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Abstract: The existing variants of the rapidly exploring random tree (RRT) cannot be effectively
applied in local path planning of the autonomous vehicle and solve the coherence problem of paths
between the front and back frames. Thus, an improved heuristic Bi-RRT algorithm is proposed, which
is suitable for obstacle avoidance of the vehicle in an unknown dynamic environment. The vehicle
constraint considering the driver’s driving habit and the obstacle-free direct connection mode of two
random trees are introduced. Multi-sampling biased towards the target state reduces invalid searches,
and parent node selection with the comprehensive measurement index accelerates the algorithm’s
execution while making the initial path gentle. The adaptive greedy step size, introducing the target
direction, expands the node more effectively. Moreover, path reorganization minimizes redundant
path points and makes the path’s curvature continuous, and path coherence makes paths between
the frames connect smoothly. Simulation analysis clarifies the efficient performance of the proposed
algorithm, which can generate the smoothest path within the shortest time compared with the other
four algorithms. Furthermore, the experiments on dynamic environments further show that the
proposed algorithm can generate a differentiable coherence path, ensuring the ride comfort and
stability of the vehicle.

Keywords: autonomous vehicle; local path planning; Bi-RRT; path reorganization; path coherence

1. Introduction

The intelligent transportation system is a real-time, accurate, efficient, and comprehen-
sive transportation management system that plays a role in various directions [1]. It can
effectively improve road capacity, reduce traffic accidents, improve transportation efficiency,
and alleviate traffic congestion [2,3]. Meanwhile, it can also reduce energy consumption and
improve environmental pollution [4,5]. Therefore, it has become the future development
direction of the transportation system and has attracted more and more attention from all
countries. As a component, the autonomous vehicle plays an essential role in the intelligent
transportation system. It consists of an environmental perception layer, a path planning
layer, and a path tracking control layer, and the study of path planning has always been a
core problem. Commonly, path planning refers to efficiently finding a collision-free and
feasible path from a starting point to a target point in a workspace [6–8]. In practical usage,
the quality of the planned path will directly affect the vehicle’s driving performance, so
how to plan a passable path that can be tracked is very important for autonomous vehicles.

Scholars have carried out much research on path planning, and new path-planning
algorithms are constantly emerging and developing. In the previous studies, five common
categories of path planning algorithms can be found: geometric algorithms [9,10], graph
search algorithms [11,12], intelligent bionic algorithms [13,14], the artificial potential field
algorithm [15], and sampling-based search algorithms. Sampling-based search algorithms,
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including the rapidly exploring random tree (RRT) and the probability roadmap, have
effectively solved many challenging planning problems, especially in complex environ-
ments [16,17]. In path planning, the basic RRT algorithm is widely used for actuators with
nonholonomic constraints because of the advantages, including probability completeness,
low computational cost, and no need to model search space [18–20]. However, the basic
RRT only focuses on finding a path, with less regard to the convergence speed, the search
efficiency, and the path optimality [21–23]. To overcome the basic RRT’s shortcomings,
some scholars made many improvements. The biased RRT uses target-biased search to
form an extended mode of nonrandom sampling, thus improving planning efficiency [24].
The bidirectional RRT (Bi-RRT) can simultaneously generate two trees from the starting
point and the target point to explore the search space, improving the algorithm’s search
efficiency [25]. The RRT-connect, a Bi-RRT version fusing a greedy function, generates two
trees from the starting point and the target point, respectively, which reduces the search
space and accelerates the convergence speed of the algorithm [26]. The RRT* uses new
steps, including reselecting the parent node and rewiring the neighboring nodes of the
newly inserted node to change search mode, thus generating a path with the optimal or
approximate optimal length [27]. These algorithms improve the performance in planning
speed and path length, respectively. However, they do not take the steering constraints of
the wheels into account, resulting in them not being applied to the path planning of the
autonomous vehicle directly.

When local practical environments are partially known or dynamic, supposing that
some unknown or dynamic obstacles occupy the pre-generated global path at a certain
moment, the autonomous vehicle will collide with the obstacles while tracking the path.
Therefore, to avoid dynamic obstacles, the autonomous vehicle needs to regenerate a
feasible path in real-time according to the environmental information obtained from its
perception module. Park et al. constructed an algorithm combining the A* method and the
artificial potential field method to solve online local path planning problems in the campus
environment, guaranteeing real-time performance and the shortest path generation [28].
Chen et al. use a two-layered path planning model structure consisting of the modified
Bi-RRT based on the steering constraint and a vector field histogram-guided polynomial
planning method to plan a safe and smooth path meeting the real-time requirement [29].
Ge et al. utilized the resultant force of the potential field, the separating axis theorem, and
the cubic B-spline to improve the Bi-RRT* and take the vehicle constraints into account,
resulting in obtaining the smoothest path by taking the shortest time in practice the compli-
cated environment [30]. Qi et al. utilized a modified RRT* to obtain an initial path, regard
the state tree structure as prior knowledge, and design an approach to choose the best
node among several candidates to regenerate the path quickly, resulting in planning a path
avoiding dynamic obstacles [31]. Zou et al. proposed a path-planning algorithm based on
RRT and reinforcement learning optimization, which can generate a smooth and steady
path in complex and unknown environments without collision with obstacles [32]. Li et al.
presented a real-time RRT-based path planning strategy consisting of a pre-processing RRT
path planner and a real-time planner, which can modify the path rather than regenerate
a path to avoid the unknown moving obstacle [33]. Peng et al. introduced a new way to
choose candidate nodes, incremental step size, and the rapidly exploring random vines
with a trajectory parameter space to form a kinematically constrained RRT-based path plan-
ning algorithm, which can find collision-free and kinematically feasible paths in various
environments, such as dense environments and environments with narrow passages [34].
Wen et al. employed environmental knowledge to guide the planning procedure of the
optimal RRT* method to propose a heuristic dual sampling domain reduction-based opti-
mal RRT scheme including a layered online path planning framework in accordance with
the model predictive control method, which outperforms traditional reduction schemes
in terms of improving the execution efficiency of RRT* and is more reliable [35]. Niu et al.
proposed a global dynamic path planning method based on an improved A* algorithm
and combine it with the dynamic window method to improve the real-time performance
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of the dynamic obstacle avoidance of the intelligent vehicle [36]. Wu et al. utilized the
genetic algorithm to optimize the path length and turning angle to obtain a short and
smooth path [37]. The above path planning algorithms have improved the length and
smoothness of the path and can be applied in a dynamic environment. However, they
seldomly consider the curvature consistency of paths in multiple frames which refers to
the fact that there is no sudden change between the path planned in the current frame and
the path planned in the previous frame.

Furthermore, path optimization can effectively reduce the control difficulty of au-
tonomous vehicles with nonholonomic constraints. Ge et al. used the cubic B-spline
directly to optimize the path, resulting in the planned path with more turns [30]. Lu et al.
utilized Dubins curves to generate a path, but the curvature of the generated path is dis-
continuous [38]. Yang et al. used path pruning to delete unnecessary path nodes without
considering the included angles between line segments between path nodes, resulting
in excessive curvature of the final planned path [39]. Chen et al. adopted path pruning
based on inserted points to solve the initial path without considering the influence of
inserted points on the path length, causing the length of the final planned path may not be
optimal [29]. Thus, developing a path optimization method that can consider both path
pruning and smoothing is necessary.

Therefore, in this article, an improved heuristic Bi-RRT path planning algorithm is
proposed to solve local path planning problems of the dynamic environment by considering
path length and the continuity of path curvature between frames. The improved heuristic
Bi-RRT algorithm has contributed to node sampling, node selection, node extension, the
interconnection mode of two trees, path organization, and the coherence of path curvature
between frames.

1. The multiple-sampling states plus a guided method biased towards the target point
are designed to reduce the blind growth of the random trees, and the node exten-
sion mechanism integrating the greedy algorithm, namely the adaptive greedy step
size considering the target direction, can effectively accelerate the growth of two
random trees.

2. The nearest node selection mechanism considering the kinematic constraint of the
vehicle and the target state is put forward to reduce the effect of random sampling on
path smoothness and speed up the growth of the random trees.

