulated trajectory is (0, −602.70, 309.72)
and the maximum offset is 9.73 mm (Y-direction: −0.33 mm, Z-direction: 9.72 mm). In the
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SLR training mode, the reference trajectory of the robot is an arc trajectory, the coordinate
of the starting point of the reference trajectory is (x0, y0, z0) = (0, −822.5, 613.5), and the
coordinate of the end point is (x0, y0, z0) = (0, −639.8, 326.3), the radius r = 892.00 mm. The
comparison between the SLR training reference trajectory and the simulated trajectory is
shown in Figure 7c. Compared with the reference trajectory, the coordinate of the maximum
position offset of the simulated trajectory is (0, −774.39, 567.70), and the maximum offset
is 9.73 mm (Y-direction: −0.32 mm, Z-direction: 9.72 mm). From the above analysis, it
is found that in the three training modes, the maximum offset values of the simulated
trajectories are the same, which is related to the same settings of man-machine contact force
and impedance control parameters in the simulation.
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The contact force and position correction amount in Y-direction are shown in Figure 8a.
It can be seen that within the simulation time of 0–10 s, the Y-direction contact force
fluctuates within a certain range, and at the time of 6.80 s, the contact force reaches the
maximum value of 2.23 N. The fluctuation trend of the position correction amount in the
Y-direction is consistent with that of the contact force, but there is a certain delay between
the position correction amount and the contact force. At the moment of 7.20 s, the position
correction amount reaches the maximum value of 6.74 mm. The contact force and position
correction amount in the Z-direction are shown in Figure 8b. Within the simulation time of
0–10 s, the position correction amount lags behind the contact force. At the time of 6.28 s,
the contact force in the Z-direction reaches the maximum value of 3.00 N. At the moment of
6.63 s, the Z-direction position correction amount achieves the maximum value of 9.72 mm.
By comprehensive analysis of the above results, the time at which the maximum position
offset occurs is 6.63 s in the three training modes. The maximum offsets in the three training
modes are the same, indicating that the position offset is determined by the man-machine contact
force and not affected by the training mode. Through the above simulations of MOTOmed
training, CPM training, and SLR training, it can be shown that under the action of man-machine
contact force, the rehabilitation robot shows a certain compliance by generating the position
correction amount to adapt to changes of the man-machine contact force.
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5. Experimental Verification
5.1. Robot Prototype and Control System

The control system of the lower limb rehabilitation robot consists of the controlling
unit, the driving unit, the actuating unit, the sensing unit, the sEMG acquisition unit, and
the power unit, as shown in Figure 9.
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Figure 9. Frame diagram of lower limb rehabilitation robot control system.

The biosignal acquisition tool (PLUX wireless biosignals S.A., Biosignals Researcher,
Lisbon, Portugal) collects sEMG signals in real-time through electromyography electrodes
pasted on the target muscle groups of the lower limbs and transmits the signals to the
upper computer (DELL Technologies Co., Ltd., Vostro 5370, Round Rock, TX, USA) through
Bluetooth. Filter processing and feature value calculation are carried out within the set
time period, and the feature value is transmitted to the controller through the Ethernet. The
industrial controller (Advantech Technology Co., Ltd., IPC610, Suzhou, China) is used as
the controller. In addition to receiving instructions from the upper computer in real-time, it
can also receive signals from the tension compression sensor (HY chuangan Technologies
Co., Ltd., HYLY-019, Bengbu, China) and the angle sensor (BEWIS Sensing Technologies
Co., Ltd., BWK220, Wuxi, China). At the same time, the controller sends instructions to the
DC motor driver (Magicon Intelligent Technologies Co., Ltd., MC-FBLD-6600, Shenzhen,
China), and drives the linear actuators (Suzhou Yuancheng mingchuang Electromechanical
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Equipment Co., Ltd, LEC606, Suzhou, China) to perform telescopic movement. The linear
actuator has a built-in incremental encoder, which can record the motion position of the
DC motor to facilitate the position-based closed-loop control of the linear actuator. Angle
sensors, tension compression sensors, and DC motor drivers require 12 V or 24 V DC
voltage, which is provided by the power unit.

