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Abstract: Unmanned aerial vehicle (UAV) autonomous navigation requires access to translational
and rotational positions and velocities. Since there is no single sensor to measure all UAV states, it is
necessary to fuse information from multiple sensors. This paper proposes a deterministic estimator
to reconstruct the scale factor of the position determined by a simultaneous localization and mapping
(SLAM) algorithm onboard a quadrotor UAV. The position scale factor is unknown when the SLAM
algorithm relies on the information from a monocular camera. Only onboard sensor measurements
can feed the estimator; thus, a deterministic observer is designed to rebuild the quadrotor translational
velocity. The estimator and the observer are designed following the immersion and invariance method
and use inertial and visual measurements. Lyapunov’s arguments prove the asymptotic convergence
of observer and estimator errors to zero. The proposed estimator’s and observer’s performance is
validated through numerical simulations using a physics-based simulator.

Keywords: sensor fusion; quadrotor; observer design

1. Introduction

Nowadays, quadrotors are used in various applications, thanks to their low cost,
mechanical robustness, and high maneuverability. Such applications include homeland
security, forest-fire control, surveillance, sea and land exploration, human search and rescue,
archaeological exploration, and volcanic activity monitoring, among many others [1,2].
Most of the abovementioned applications become impractical or even dangerous for human
operators; thus, autonomous navigation, control, and guidance are required.

A quadrotor can perform autonomous navigation in unknown environments when
its autopilot has access to all states. However, providing access to all quadrotor states
without relying on a remote computer or sensors demands a vehicle with the capacity to
process and extract information from only onboard sensors. The bottleneck to measuring
all quadrotor states is that there are no out-of-the-box functional and reliable sensors to
measure all states directly. For example, the quadrotor’s attitude is obtained by fusing the
measurements from an inertial measurement unit (IMU). On the other hand, the global
position system (GPS) is the primary sensor used for quadrotor positioning, but it presents
limitations. It fails in environments where satellite communication is degraded, called
GPS-denied environments, such as water bodies and indoors [3]. Furthermore, low-cost
GPS does not provide enough resolution for trajectories on a centimeter scale, and the price
of a GPS with higher resolution, such as differential GPS, increases drastically.

An algorithm to fuse GPS measurements with optical flow information using a Kalman
filter (KF) was proposed in [4]. Shortly after, the work reported in [5] presented an im-
proved sensor fusion algorithm based on an extended Kalman filter (EKF) that includes
the measurements from an inertial navigation system (INS). Both sensor fusion algorithms
improved the position estimation for low-cost GPS but not for GPS-denied environments.
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Computer vision has emerged as a powerful solution for quadrotor position estimation.
Visual sensors have many advantages over other sensors: they are cheap, provide color and
geometric information for scene understanding, and consume less power. Many computer-
vision algorithms are available for position estimation. For example, visual odometry (VO)
estimates the ego-motion of a vehicle with an onboard camera. VO incrementally estimates
the vehicle’s pose by examining the changes that motion induces on the input images [6].
Using a red, green, blue, depth (RGBD) camera, the method reported in [7] improved
the VO algorithm by including a novel covariance estimation technique. The resulting
VO-based algorithm allowed autonomous quadrotor navigation with satisfactory results.
The depth camera measurement allows for determining the position scale factor.

The SLAM algorithm estimates the vehicle’s pose and, at the same time, constructs a
map of the surroundings. The most successful versions of SLAM, running in real time, are
ORB-SLAM [8] and LSD-SLAM [9]. These SLAM variants rely on techniques used to calcu-
late the camera position and construct the map, such as feature extraction, or direct methods
that operate on the image intensities [10]. A comparison between SLAM algorithms for
mobile robot navigation in indoor environments is reported in [11], where it is concluded
that ORB-SLAM can be used to determine the robot position with an additional module to
recover the scale factor. The report [12] presents quadrotor autonomous navigation using a
SLAM algorithm without determining the position scale factor.

Semidirect visual odometry (SVO) is a hybrid algorithm combining feature-based
and direct methods. It estimates the relative motion between two frames by minimizing
photometric errors. The projection error between the location of the feature points and their
predicted positions is minimized to obtain the optimal camera pose [13]. The autonomous
navigation of a UAV using SVO and a recovery mechanism to reinitialize the visual map
when a failure occurs are proposed in [14]. The navigation strategy includes a pose
estimation scheme for temporary vehicle control and a method to correct the scene scale
factor using altitude measurements.

With some differences, computer-vision algorithms can be implemented using monoc-
ular or stereoscopic cameras. Stereo cameras can capture three-dimensional images, mean-
ing the scene’s depth is known. This ability leads to better accuracy and resolution than
in the monocular camera case for position estimation purposes. The algorithms ORB-
SLAM, LSD-SLAM, and SVO, among others, were first developed for monocular camera
implementation and, years after, improved for multi-camera configurations as reported
in [15–17], respectively.

Nevertheless, monocular cameras are preferred for implementation in small vehicles
for several reasons: a single camera is easy to mount due to its smaller size, is lighter and
cheaper, and consumes less power. Additionally, a single camera configuration is free
from the burden of multi-camera calibration and requires less processing power from the
CPU onboard than multi-camera configurations [18]. Only one drawback is present for
monocular cameras: they cannot recover the image’s three-dimensional structure and the
camera position with complete metric information; in other words, the information on the
scene’s depth is unavailable. This phenomenon is known as similarity ambiguity [19]. At
least one piece of metric information is required to recover the absolute scale factor. This
cue may come from prior scene knowledge, such as camera height, object size, vehicle
speed, stereo camera baseline, or other sensors such as LiDAR or GPS.