3. An amplifying vehicle constraint considering the driver’s driving habit is introduced
to make the vehicle move more safely, and the obstacle-free direct connection mode of
two trees is introduced to further accelerate the execution of the algorithm.

4. A path reorganization process is designed to optimize the initial path to decrease the
length of the final planned path to the maximum extent while ensuring path smoothness.

5. A novel path coherence method considering the inter-frame correlation of paths is
used to ensure the curvature continuity of the path and make the vehicle be controlled
easily and move more steadily.

The article is organized as follows: Section 2 discusses the Bi-RRT path planning
algorithm, the simplified vehicle model, and the differences in path planning between front
and back frames. The improved heuristic Bi-RRT algorithm is presented in Section 3. Sec-
tion 4 presents simulation experiments to demonstrate the effectiveness and practicability
of the proposed algorithm. Section 5 presents the discussion about its performance, and
conclusions are provided thereafter.

2. Problem Statements

The basic bi-RRT algorithm is briefly described in this section, and its shortcomings
are pointed out. A brief introduction of the vehicle model points out that the turning radius
constraint of the vehicle needs to be considered in the path planning process. Furthermore,
the influence of the difference between the path planning results of the front and rear
frames in the dynamic path planning process on vehicle driving is described.
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2.1. Basic Bi-RRT

The Bi-RRT is a variant of the basic RRT, which changes the expansion mode of the
algorithm. That is, two random trees are constructed from the initial state and the target
state, respectively. In each cycle, a random tree is first expanded to generate a new tree node,
and then another random tree also starts to generate a new tree node, making two random
trees expand towards each other. The two random trees expand alternately until the nodes
of the two random trees meet. The searching schematic diagram of the basic Bi-RRT is
shown in Figure 1.
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Algorithm 1 shows the basic Bi-RRT algorithm. Once initialized, the basic Bi-RRT
algorithm conducts its iterative circle by selecting a random point Prand from the configu-
ration space using the sampling function Random_State ( ) (Line 3). The algorithm then
determines a near tree node Pnear by the function Nearest_Neighbor ( ) and obtains a new
tree node Pnew by the function Extend ( ) (Lines 4–5). If there are no obstacles between Pnear
and Pnew, the new tree node Pnew is added to the random tree Ta, and the nearest tree node
Pnearest from the random tree Tb is found by the function Nearest_Neighbor ( ) (Lines 6–8).
The iterative circle terminates if the distance between Pnew and Pnearest is less than lthreshold
(Lines 9–11). Otherwise, Ta and Tb are swapped, and the procedures mentioned above are
executed on the random tree Tb again (Line 12). Additionally, then, a path is generated by
the function Get_Path T ( ) (Line 16).

Algorithm 1: Build Bi− RRT (Pinit ,Pgoal)

1: Ta (Pinit); Tb (Pgoal);
2: while 1 do
3: Prand ← Random_State ( ) ;
4: Pnear ← Nearest_Neighbor (Prand, Ta) ;
5: Pnew ← Extend (Pnear, Prand) ;
6: if Collision_Free (Pnear, Pnew) then
7: Ta.Add (Pnew), Ta.Add (Pnear, Pnew)
8: Pnearest ← Nearest_Neighbor (Pnew , Tb) ;
9: if Dis tan ce ( Pnew, Pnearest) < lthreshold then
10: Return T (Ta, Tb)
11: break
12: else Swap ( Ta, Tb)
13: end if
14: end if
15: end while
16: Path← Get_Path T ( Ta, Tb) ;

Algorithm 2 outlines the implementation procedure of the function Get_Path T ( ).
Once the basic Bi-RRT algorithm completes the construction of two random trees, Ta and
Tb, two path point sets, path_a and path_b, are defined, and the last added tree nodes of
the two random trees are put into two sets, path_a and path_b, respectively (Lines 1–3).
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Then, the two random trees are searched reversely according to indexes of parent nodes
until their initial points are put into the path point sets, path_a and path_b, respectively
(Lines 4–17). Finally, the path point set path_a is reversed and then combined with the path
point set path_b to obtain a final path point set path (Lines 18–19).

Algorithm 2: Function Get_Path T ( Bi− T)

1: Var path_a, path_b;
2: path_a.Add_Node (Ta.noden);
3: path_b.Add_Node (Tb.noden);
4: while 1 do
5: i← Indexpre_node (Ta) ;
6: path_a.Back_Add_Node (Ta.nodei);
7: if i = 1 then
8: break
9: end if
10: end while
11. while 1 do
12: j← Indexpre_node(Tb) ;
13: path_b.Back_Add_Node (Tb.nodej);
14: if j = 1 then
15: break
16: end if
17: end while
18: path_a← reverse (path_a) ;
19: path← path_a ∪ path_b ;
20: Return path

The basic Bi-RRT algorithm simultaneously generates two random trees from the
starting and target points and expands them in opposite directions, accelerating the con-
vergence speed of the algorithm. However, the expansion mode of tree nodes still lacks
directivity, the connective mode of two trees can be further improved, and the generated
path is difficult to be directly tracked by the vehicle.

2.2. Vehicle Kinematical Model

Since the Bi-RRT is an incremental path planning algorithm, the kinematic vehicle
model can be used to limit the expansion process of tree nodes to ensure the feasibility of
the path. That is, the nonholonomic constraint of the vehicle should be considered when
increasing new tree nodes. Because the sophisticated kinematic model is seldom available,
a simplified theoretical motion model is provided, as shown in Figure 2. Assuming that
the vehicle does not slip laterally, and the rear wheels do not steer, the vehicle kinematic
model is expressed by Equation (1). Furthermore, the steering radius of the vehicle can be
expressed by Equation (2). 

.
x = v cos ϕ
.
y = v sin ϕ
.
ϕ =

v tan δ f
L

(1)

|k| ≤ kmax =
1
L

tan δ fmax =
1

Rmin
(2)

where (x, y) represents the coordinate of the vehicle gravity center in the coordinate refer-
ence frame, v is the longitudinal speed of the vehicle, ϕ is the included angle between the
vehicle main axis and the X axis, δ f is the steering angle of the front wheels and |δ f | ≤ δ fmax ,
L is the wheelbase of the vehicle, k and R are the turning curvature and steering radius of
the vehicle, respectively.
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Figure 2. Schematic of vehicle kinematic model.

In order to consider the feasibility of newly generated path segments, the minimum
steering radius constraint should be taken into account during the node extension procedure
of Bi-RRT.

2.3. Path Planning Difference between Previous and Subsequent Frames

Because the length and smoothness of the path are calculated based on the environmen-
tal information collected in a certain frame, only considering the length and smoothness
of the path cannot guarantee the steady driving of the autonomous vehicle. Suppose the
path planned in the current frame deviates too far from the previous one. In that case, the
driving stability of the autonomous vehicle will decline and even collide with the obstacle
vehicle. It can be seen from Figure 3 that the path of the previous frame of the autonomous
vehicle is on the left side of the obstacle, whereas the path of the current frame is on the
right side of the obstacle. Because of the inconsistency of the path of the previous and
subsequent frames, the autonomous vehicle may not avoid the obstacle and has the risk of
collision with the obstacle. The dotted arrow may represent the actual driving direction of
the autonomous vehicle.
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Consequently, to prevent the difference in the paths generated by the previous and
current frames of two adjacent planning cycles from influencing vehicle driving stability,
it is necessary to consider the path information of the previous frame when planning the
path in the current frame.