The prototype of HE-LRR was manufactured and integrated with the control system,
which is shown in Figure 10. Universal casters with brakes are installed at the bottom
of the base frame to facilitate the movement of the robot and improve the stability during
rehabilitation training. The patient’s feet are placed on the foot pedal to carry out the reha-
bilitation training. During the implementation of this study, five healthy participants (age:
24–31 years old; height: 1670–1870 mm; thigh length: 405–455 mm; calf length: 385–420 mm)
were recruited to take part in the experiment following the procedures for healthy participants
as approved by the China Rehabilitation Research Center (CRRC-IEC-RF-SC-005-01), and
the basic information of the participants is listed in Table 1. There were no known muscular
or neurological disorders among the healthy participants. All participants completed the
experimental protocol safely and reported no physical discomfort.
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Table 1. Basic information of the participants in the experiments.

Number Age (year) Height (mm) Thigh Length (mm) Calf Length (mm)

1 31 1790 430 405
2 28 1720 430 400
3 24 1870 455 420
4 30 1670 405 385
5 28 1690 415 400

The experimental procedure is shown in Figure 11. In the subsection of Signal Ac-
quisition and Feature Analysis, the experimental processes include signal acquisition
preparation, signal acquisition, signal preprocessing. and signal characteristic analysis. In
the subsection of EGCC Strategy Comprehensive Experiment, the research is carried out in
the order of the determination of model parameters, experimental verification, comparative
analysis of experimental results. and experimental conclusion.
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Figure 11. Flowchart of the experimental procedure.

5.2. Signal Acquisition and Feature Analysis

Before the sEMG signal acquisition experiment, the biceps femoris (BF), rectus femoris
(RF), tibialis anterior (TA), and peroneus longus (PL) were selected as the target muscle
groups of the lower limbs, and the surface electrodes were pasted on the corresponding skin
positions of the muscle groups. The positions of the four target muscle groups of the lower
limbs and the sensor sticking positions are shown in Figure 12. In the sEMG signal acquisition
process, the subjects were given instructions to keep their lower limbs relaxed and not to
contract their muscles actively. Their feet followed the robot end effector to move in space.
Each subject participated in 12 groups of experiments for each training mode (MOTOmed,
CPM or SLR). Impedance parameter settings in the 12 groups of experiments are shown in
Table 2. In each group of experiments, the subjects performed 10 cycles of training.

The sampling frequency of the sEMG acquisition unit is 1000 Hz, and the sampling
period is 1 ms. The collected original sEMG signals are in the range of 0–10 µV. After
passing through the band-pass filter with a passband of 10–500 Hz, the feature value is
extracted from the filtered sEMG signal and the RMS feature value is used for the time-
domain quantitative analysis of the sEMG signal. Figure 13 shows the sEMG signals before
and after RMS feature extraction. It can be seen that the signal characteristic of violent
fluctuations is eliminated after RMS feature extraction. At the same time, the sEMG signal
after the RMS feature extraction can well reflect the change trend of the original signal
(before RMS feature extraction) and shows good regularity and stability. The maximum
RMS values of the sEMG signal of the subjects in different training modes are extracted
and statistical analysis is carried out to obtain the average value and standard deviation.
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Table 2. Impedance parameter setting in the 12 groups of experiments.

Group Number Inertia Parameter (N·s2/mm) Damping Parameter (N·s/mm) Stiffness Parameter (N/mm)

1 0.001 0.10 0.25
2 0.01 0.10 0.25
3 0.02 0.10 0.25
4 0.03 0.10 0.25
5 0.01 0.03 0.25
6 0.01 0.05 0.25
7 0.01 0.10 0.25
8 0.01 0.20 0.25
9 0.005 0.06 0.12