3. Improved Heuristic Bi-RRT Algorithm

Based on the above analysis, this section proposes an improved heuristic Bi-RRT
algorithm for path planning in a dynamic obstacle avoidance environment. Figure 4
illustrates the model structure of the improved heuristic Bi-RRT. The input of the proposed
model is a local driving environment and positioning information. The proposed algorithm
model based on heuristic random sampling, heuristic nearest neighbor, heuristic extension,
collision detection, direct connection detection, and path organization quickly generates a
differentiable and collision-free path. Algorithm 3 shows the specific steps of the improved
heuristic Bi-RRT algorithm.
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The improved heuristic Bi-RRT algorithm obtains an initial point by the function
Current_Root ( ) and initializes two random trees Ta and Tb in the same manner as they are
in the basic Bi-RRT (Lines 1–2). Once the two random trees cannot be directly interconnected,
the improved heuristic Bi-RRT begins its iterative processing by picking a random point
in the feasible domain space through a sampling function Heuristic_Random_Sampling ( )
(Lines 4–5). Then, the parent node Pnear from tree Ta is found by the function Heuristic_
Nearest_Neighbor ( ), and the new tree node Pnew is generated by the function Heuristic_
Extend ( ) (Lines 6–7). If there are no obstacles between Pnear and Pnew, the new tree node
Pnew is added to the random tree Ta, and the nearest node Pnearest from tree Tb is found
(Lines 8–11). Subsequently, the iterative processing ends if there are no obstacles between
Pnearest and Pnew, namely Pjudge2 and respectively (Lines 13–15). Otherwise, random trees
Tb and Tb are swapped, and the procedures mentioned above are executed on the other
random tree Tb again (Line 16). Afterward, an initial path is generated by the function
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Get_Path T ( ) (Line 20). Path organization, including path node reconnection and path
smoothing, processes the initial path to obtain a feasible path (Lines 21–22).

Algorithm 3: Build Improved Heuristic Bi-RRT (Pinit,Pgoal)

1: Pinit ← Current_Root ( ) ;
2: Ta (Pinit);Tb (Pgoal);
3: Pjudge1 ← Pinit ; Pjudge2 ← Pgoal ;
4: while Obstacle_Collision (Pjudge1 , Pjudge2) do
5: Prand ← Heuristic_Random_Sampling ( ) ;
6: Pnear ← Heuristic_Nearest_Neighbor(Prand, Ta) ;
7: Pnew ← Heuristic_Extend ( Pnear, Prand) ;
8: if Collision_Free ( Pnear, Pnew) then
9: Ta.Add(Pnew), Ta.Add(Pnear, Pnew)
10: Pjudge1 ← Pnew ;
11: Pnearest ← Nearest_Neighbor (Pnew, Tb) ;
12: Pjudge2 ← Pnearest ;
13: if Collision_Free (Pjudge1, Pjudge2) then
14: Return T (Ta, Tb)
15: break
16: else Swap (Ta, Tb)
17: end if
18: end if
19: end while
20: Path← Get_Path T (Ta, Tb) ;
21: Path← Heuristic_Reconnection (Path) ;
22: Trajectory← Smoothing (Path) ;

The improved heuristic Bi-RRT algorithm contains a set of heuristic methods to the
benefit of path planning of the autonomous vehicle. The improvements in the connective
mode of two random trees, node sampling, node selection, and node expansion based
on the Bi-RRT framework are used to generate an initial path quickly. Additionally, then,
path reorganization, including path reconnection and path smoothing, is employed to
improve the quality of the initial path, making it suitable for tracking by the autonomous
vehicle. The improved constraints containing the improved road environment and the
improved vehicle constraint are conducive to generating a feasible path complying with the
driver’s driving habit. In addition, a novel path coherence method is introduced to make
the generated path smoothly connected when planning a dynamic obstacle avoidance path.
Specific methods of the algorithm are described as follows in detail.

3.1. Connective Mode of Two Random Trees

In order to further accelerate the running speed of the algorithm, the connective mode
of two random trees can change from how the distance between two random trees is less
than a certain distance threshold to the way of obstacle-free direct connection, as shown in
Figure 5. After expanding the random tree Ta to obtain a new tree node Pnew−a, the nearest
node Pnearest on the random tree Tb closest to the node Pnew−a is calculated, and whether the
area between Pnew−a and Pnearest is passable is checked. If there are no obstacles between
Pnew−a and Pnearest, Pnew−a and Pnearest are directly connected, and the initial path planning
is complete. Otherwise, the algorithm continues to execute until the two random trees are
connected successfully.
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3.2. Heuristic Target Bias Sampling Method

The basic Bi-RRT usually adopts random searches in the global scope during the
random sampling process, which will cause the generation of random points without
guidance and too much unnecessary computation. As to this problem, a heuristic bias
sampling strategy composed of a multiple-sampling method and a target bias method is
adopted to make the random tree grow in a biased direction, enabling the initial state and
the goal state to meet more effectively and faster. Equations (3) and (4) demonstrate how to
calculate the random sampling state Prand.

Prandm = Heuristic_Random_State ( ) (3)

Prand =


Prandm dob ≤ dthreshold

Prandm + χ ·

 −−−−−−→PrandmPtarget∣∣∣∣∣−−−−−−→PrandmPtarget

∣∣∣∣∣

 dob > dthreshold
(4)

where Prandm is the random sampling state generated by the multiple-sampling method,
Ptarget is the target point defined in each sampling process, and χ is the biased step size. dob
and dthreshold are the distance from the random point Prandm to the obstacle and the distance
threshold from the obstacle, respectively.

3.2.1. Heuristic Random Sampling

With the knowledge of the initial and goal state, to make the sampling random point
close to the target state, the Multiple_Random_State function generates several random
points instead of one random point generated by the basic Bi-RRT algorithm in the free
region using the Random_State function. The multiple-sampling point function does not
include the probability of bias to the target, hence avoiding the local minimum problem.
Additionally, then, the introduction of the Nearest_To_Target function is used to select the
random state closer to the goal from several candidate sampling points. The random point
out of these candidate sampling points closest to the target becomes the chosen random
state Prandm, causing the Bi-RRT to search toward the target point. The number of random
states to be selected was set to two after simulation results showed the best performance
when the number of random states was limited to two.

3.2.2. Heuristic Target Bias

After obtaining the chosen random state Prandm, the target bias method is introduced.
It can make the random point expand a step size χ along the direction from it to the target
state to generate the random sampling point further closer to the target state, resulting in
making the random tree grow more directionally and improving computational efficiency.
When dob is less than dthreshold, if the generated random sampling point is still closer to the
target state, it will make the newly generated tree node easy to collide with the obstacle,
resulting in sampling failure and directly affecting the solution speed. Therefore, the target
bias method introduces the distance threshold dthreshold, which is the projection distance of
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the semi-major axis of the expanded safety ellipse on the x axis of the coordinate reference
frame. When dob ≤ dthreshold, that is, the chosen random state Prandm is close to the obstacle,
Prandm is regarded as the generated random sampling point Prand, when dob > dthreshold,
that is, the chosen random state Prandm is far from the obstacle, Prand is generated from
the target bias function. This strategy can maintain the balance between exploration and
search speed.

Based on the basic Bi-RRT sampling function framework, the novel target bias sam-
pling method changes the generation mode of the sampling point to make the generated
sampling points more directional and effective, improving search efficiency and accel-
erating the algorithm’s convergence. Algorithm 4 outlines the working of the function
Heuristic_Random_Sampling ( ). The improved heuristic Bi-RRT obtains candidate sam-
pling points through the sampling function Random_State ( ) and selects the sampling
point with the minimum distance cost as the current sampling point Prandm (Lines 1–3).
Then, according to the distance between the current sampling point Prandm and the ob-
stacle, the current sampling point Prandm is processed by the heuristic target bias method
to obtain the final sampling point Prand (Lines 4–7). This procedure is performed in each
sampling process.

Algorithm 4: Function Heuristic_Random_Sampling ( )

1: Prand1 ← Random_State ( ) ;
2: Prand2 ← Random_State ( ) ;
3: Prandm ← Nearest_To_Target (Prand1, Prand2);
4: if dob ≤ dthreshold then
5: Prand ← Prandm ;
6: else

7: Prand ← Prandm + χ ·

 −−−−−−→PrandmPtarget∣∣∣∣∣−−−−−−→PrandmPtarget

∣∣∣∣∣

 ;

8: end if

3.3. Heuristic Parent Node Selection Method

In the basic Bi-RRT algorithm, the nearest tree node is measured by the Euclidean
distance from the random point to the tree node, which may generate a polyline path with
sharp included angles between connecting line segments of path nodes. Even if the polyline
line path is smoothed, it cannot be successfully followed by vehicles. Because the vehicle
has a minimum steering radius in actual motion, the Euclidean distance should not be
the only factor to consider during each node selection process. As shown in Figure 6, the
current vehicle state is a solid rectangle containing a yellow vehicle with three alternative
driving states shown as dashed rectangles. In order to find the nearest driving state for
the current vehicle, if the Euclidean distance is only considered, there is no doubt that the
first driving state is the closest with a Euclidean distance of zero and the second driving
state takes second place. However, the first and second driving states, also named in situ
steering and lateral translation, are not possible for the vehicle due to the minimum steering
radius. Hence, the third driving state is more reasonable.
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Given the above analysis, the steering radius of the vehicle needs to be considered to
choose the near tree node, namely the parent tree node. Therefore, a heuristic selection
method of the parent tree node, namely a comprehensive measurement index considering
the distance factor and angle factor, is introduced to make the generated path gentler and
easily tracked by the vehicle. Furthermore, it can speed up the algorithm convergence and
reduce the calculation time. Equations (5)–(11) show the calculation process when selecting
the near tree node. The near tree node Pnear is determined as the tree node corresponding
to the maximum comprehensive measurement index.

CM = ω1 · C1
dis tan ce + ω2 · C1

angle (5)

Cdis tan ce = ξ1 · Cdis tan ce1 + ξ2 · Cdis tan ce2 (6)

Cdis tan ce1 =

∣∣∣∣−−−−−−−→PtreePrand

∣∣∣∣ (7)

Cdis tan ce2 =

∣∣∣∣−−−−−−−→PtreePgoal

∣∣∣∣ (8)

Cangle = π −

cos−1


−−→
PiPj ·

−−−−→
PiPrand∣∣∣∣−−→PiPj

∣∣∣∣ · ∣∣∣∣−−−−→PiPrand

∣∣∣∣

 (9)

C1
dis tan ce =

Cdis tan ce_max − Cdis tan ce
Cdis tan ce_max

(10)

C1
angle =

Cangle_max − Cangle

Cangle_max
(11)

where ω1 and ω2 are weighted coefficients of the distance index C1
dis tan ce and the angle

index C1
angle, respectively. C1

dis tan ce and C1
angle are the normalized values of the distance

Cdis tan ce and the angle Cangle, respectively. The diagrammatic presentation of the angle
Cangle is shown in Figure 7. Cdis tan ce is the weighted sum of the distance Cdis tan ce1 and
the distance Cdis tan ce2, ξ1 and ξ2 are the weighted coefficients of Cdis tan ce1 and Cdis tan ce2,
respectively. Cdis tan ce1 represents the distance from each tree node to the random sampling
node, and Cdis tan ce2 represents the distance from each tree node to the target state. The
introduce of the distance Cdis tan ce2 can make the selected near tree node have a trend close
to the target state to increase the computational efficient.
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The transition from Euclidean distance to the comprehensive measurement index
changes the growing characteristic of the random tree. The introduction of the comprehen-
sive measurement index hinders the pure expansion of the random tree growth towards
the configuration region. On the contrary, it drives the tree growth towards the direction
associated with the target state and the gentle trend. As a result, it improves the running
speed of the algorithm to some extent, and there is a natural trade-off between quick tree
growth and better path quality.

3.4. Heuristic Node Extension Method

Expanding the near tree node to the random point usually adopts a fixed step size in
the basic Bi-RRT. The large fixed step size tends to make the new node difficult to extend in
the surrounding area of the obstacle, especially dense obstacle areas, resulting in extension
failure and reducing the growth rate of the random tree. The small fixed step size could
lead to a slow convergence speed of the algorithm. In other words, the fixed step size has
the disadvantages of low flexibility and low security. In addition, the expansion direction of
the tree node is along the vector direction from Pnear to Prand. When utilizing the large step
size to extend the parent tree node along the expansion direction of the tree node deviating
from the target state, an invalid and unnecessary node could be generated, resulting in
the low quality of the generated path, and affecting the running speed of the algorithm.
Thus, to solve these two problems, a heuristic node extension method, namely the adaptive
greedy step size, is introduced. ‘Adaptive’ is reflected in the pattern that the step size
is dynamically and gradually changing rather than fixed, and ‘greedy’ is reflected in the
pattern that the greater the extent of the node expansion direction approaching the direction
of the target state, the larger the step size. Equations (12)–(16) show the calculation of the
adaptive greedy step size, and its simple legend is shown in Figure 8.

λadaptive_greedy =


λ dnear_ob < dthreshold{

(ηcos +
√

s) · λ β < π
2

(1− ηcos +
√

s) · λ β ≥ π
2

dnear_ob ≥ dthreshold
(12)

ηcos =

∣∣∣∣∣∣∣∣
−−−−→
Vunit_ r ·

−−−−→
Vunit_ t∣∣∣∣−−−−→Vunit_ r

∣∣∣∣ · ∣∣∣∣−−−−→Vunit_ t

∣∣∣∣
∣∣∣∣∣∣∣∣ (13)

β = arc cos


−−−−→
Vunit_ r ·

−−−−→
Vunit_ t∣∣∣∣−−−−→Vunit_ r

∣∣∣∣ · ∣∣∣∣−−−−→Vunit_ t

∣∣∣∣
 (14)

−−−−→
Vunit_ t =

−−−−−−→
PnearPtarget∣∣∣∣−−−−−−→PnearPtarget

∣∣∣∣ (15)



Sensors 2022, 22, 7968 13 of 33

−−−−→
Vunit_ r =

−−−−−−→
PnearPrand∣∣∣∣−−−−−−→PnearPrand

∣∣∣∣ (16)

where λ is the basic lower bound of the step size,
−−−−→
Vunit_ t and

−−−−→
Vunit_ r are unit vectors

from Pnear to Ptarget and from Pnear to Prand, respectively. ϕ is the included angle between
−−−−→
Vunit_ t and

−−−−→
Vunit_ r , ηcos is the cotangent of ϕ, s is a constant as a regulating coefficient,

and dnear_ob is the distance from Pnear to the obstacle. Far away from the obstacle means
dnearest_ob ≥ dthreshold.
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Compared with the traditional fixed step size, the adaptive greedy step size is no
longer a constant. Its size is not only related to the distance from the obstacle but also

to the included angle of the vector
−−−−−−→
PnearPrand towards the target state. In this way, when

near an obstacle, a small step size can be used for the basic extension, making the search
path more detailed and safer. When far from an obstacle, the step size can be greedily
adjusted as the included angle changes, making the random tree adopt the larger step size
to expand rapidly along the extension direction closer to the target state and reduce some
blind expansions. As a result, the greedy mode of the step size accelerates the growth of the
random tree and makes the growth of the path tend to approach the target state to a certain
extent. It is exactly because of its dynamic adjustability that the adaptive greedy step size
extension can often pass the obstacle detection when approaching the obstacle, unlike the
fixed step size extension. Using the adaptive greedy step size can significantly improve the
success rate of new node generation and accelerate overall search efficiency effectively.

3.5. Improved Constraints

Suppose a path can be successfully and effectively tracked by an autonomous vehicle.
In that case, the path should not only meet the obstacle constraints but also comply with
the driving characteristics of the actual driver, resulting in avoiding causing excessive
tension and discomfort to the driver and passengers. The obstacle constraints include the
road environment and the environmental constraint formed by the vehicle being regarded
as an obstacle, namely, the vehicle constraint. Therefore, the road environment and the
vehicle constraint are improved to obtain a feasible path meeting the driving habits of the
actual driver.
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3.5.1. Improved Road Environment

In order to generate a practical path, the path nodes need to meet the constraints of
road environments when planning. The road environment restricts the planned path more
effectively by considering the vehicle width to avoid collision between the vehicle and the
road edge. Thus, the newly extended nodes need to meet the requirements of the following
Equation (17), and the schematic diagram of the road environment is shown in Figure 9.{

Pinitial_x < Tnode_x < Pgoal_x

Br +
Wh
2 < Tnode_y < Bl − Wh

2
(17)

where Pinitial_x and Pgoal_x are the x coordinates of the initial point and the goal point in the
reference coordinate frame, respectively. Bl and Br are the left and right boundaries of the
road, and Wh is the width of the host vehicle.
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Figure 9. The improved road environment constraint.