10 0.005 0.06 0.18
11 0.005 0.06 0.24
12 0.005 0.06 0.30
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Figure 14 displays the maximum RMS values of the sEMG signal in different training
modes. In the MOTOmed training mode, under the condition of different impedance
control parameters, the maximum RMS values of the four muscle groups are shown in
Figure 14a. It can be seen that when the damping parameter and stiffness parameter are
fixed values (b = 0.10 N·s/mm, k = 0.25 N/mm), the RMS values of the four muscles are
at a higher level under the underdamped state (m = 0.02, 0.03 N·s2/mm) and the RMS
values of the four muscles are at a lower level when under the overdamped or critically
damped state (m = 0.001, 0.01 N·s2/mm). Similarly, when the inertia parameter and stiffness
parameter are fixed values (m = 0.01 N·s2/mm, k = 0.25 N/mm), the four muscles obtain
relatively high RMS values of the sEMG signals in the underdamped state. When the inertia
parameter and damping parameter are fixed values (m = 0.005 N·s2/mm, b = 0.06 N·s/mm),
the maximum RMS values of the muscle groups except for the PL muscle increase with the
increase of the stiffness parameter. This is because when the stiffness parameter increases,
the offset degree of the robot in response to the action of the man-machine contact force
decreases, and the compliance of the HE-LRR robot is reduced, resulting in the situation
where the muscle activation level cannot be released and maintained at a high level.

In the CPM training mode, under different impedance control parameters, the max-
imum RMS values of the four muscle groups are shown in Figure 14b. It can be seen
that different muscles can obtain higher RMS values in the underdamped state, which is
similar to the MOTOmed training mode. The difference is that the maximum RMS value is
8.26 ± 0.25 µV (TA muscle) in the CPM training mode, while the maximum RMS value is
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9.24 ± 0.23 µV (BF muscle) in the MOTOmed training mode. In the SLR training mode, un-
der different impedance control parameters, the maximum RMS values of the four muscles
are shown in Figure 14c. It can be seen that, when m = 0.005 N·s2/mm, b = 0.06 N·s/mm,
k = 0.30 N/mm, the maximum RMS value of the sEMG signal is 8.30 ± 0.24 µV (BF muscle),
and when m = 0.005 N·s2/mm, b = 0.06 N·s/mm, k = 0.24 N/mm, the maximum RMS value
is 7.89 ± 0.28 µV (RF muscle).
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Comprehensive analysis, when the participants participate in the three training modes
in a relaxed state, the RMS range of sEMG for target muscle groups is 0–9.24 µV in MO-
TOmed training, the RMS range of sEMG is 0–8.26 µV in CPM training, and the RMS range
of sEMG is 0–8.30 µV in the SLR training (since the minimum values of RMS of different
subjects were close to zero, here the lower bound value of the RMS range is determined
to be zero). In the MOTOmed training mode, RMSmin and RMSmax are determined as
0 µV and 9.24 µV; in the CPM training mode, RMSmin and RMSmax are determined as 0 µV
and 8.26 µV; in the SLR training mode, RMSmin and RMSmax are determined as 0 µV and
8.30 µV. The feature analysis results show that there exists a difference in the RMS range
under different training modes, which proves that adopting different training modes can
carry out targeted rehabilitation training for different muscle groups, so as to achieve a
better effect of lower limb rehabilitation training. In particular, after RMS feature extraction,
the regularity and stability of the sEMG signals are further improved, which can meet the
needs of the EGCC strategy. Moreover, taking the maximum RMS values in this subsection
as the reference values for normalization processing can improve the generalization ability
of the EGCC strategy.

5.3. EGCC Strategy Comprehensive Experiment

In order to verify the control effect of EGCC strategy, validation experiments were
carried out under different training modes. The participants kept their lower limbs in a
relaxed state during the training process. After normalization processing, the normalized
sEMG threshold was set at 0.50, 0.75, and 1.00, respectively. The inertia parameter m, damp-
ing parameter b, and stiffness parameter k in the EGCC strategy were set at 0.01 N·s2/mm,
0.10 N·s/mm, and 0.25 N/mm, respectively. For the convenience of comparison, the
coefficient a was set to be 5 in the following EGCC strategy comprehensive experiment.
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The experimental results of the actual end trajectory and gain parameter of the lower
limb rehabilitation robot under different training modes are shown in Figure 15. It can be
seen that in the MOTOmed training mode, the actual trajectories in the three groups of
experiments deviate to a certain extent compared with the reference trajectory (Figure 15a).
When the normalized sEMG threshold is 0.50, 0.75, and 1.00, the maximum values of
the position correction amount are 17.22 mm, 12.03 mm, and 8.33 mm, respectively. As
can be seen from Figure 15b, when the normalized sEMG thresholds are 0.50 and 0.75,
the gain parameter fluctuates locally. When the normalized sEMG threshold is 0.50, the
maximum value of the gain parameter is 2.09. When the normalized sEMG threshold is
0.75, the maximum value of the gain parameter is 1.24, which shows that the decrease of
the normalized sEMG threshold is beneficial in improving the compliance of HE-LRR.