3.5.2. Improved Vehicle Constraint

In order to express the constraint generated by the obstacle vehicle conveniently, a
safety ellipse is introduced to envelop the obstacle vehicle. When considering the subjec-
tive comfort of the driver and passengers, a planned path needs to be able to avoid the
obstacle vehicle in advance, that is, avoiding the generation of excessive path curvature
when approaching the obstacle vehicle. In this case, the planned path can avoid causing
discomfort to the driver and passengers and be easily tracked by the vehicle. Therefore, on
the basis that half of the vehicle length is used as the semi-major axis of the safety ellipse,
the advanced obstacle avoidance distance is added to the semi-major axis to ensure that the
vehicle obstacle avoidance occurs at a long distance. Equation (18) expresses the condition
that the newly expanded node needs to meet, and the schematic diagram of the vehicle
constraint is shown in Figure 10.

(x−xobstacle )
2[

s f 1·
(

dsa f e+
L0
2

)]2 +
(y−yobstacle )

2

(s f 2·Wo)
2 > 1

dsa f e =
v2

2·η·g

(18)

where (x, y) is the point on the connecting segment between the newly extended node Pnew
and its parent node Pnear, (xob, yob) is the position of the obstacle vehicle, Lo and Wo are
the length and width of the obstacle vehicle, respectively. s f 1 and s f 2 are the expansion
coefficients of the semi-major axis and the semi-minor axis of the safety ellipse, respectively,
v is the speed of the host vehicle, η is the friction coefficient, g is the acceleration of gravity,
and dsa f e is the advanced obstacle avoidance distance.
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To sum up, during the process of the specific node extension, the improved constraints,
including the improved road environment and the improved vehicle constraint, can make
the planned path meet the actual driving requirement of the vehicle, namely, the path
feasibility and the characteristics of avoiding the obstacle in advance.

3.6. Path Reorganization Method

Because the basic Bi-RRT algorithm adopts random sampling, the obtained path, also
named the initial path, often has poor quality, mainly reflecting in containing too many
unnecessary turn points and the discontinuity of path curvature. When tracking the initial
path, the autonomous vehicle has to stop and change its driving direction so that it cannot
drive smoothly and has unnecessary mechanical wear. Thus, a path reorganization method
is needed to optimize the initial path, that is, to remove unnecessary turn points and smooth
the path.

After obtaining an initial path by the function Get_Path T (Bi − T), as shown in
Algorithm 2, the path reorganization method containing path node reconnection and
path smoothing is used to process it. The path node reconnection is utilized to remove
unnecessary turn nodes and insert path nodes to replace some necessary path nodes. As a
result, it can make the included angles of the connecting line between path points meet the
vehicle steering requirement, decreasing the control difficulty of the autonomous vehicle
while reducing the path distance to the maximum extent. Additionally, then, the path
obtained by the path node reconnection is a broken line composed of discrete path nodes;
thus, it needs a further smoothing process to make the vehicle drive smoothly and steadily.
Algorithm 5 describes the pseudocode of the path reorganization method.

3.6.1. Path Node Reconnection

A path obtained by the function Get_Path T (Bi− T) usually has poor connectivity
due to the random attribute of the algorithm. Furthermore, there are many redundant
turning segments in the path. As a result, it is often not continuously differentiable and
infeasible. Thus, the path needs the path node reconnection to meet the prerequisite of
path smoothing. Path node reconnection shown in lines 1–43 of Algorithm 5 is conducted
to remove redundant path nodes and insert path nodes to replace some existing path
nodes for obtaining a new path with maximum length reduction and no collision with
obstacles. Moreover, it can ensure that the complementary angles of the included angles
of line segments between path nodes are less than the steering angle of the front wheel.
The function Get_Path T (Bi− T) is used to obtain a path node set S0 of the initial path
from the forward node of the goal node to the root node of the initial node (Line 2). The
first path node is defined as the root node proot, the second path node is defined as the
parent node pparent, and the third path node is defined as the current node pcurrent (Line
3). A line segment connects the current node pcurrent and the first subsequent path node
from the set S2. Additionally, then, connecting this current node pcurrent and one of all
subsequent path nodes from the set S2 through a line segment successively in sequence
is conducted until a collision occurs between the line segment and the obstacle (Lines
7–10). In this case, the path nodes between the line segment are removed, and the parent
node of the path node that results in the collision with the obstacle is defined as the
previous forward node p f orward_last (Line 11). Meanwhile, the complementary angle of

the included angle between the vector −−−−−−−−−→pcurrentpparent and the vector −−−−−−−−−−−→pcurrenpforward_ lastt is
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calculated. When the complementary angle is less than the steering angle constraint δ f , proot
is redefined as the previous root node proot_last, pparent is redefined as the new root node
proot, pcurrent is redefined as the new parent node pparent, and p f orward_last is redefined as
the new current node pcurrent (Lines 12–13). On the contrary, a path node pinsert is inserted
between the parent node pparent and the previous forward node p f orward_last to replace the
current node pcurrent and meet the conditions that the complementary angle of the included

angle between the vector −−−−−−−−→pparentpinsert and the vector −−−−−−−→pparentproot and the complementary

angle of the included angle between the vector −−−−−−−−→pinsertpparent and the vector −−−−−−−−−−→pinsertpforward_ last
are less than the steering angle constraint δ f , and the line segment connecting the parent
node pparent and the inserted node pinsert and the line segment connecting the inserted
node qinsert and the previous forward node p f orward_last do not collide with the obstacle
(Lines 17–18). After that, proot is redefined as the previous root node proot_last, pparent is
redefined as the new root node proot, pinsert is redefined as the new parent node pparent, and
p f orward_last is redefined as the new current node pcurrent (Line 19). The above operations
are applied to the remaining path nodes in the set S2 in sequence until the path node pn−1
is found. Finally, suppose the complementary angle of the included angle between the
line segment connecting the finally defined pcurrent and the finally defined pparent and the
line segment connecting the finally defined pcurrent and pn is less than the steering angle
constraint δ f . In that case, pn is added to the set S1 (Lines 29–30). Otherwise, the final
path node pn is added to the set S1 after meeting the conditions that the complementary
angle of the included angle between the line segment connecting the finally defined proot
and the finally defined proot_last and the line segment connecting the finally defined proot
and the inserted node pinsert, the complementary angle of the included angle between
the line segment connecting the inserted node pinsert and the finally defined proot and the
line segment connecting the inserted node pinsert and the finally defined pcurrent, and the
complementary angle of the included angle between the line segment connecting the finally
defined pcurrent and the inserted node pinsert and the line segment connecting the finally
defined pcurrent and the final node pn are less than the steering angle constraint δ f , and the
line segment connecting the finally defined proot and the inserted point pinsert and the line
segment connecting the inserted point pinsert and the finally defined pcurrent do not collide
with the obstacle (Lines 31–43).

The path node reconnection process is illustrated in Figure 11 specifically. The solid
black line is the initial path obtained by the function Get_Path T (Bi− T). The connecting
line segments between the black nodes P1, P2, P3, P4, P5, and P6, which are obtained by
the process of the path node reconnection, constitute a path to be smoothed in the next
step, which is represented as the red solid line. The connecting line segments between the
black nodes P2, P3, P4, and P5 do not intersect with the obstacle, removing the redundant
nodes between them, namely, the green path nodes. P3

′, a path node from the initial path,
can directly connect with P2 and P4. However, the complementary angle of the included
angle between the line segment connecting P3

′ and P2, and the line segment connecting
P3
′ and P4 is more than the steering angle constraint δ f . As a result, a node, namely, node

P3, is inserted between P2 and P4 based on the constraint δ f to replace the node P3
′ for

obtaining a relatively gentle path with the maximum length reduction, namely the red path.
Furthermore, the complementary angles of the included angles of line segments consisting
of these black nodes are less than δ f , that is, β1, β2, β3, and β4 are less than δ f . Thus, the
path node reconnection method can reduce the length of the initial path to the greatest
extent and obtain a path convenient for further smoothing.
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Algorithm 5: Function path_reorganization ( )

1: Var S0, S1, S2 : path
2: S0(pn . . . , p2, p1, p0)← Get_path T (Bi− T) ;
3: proot ← p0 ; pparent ← p1 ; pcurrent ← p2 ;
4: S1 ← (proot, pparent, pcurrent) ;
5: S2 ← (p3 . . . pn) ;
6: while pcurrent! = pn−1 do
7: for each node pi ∈ S2 do
8: if Collision_Free (pcurrent, pi) then
9: p f orward ← pi ;
10: else
11: p f orward_last ← pi−1 ;

12: if (π − Angle (−−−−−−−−−→pcurrentpparent , −−−−−−−−−−−−−→pcurrentpforward_ last )) < δ f ≤ δ f _max then
13: proot_last ← proot ; proot ← pparent ; pparent ← pcurrent ; pcurrent ← q f orward_last ;
14: S1.Backward_Add_Node (pcurrent);
15: else
16: while 1 do
17: pinsert ← Insert_Node (pparent, p f orward_last) ;

18: if (π − Angle (−−−−−−−→pparentpinsert , −−−−−−→pparentproot )) < δ f ≤ δ f _max

and (π − Angle (−−−−−−−→pinsertpparent , −−−−−−−−−−−→pinsertpforward_ last )) < δ f ≤ δ f _max
and Collision_Free (pparent, pinsert)
and Collision_Free (pinsert, p f orward_last) then
19: proot_last ← proot ; proot ← pparent ; pparent ← pinsert ; pcurrent ← p f orward_last ;
20: S1.Backward_Add_Node (pinsert);
21: S1.Backward_Add_Node (pcurrent);
22: break
23: end if
24: end while
25: end if
26: end if
27: end for
28: end while
29: if (π − Angle (−−−−−−−−−→pcurrentpparent ,−−−−−−→pcurrentpn )) < δ f ≤ δ f _max then
30: S1.Backward_Add_Node (pn);
31: else
32: while 1 do
33: pinsert ← Insert_Node (proot, pcurrent) ;

34: if (π − Angle (−−−−−−−−−→prootproot_ last , −−−−−−−→prootpinsert )) < δ f ≤ δ f _max

and (π − Angle (−−−−−−−−−→pinsertpcurrent , −−−−−−−→p insertproot )) < δ f ≤ δ f _max

and (π − Angle (−−−−−−−−→pcurrentpinsert , −−−−−−−→pcurrentpn )) < δ f ≤ δ f _max
and Collision_Free (proot, pinsert)
and Collision_Free (pinsert, pcurrent) then
35: S1.Backward_Delete_Node (pend);
36: S1.Backward_Delete_Node (pend−1);
37: S1.Backward_Add_Node (pinsert);
38: S1.Backward_Add_Node (pcurrent);
39: S1.Backward_Add_Node (pn);
40: break;
41: end if
42: end while
43: end if
44: trajectory← Cubic_Bspline (S1) ;
45: Return trajectory
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3.6.2. Path Smoothing

After the path node reconnection process, a simplified path, the solid red line in
Figure 11, is obtained, but the path contains some necessary turning nodes. As a result, the
path is still not continuously differentiable such that it cannot be directly tracked by the
vehicle. Thus, the obtained path should be further smoothed to make it be successfully
tracked by the vehicle [40]. The cubic B-spline curve can move a control point to make
the local modification without affecting the overall shape of the path and have a simple
implementation and relatively low computational cost to ensure kinematic feasibility while
avoiding an obstacle [41]. In addition, it is also often adopted to obtain a continuously
differentiable cure [42]. Therefore, the cubic B-spline curve can be used to optimize the
obtained path.

Supposing there are m + 1 control points Pi(i = 0, 1, · · ·, m), the cubic B-spline curve
is expressed as  Pk,3(t) =

3
∑

i=0
Pi+k · Gi,3(t) t ∈ [0, 1)

k = 0, 1, · · ·m− 3
(19)

where the basic function Gi,3(t) is defined as
G0,3(t) = −t3+3t2−3t+1

6
G1,3(t) = 3t3−6t2+4

6
G2,3(t) = −3t3+3t2+3t+1

6
G3,3(t) = t3

6

(20)

In order to make the cubic B-spline curve start from P0, tangent to the vector
−−→
P0P1, end

at Pm, and tangent to the vector
−−−−→
PmPm-1, the control points P−1 and Pm+1 are added to meet

the conditions P−1 + P1 = 2P0 and Pm−1 + Pm+1 = 2Pm.
The path node organization method can make the generated path continuously dif-

ferentiable while reducing path length to the maximum extent. Meanwhile, the generated
path does not have unnecessary steering and meets the tracking requirement of the vehicle.

3.7. Path Coherence Method

Due to the randomness of the algorithm, the difference in the planned paths between
two adjacent frames could easily cause the vehicle to shake during driving, If the difference
is too large, it may even cause the vehicle to collide with an obstacle. Hence, to solve this
path planning problem in dynamic environments, the interframe path coherence method
is introduced to guarantee the smooth connection of planned paths between frames. The
interframe path coherence method refers to the need to consider the information of the
planned path of the previous frame when planning a path in the current frame. Its main
idea is that at the beginning of each new planning cycle, the root node Proot_newly of the new
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planning cycle is the position whose distance from the root node in the trajectory planned
in the previous planning cycle is equal to R. At the same time, a point along the tangent line
of the newly generated root node is selected as the new search starting node Pinitial_newly.
Equations (21) and (22) express the calculation of the root node Proot_newly. Equation (23)
shows how to calculate Pinitial_newly.

 Pk,3(t) =
3
∑

i=0
Pi+k · Gi,3(t) t ∈ [0, 1)

k = 0, 1, · · ·m− 3
(x− Proot_x)

2 + (y− Proot_y)
2 = R2

(21)

R = ρ · v (22){
ϑ = tan−1(Bslope)
Proot_newly = Pinitial_newly + Lskew(cos ϑ, sin ϑ)

(23)

where Proot is the root node of the previous planning cycle, R is the offset distance of the root
node Proot, and ρ is the coefficient of proportionality. R is more than the preview distance of
the vehicle to ensure that the preview point is still on the trajectory of the previous frame.
As a result, there is no need to make more tracking control adjustments. Proot_newly is the
right intersection point of the cubic B-spline curve and the designed circle. Bslope is the
slope of the cubic B-spline curve at the intersection point, ϑ is the included angle between
the tangent line and the x axis at the intersection point, and Lskew is the offset distance along
the direction of the tangent line. Proot_newly and Pinitial_newly are introduced to ensure that
the trajectory generated in the current frame is tangent to the tangent line at the intersection
point Proot_newly and passes through the intersection point Proot_newly. Thereby, there are
smooth connections in the interframe paths. As seen in Figure 12, the solid green line refers
to the broken line formed by the path control points of the previous frame, and the solid
black line is the broken line formed by the path control points of the current frame. The red
curve represents the trajectory generated in the previous frame, the blue curve represents
the trajectory generated in the current frame, and both curves are tangent to the vector
−−−−−−−−−−−−−−→
Proot_ newlyPinitial_ newly . Hence, those two paths are smoothly connected at Proot_newly.
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The path coherence method can significantly eliminate the difference between inter-
frame trajectories and make the planned trajectory smooth and continuous, resulting in
maintaining the vehicle’s overall stability during driving.

4. Simulation Results and Analysis
4.1. Simulation Environment

In order to verify the performance of the improved heuristic Bi-RRT algorithm, two
typical road scenarios, including a straight road scenario and a curved road scenario, as
shown in Figure 13a,b, are separately taken into account. Road information and other pa-
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rameters in the whole simulation are shown in Tables 1 and 2. The performance comparison
of different RRT variants in the static straight road and curved road scenarios is conducted
to verify the superiority of the improved heuristic Bi-RRT method. Meanwhile, interframe
path planning and tracking are performed in dynamic scenarios to verify the effectiveness
of the proposed algorithm. The simulations were performed on a PC with processor Intel I7
based on MATLAB R2019b and Carsim 2018. MATLAB R2019b is a mathematical software
developed by Mathworks in Massachusetts, USA, and Carsim 2018 is a vehicle system
simulation software developed by Mechanical Simulation Corporation in Michigan, USA.
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Table 1. Road parameters.