In the CPM training mode, when the normalized sEMG thresholds are 0.50, 0.75, and
1.00, the maximum values of the position correction amount are 21.75 mm, 13.71 mm, and
7.69 mm, respectively, while the maximum values of the gain parameter are 2.09, 1.24, and
1.00, respectively. In the SLR training mode, when the normalized sEMG thresholds are
0.50, 0.75, and 1.00, the maximum values of the position correction amount are 16.98 mm,
11.74 mm, and 5.92 mm, and the maximum values of the gain parameter are 2.08, 1.27, and
1.00, respectively. Comparing the results in the three training modes, although the max-
imum values of the position correction amount are different, the gain parameters are
relatively close to each other. This is because when the normalized sEMG thresholds are
0.50, 0.75, and 1.00, the gain parameters have a maximum value of 2.25, 1.3125, and 1.00,
respectively, which enables the position correction amount of the lower limb rehabilitation
robot to be maintained within a certain range to prevent secondary damage caused by
excessive offset.

In addition, it can be seen from Figure 15b,d,f that the gain parameter is larger than
1.00 in a relatively short time. Since there is a clear functional relationship between the
gain parameter and normalized sEMG threshold, it shows that the normalized sEMG can
recover below the threshold in a short time. This is due to the fact that as the gain parameter
increases, the position offset occurring in the direction of the man-machine contact force
increases and the compliance of the lower limb rehabilitation robot is enhanced, which is
conducive to the recovery of muscle activation. When the normalized sEMG threshold is set
as 1.00, the EGCC strategy can be used to identify abnormal sEMG signals and increase the
compliance of the lower limb rehabilitation robot to protect the participant. In conclusion,
the EGCC strategy can play a significant role in regulating the compliance of the lower
limb rehabilitation robot and increasing the safety of the participant.
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(f) gain parameters in the SLR training mode.

6. Conclusions and Future Work

Aiming at the problems of insufficient physiological information and unsatisfactory
safety performance in the existing compliance control strategies for the lower limb reha-
bilitation robot during passive training, this paper developed an sEMG-based gain-tuned
compliance control strategy and carried out simulation and experimental research based
on this control strategy. The main conclusions are as follows:

(1) The EGCC strategy without sEMG information was simulated and analyzed. The influ-
ence of impedance control parameters on the position correction amount of the robot end
effector was studied through simulation, and the change rules of the robot end trajectory,
man-machine contact force and position correction amount analyzed, providing a basis
for establishing a gain-tuned control strategy fusing the sEMG information.

(2) The experimental acquisition and feature analysis of sEMG signals were carried out
to determine the influence of impedance control parameters on the RMS values of
sEMG under different training modes and the normal range of RMS values. The
preprocessed sEMG has good regularity and stability, which can provide a reference
for the normalization processing of sEMG signals in the EGCC strategy.

(3) Based on the lower limb rehabilitation robot control system, the control effect of EGCC
strategy was studied in different training modes. The influences of the normalized
EMG threshold on the robot’s end trajectory and the gain parameter were analyzed.
The results prove that EGCC strategy can play a significant role in improving the
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compliance and safety of the lower limb rehabilitation robot, which validates the
rationality of the EGCC strategy.

Although the control strategy in this paper was verified in the end-effector robot
system, the basic methodology can also be applied in the exoskeleton lower limb robot
system. There are still some shortcomings in the current research work, for example, the
simulation and experimental research of the EGCC strategy were mainly carried out in
three training modes: MOTOmed, CPM, and SLR, and the normalized sEMG threshold
was required to be set manually. Future research work will be committed to solving
the problems of the EGCC strategy validation in various training modes as well as the
autonomous learning and optimization of the EGCC strategy model.
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EGCC Electromyography-based gain-tuned compliance control
sEMG Surface electromyography
CPM Continuous passive motion
SLR Straight leg raise
SVM Support vector machine
HE-LRR Hybrid end-effector lower limb rehabilitation robot
BF Biceps femoris
RF Rectus femoris
TA Tibialis anterior
PL Peroneus longus
RMS Root mean square
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