Road Type Transverse
Length (m)

Lane Width
(m) Initial Point Target Point Obstacle

Point

Straight 130 3.75 5, −1.875 125, −1.875 65, −1.875
Curve 180 3.75 5, −1.874 175, 3.676 90, −1.095

Table 2. Simulation parameters.

Parameter Value Parameter Value

Obstacle vehicle width Wo (m) 1.8 Expansion coefficient (straight) s f 1
√

2
Obstacle vehicle length Lo (m) 4.8 Expansion coefficient (straight) s f 2

√
3

Biased step size χ (m) 3 Expansion coefficient (curve) s f 1
√

3
Step size λ (m) 10 Expansion coefficient (curve) s f 2

√
2

Regulating coefficient s 1.5 Weighted coefficient ω1 0.4
Host vehicle width Wh (m) 1.8 Weighted coefficient ω2 0.6

Host vehicle speed v (km/h) 60 Weighted coefficient ξ1 0.7
Friction coefficient η 0.8 Weighted coefficient ξ2 0.3

Gravity acceleration g (m/s2) 9.8 Proportionality coefficient ρ 0.6
Constraint angle δ f (◦) 30
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4.2. Performance Measure of Path Planning

The improved heuristic Bi-RRT algorithm is compared with the basic RRT, the biased
RRT, the Bi-RRT, and the RRT* in the straight and curved road scenarios, and the results
are shown in Figure 14a,b, respectively. The blue dotted line represents the path planned
by the basic RRT, the red dashed line represents the path planned by the biased RRT,
and the black dash-dotted line represents the path planned by the RRT*. The solid green
and black lines represent the paths planned by the Bi-RRT and the improved heuristic
Bi-RRT, respectively. It can be seen in Figure 14a,b that the paths generated by the basic
RRT, the Bi-RRT, and the biased RRT contain a large number of corners, and there are
frequent large curvature changes. In contrast, the path generated by the RRT* is relatively
gentle, but it is still a broken line, which does not meet the steering requirement of the
vehicle. However, the path generated by the improved heuristic Bi-RRT is a continuous
and smooth curve, and the path curvature is also continuous, as shown in Figure 15a,b,
respectively, resulting in the convenience being well followed by the vehicle. Observing
Figure 14a,b, all paths planned by the basic RRT, the biased RRT, the Bi-RRT, the RRT*,
and the improved heuristic Bi-RRT can successfully avoid the obstacle vehicle. However,
there are differences in obstacle avoidance modes. The paths planned by the basic RRT, the
biased RRT, the Bi-RRT, and the RRT* always start emergency obstacle avoidance when
approaching the obstacle vehicle. The path planned by the proposed algorithm can start
obstacle avoidance in advance by a safe distance from the obstacle vehicle, ensuring safe
driving, conforming to the driver’s behavior habit, and not bringing excessive tension to
passengers. The proposed algorithm can realize obstacle avoidance in advance because the
obstacle avoidance distance is embedded when constructing the obstacle vehicle constraint.
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Figure 14. The simulation paths. (a) The planned paths in the straight road scenario. (b) The planned
paths in the curved road scenario.
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Figure 15. The simulation path curvatures. (a) The path curvature in straight road scenario. (b) The
path curvature in curved road scenario.

A set of benchmarking parameters is defined to objectively compare the performance
of the improved heuristic Bi-RRT and some RRT variants. The number of nodes on the
mature random tree is denoted by “tree nodes.” The length of the generated path is denoted
by “path length.” The searching time of path planning is denoted by “time.” In addition,
the number of segments comprising the generated path is donated by “path segments”;
in particular, the path segments of the improved heuristic RRT refer to the number of
segments of the path after being processed by path reconnection [30,43,44].

Thirty independent simulation experiments were implemented on each algorithm
to offset the random deviation of a single experiment, and the results are shown in
Tables 3 and 4. The average path length generated by the RRT* algorithm is much lower
than those of the basic RRT, the biased RRT, and the Bi-RRT because the RRT * embedded
with the reconnection mechanism can approach the approximate shortest path. However,
the average path length generated by the improved heuristic Bi-RRT algorithm is smaller
than that of the RRT* algorithm, and the average tree nodes and the average path segments
of the proposed algorithm are also minimal compared with those of the other four algo-
rithms. The decrease in path length and number of path segments is mainly due to the
introduction of the path node reconnection method. The relatively small number of path
segments can reduce the control difficulty of the vehicle and make the further smoothed
path not contain unnecessary turns. In terms of the average planned time, the performance
of the improved heuristic Bi-RRT algorithm is optimal compared with those of the other
four algorithms, and especially in the straight road scenario, the planning time of the
improved heuristic Bi-RRT algorithm can reduce significantly.
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Table 3. Performance measures in the straight road scenario.

Algorithm RRT Biased
RRT Bi-RRT RRT* Improved

Heuristic Bi-RRT

Average tree nodes 38.733 28.567 17.667 52.967 6.033
Average path segments 14.267 13.433 13.367 6.233 3.000
Average path length (m) 123.977 122.176 122.781 120.961 120.299

Average time (s) 0.026 0.022 0.020 0.043 0.010

Table 4. Performance measures in the curve scenario.

Algorithm RRT Biased
RRT Bi-RRT RRT* Improved

Heuristic Bi-RRT

Average tree nodes 41.500 30.733 23.067 39.067 20.500
Average path segments 18.333 18.233 18.267 8.267 3.000
Average path length (m) 173.834 172.414 172.899 170.848 170.152

Average time (s) 3.363 2.432 0.732 12.757 0.626

As a result of the performance measure, the improved heuristic Bi-RRT algorithm
shows superior performance regarding path quality and planning time compared with the
basic RRT, the biased RRT, the Bi-RRT, and the RRT*.

4.3. Path Coherence Validation

The dynamic environment can usually be treated as a static environment in a dynamic
path planning process. That is, the re-planning of paths needs to be conducted in each
frame environment region obtained by the perception module. Thus, the running speed
of the path planning algorithm should not be only considered, but also the interframe
connection of the planned paths should be concerned. In order to further verify the
superior performance of the improved heuristic Bi-RRT algorithm, the planning effect of
the corresponding algorithm at a specific frame is described in detail.

In order to express the coherence between the front and back frame paths, the real-
time re-planning is carried out in two dynamic driving scenarios, where the host vehicle
and the obstacle vehicle move in opposite and the same directions, respectively. The red
triangle represents the position of the obstacle vehicle in the current frame, the yellow arrow
represents the driving direction of the obstacle vehicle, and the green solid point and the
black solid point represent the start point and end point of the current frame, respectively.

Figure 16a–c show the dynamic path planning process of the improved heuristic
Bi-RRT algorithm for three consecutive frames in the dynamic scenario with driving in
opposite directions. Observing Figure 16a–c, the paths obtained in the first, second, and
third frames are smooth and successfully bypass the moving obstacle vehicle. It can be seen
from Figure 16d that the paths, magenta lines, obtained in the first frame, the second frame,
and the third frame can be smoothly connected to form a smooth coherence path, as shown
in Figure 16e. Moreover, the curvature of the coherence path is continuous and varies in
a small range, which is convenient for it to be tracked by the host vehicle, as shown in
Figure 16f.

Figure 17a–f show the dynamic path planning process of the improved heuristic Bi-
RRT algorithm for six consecutive frames in the dynamic scenario with driving in the same
direction. It can be seen from Figure 17a–f that the paths obtained in the first, second, third,
fourth, fifth, and sixth frames are smooth and also successfully bypass the moving obstacle
vehicle. As seen in Figure 17g, the paths, magenta lines, obtained in the first frame, the
second frame, the third frame, the fourth frame, the fifth frame, and the sixth frame can
be smoothly connected to generate a smooth coherence path, as shown in Figure 17h. In
addition, the curvature of the obtained coherence path is continuous and within the range
of 0.02 1/m, as shown in Figure 17i, resulting in the condition that the host vehicle can
easily track the coherence path.
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Figure 16. The path planning results in a dynamic scenario with driving in opposite directions.
(a) The planned path in the first frame. (b) The planned path in the second frame. (c) The planned
path in the third frame. (d) The path coherence process of three frames. (e) The coherence path of
three frames. (f) The curvature of the coherence path.
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Figure 17. The path planning results in a dynamic scenario with driving in the same direction. (a) 

The planned path in the first frame. (b) The planned path in the second frame. (c) The planned path 

in the third frame. (d) The planned path in the fourth frame. (e) The planned path in the fifth frame. 

(f) The planned path in the sixth frame. (g) The path coherence process of six frames. (h) The coher-

ence path of six frames. (i) The curvature of the coherence path. 

For further verifying the tracking performance of the obtained coherence paths 

shown in Figures 16e and 17h, the path following experiments can be carried out in the 
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Figure 17. The path planning results in a dynamic scenario with driving in the same direction. (a) The
planned path in the first frame. (b) The planned path in the second frame. (c) The planned path in the
third frame. (d) The planned path in the fourth frame. (e) The planned path in the fifth frame. (f) The
planned path in the sixth frame. (g) The path coherence process of six frames. (h) The coherence path
of six frames. (i) The curvature of the coherence path.

For further verifying the tracking performance of the obtained coherence paths shown
in Figures 16e and 17h, the path following experiments can be carried out in the Carsim
simulation platform. The appropriate vehicle and driver models are selected to simulate
the driving state of the real vehicle. The solid black and red dashed lines represent the
target and followed paths, respectively.

The path following experiment in the dynamic scenario with driving in opposite
directions is conducted. The result shown in Figure 18a represents the target path and
the followed path. The following error between the followed path and the target path is
relatively small and within the range of 0.06 m, as shown in Figure 18b, resulting in making
the following effect acceptable. The yaw rate is within the range of 8 deg/s, as shown
in Figure 18c, and the lateral acceleration is within the range of 0.25 g and less than the
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usual value of 0.8 g of the maximum lateral acceleration of steady driving, as shown in
Figure 18d. These two indicators prove that the dynamic performance of the host vehicle is
stable in the simulation experiment. Based on these facts, the obtained coherence path is
satisfactory and effective.
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Figure 18. The path tracking results of the coherence path in a dynamic scenario with driving in
opposite directions. (a) The path following result. (b) The path following error. (c) The yaw velocity.
(d) The lateral acceleration.
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The path following experiment in the dynamic scenario with driving in the same
direction is conducted. The target path and the followed path are shown in Figure 19a. The
following error between the followed path and the target path is within the range of 0.07 m,
as shown in Figure 19b, and is relatively small, which shows that the coherence path has a
satisfactory tracking effect. The yaw rate and the later acceleration of the host vehicle when
following the trajectory are shown in Figure 19c,d, respectively. The yaw rate is within the
range of 7 deg/s, and the lateral acceleration is within the range of 0.2 g and less than the
usual value of 0.8 g of the maximum lateral acceleration of steady driving, which shows
the excellent dynamic performance of the host vehicle in the simulation process. Thus, the
obtained coherence path is feasible and acceptable.
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It can be seen from the test results that the algorithm proposed in this article can plan
a path with smooth transition connections and continuous curvature. Furthermore, it is
applied successfully in the dynamic driving scenarios of opposite driving and traveling in
the same direction, which are the most common in vehicle driving.

5. Discussion

The path planning of the vehicle in dynamic scenarios often pays attention not only to
the quality of each frame path but also to the difference in paths between frames. In addition,
the Bi-RRT algorithm, a variant of the basic RRT algorithm, is often used for path planning
because of its probability completeness and rapidity. However, its planned path is not
differentiable and relatively poor in length. Based on those facts, some improved heuristic
methods are introduced to the Bi-RRT algorithm to make it suitable for the dynamic path
planning of the vehicle. The multi-sampling method biased towards the target state makes
the growth of the random tree directional and reasonable. The adaptive greedy step size
considering the target direction can increase the success rate of node expansion and make
the newly extended node tend to the target state direction to a certain extent. The two
random trees are directly interconnected when there are no obstacles between them, as
a result, which further reduces the running time of the algorithm. Changing from only
considering the Euclidean distance to considering the distance from the target state and
the included angles between the connection lines of tree nodes, the parent node selection
method improves the running speed of the algorithm to a certain extent while making
the generated path tend to be gentle. The path reorganization method, including path
node reconnection and path smoothing, can remove necessary turning points, significantly
reduce the path length, and plan a path with continuous curvature. As for the problem
of path connection between frames, the path coherence method can make paths between
different frames smoothly connect to form a differentiable path. By way of the simulation
experiment study, the improved heuristic Bi-RRT algorithm has a real-time performance,
especially in a straight road scenario, and guarantees the shortest path while obeying the
road constraints and the vehicle constraint and considering the driving habit of the driver.
On the contrary, the vehicle constraint and the driver’s driving habits are not considered
when applying the basic Bi-RRT algorithm.

However, it must be admitted that the running time may not be fast enough when
the proposed algorithm is applied in a high-speed and dynamic curved road scene, which
may be due to a large number of numerical calculations based on graphic geometry in
obstacle detection. In future research, obstacle detection of gray value comparison and
parallel computing are introduced to further reduce the proposed algorithm’s running time
to meet the path planning requirement in a high-speed curved road scenario. After the
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preparation of the perception module, changing from the numerical calculation mode of
graphics geometry to the comparison of gray values mode on binarized images, the obstacle
detection can greatly reduce the calculation amount of the algorithm, thus speeding up the
search speed of the algorithm. On this basis, the improved heuristic Bi-RRT algorithm can be
applied to more complex driving scenarios, such as unstructured road scenes with a mixture
of static and moving obstacles with grooves, to explore its adaptability. Furthermore,
compared with other related algorithms, finding out the algorithm’s shortcomings and
the scenes where the algorithm cannot be applied are made to improve the algorithm and
enable it to be applied to more driving scenes.

6. Conclusions

This paper is concerned with the path planning of autonomous vehicles in a dynamic
environment. An improved heuristic Bi-RRT algorithm has been proposed and tested. The
proposed algorithm can solve the path query problem of the basic Bi-RRT algorithm and
the interconnection problem of paths between various frames in a dynamic scenario to
obtain a smooth and asymptotically optimal path with continuous curvature with high
efficiency and accuracy. The proposed path planning algorithm consists of the obstacle-free
direct connection of two trees, the heuristic target bias sampling, the heuristic parent node
selection, the heuristic node extension, the improved constraints, path reorganization,
and path coherence. The obstacle-free direct connection mode can further accelerate the
interconnection of the two random trees. The heuristic target bias sampling can reduce
blind sampling, and the heuristic node extension can decrease invalid expansion, thereby
accelerating the running speed and improving the searching efficiency of the algorithm.
The heuristic parent node selection speeds up the algorithm’s calculation and improves
path quality to some extent. The improved environmental constraint and the improved
vehicle constraint integrated with the advanced obstacle avoidance distance are considered
together to make the vehicle avoid the obstacle in advance and accurately and make the
vehicle drive safely. Path reorganization aims to post-process the initial path to obtain
a reasonable and differentiable path with the approximate optimal length, which can be
tracked by the vehicle smoothly and successfully. In addition, path coherence solves the
problem of the smooth connection of paths between different frames, enabling the vehicle
to run smoothly and steadily at the connection point. Through the simulation experiments,
the improved heuristic Bi-RRT algorithm can generate the smoothest path and takes the
shortest time compared with the other four algorithms. As a result, it is an effective
local path planning algorithm for the autonomous vehicle and has practical value in the
application of the wheeled robot.

In future works, the research focuses on increasing the solution speed, further reducing
the calculation time, especially in the curved road scenario. The proposed algorithm will
be applied in more complex driving scenarios, such as the parking scene and the drift
scene with moving obstacles, to test its adaptiveness. Moreover, after the preparation of
the test platform of the autonomous vehicle, an on-site experiment is conducted to test its
effectiveness in practical applications.
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