Some methods have been proposed to deal with the similarity ambiguity problem.
In [20,21], the extra piece of geometric information to determine the position measurement
scale factor comes from an ultrasonic sensor and a one-dimensional laser range finder
(LRF), respectively. These approaches require additional sensors onboard. Besides, the
absolute scale is only calculated on the axis where the sensor is mounted, so it is assumed
that the scale is the same on the other two axes, which is not always valid.

An EKF algorithm considering multirotor dynamics is proposed in [22] to estimate
the scale factor online. A scale factor observability analysis supports the estimator design.
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However, using EKF on this approach makes the estimator nondeterministic, so stability is
not formally proven.

In the field of deterministic estimators, ref. [23] presents a scale estimator based on
control stability. It shows that the absolute scale and control gain have a unique linear
relationship. The absolute scale can be estimated by detecting self-induced oscillations and
analyzing the system stability. The problem with this approach is that an adaptive control
technique must be used for an online estimation, leaving out other types of controllers.

This article presents a scale factor estimator in the cartesian plane fused with a velocity
observer, deterministic and based on the quadrotor dynamic model, using only onboard
sensors. The set of sensors provides the quadrotor’s attitude and angular velocity from an
attitude and heading reference system (AHRS), the quadrotor’s acceleration from the set of
sensors of the inertial measurement unit, and the scaled position from a SLAM algorithm
based on a monocular camera. The scale factor estimator and the velocity observer are
designed following the immersion and invariance methodology introduced in [24]. The
singular contributions of this work are: the estimator and observer are designed considering
the full quadrotor nonlinear model, the Coriolis forces are not neglected, the position scale
factor is reconstructed in all three dimensions, and it is formally proven using Lyapunov
arguments that the estimator and observer errors locally asymptotically converge to zero.
Numerical simulations using Gazebo are presented to support the theoretical developments.
The outcomes of this paper are based on the preliminary works reported in [25,26].

The remaining parts of the paper are arranged as follows. The sensor models used
are presented in Section 2, along with the quadrotor dynamics. Section 3 outlines the
fundamental contribution of this paper and describes the mathematical advancements used
to create the scale factor estimator. Through numerical simulations, Section 4 illustrates
the performance of the estimator. Finally, Section 5 wraps up this paper with a few closing
thoughts and suggestions for future work.

2. Materials and Methods

Table 1 summarizes the notation used to introduce the quadrotor dynamic model.

Table 1. Quadrotor dynamic model notation.

Symbol Variable Units

X =
[

x y z
]> Translational position in inertial coordinates m

R ∈ SO(3) Rotation matrix from body to inertial coordinates dimensionless
Vb =

[
u v w

]> Translational velocity in body frame coordinates m/s
Ω =

[
p q r

]> Angular velocity in body coordinates rad/s

Mb =
[

Mb
x Mb

y Mb
z

]>
Moments generated by the differential thrust,
and reaction moment between the four rotors

Nm

m Quadrotor mass kg
g Gravity acceleration constant m/s2

TT Total thrust generated by the four rotors N
µ Parameter related to aerodynamic drag force [27] kg/s

J ∈ R3×3
Quadrotor inertia matrix kg m2

In Table 1, the International System of Units is considered, and

SO(3) =
{

R ∈ R3×3 | R>R = I, det(R) = 1
}

with I the identity matrix.

2.1. Quadrotor Dynamics

An inertial coordinate frame and a non-inertial coordinate frame (body frame) attached
to the quadrotor center of gravity are needed to describe the quadrotor dynamic, see
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Figure 1. The following equations, expressed in mixed inertial and body coordinates,
describe the translational and rotational quadrotor dynamics [26]:

Ẋ = RVb

mV̇b = mgR>e3 − TTe3 − µHVb −mS(Ω)Vb

Ṙ = RS(Ω)

JΩ̇ = −S(Ω)JΩ + Mb

(1)

with

e3 =

 0
0
1

, H =

 1 0 0
0 1 0
0 0 0

, S(Ω) =

 0 −r q
r 0 −p
−q p 0



Figure 1. Inertial XiYiZi and Body XbYbZb coordinates.

2.2. Available Sensors

It is assumed that the quadrotor carries onboard a set of sensors that provide the
following measurements.

2.2.1. Scaled Position

The vehicle carries a monocular camera facing the horizontal plane and the necessary
computer power to implement a monocular-vision algorithm to determine its scaled inertial
position. Therefore, the following measurement is available

y1 = Xs =

 kxx
kyy
kzz

 =

 kx 0 0
0 ky 0
0 0 kz

 x
y
z

 = diag(K)X (2)

where Xs is the scaled position delivered by the monocular SLAM vision algorithm and
K =

[
kx ky kz

]> is the dimensionless unknown scale factor on the axes XiYiZi, re-
spectively.

Remark 1. The operator diag(A) represents a diagonal matrix whose elements are the elements of
vector A ∈ R3. This operator satisfies the following indentities

diag(A + B) = diag(A) + diag(B) (3)

diag(A)B = diag(B)A (4)

with A, B ∈ R3 vectors.
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2.2.2. Specific Acceleration

Commonly, quadrotors are equipped with an inertial measuring unit (IMU) that
measures the Earth’s magnetic field intensity, angular velocity, and specific acceleration in
body coordinates. According to the Accelerometer Tutorial reported in [27], the specific
acceleration measured by an accelerometer mounted on a quadrotor is given by

ab =
1
m

Fb
T − gR>e3 (5)

where ab is the specific acceleration measured in the body axis and Fb
T is the total external

force acting on the quadrotor expressed in the body axis. From the quadrotor dynamics
model in Equation (1), it follows that

Fb
T = mgR>e3 − TTe3 − µHVb (6)

as a result,

ab = −TT
m

e3 −
µ

m
HVb (7)

Hence, the specific acceleration is an available output, element wise it reads as

y2 =

 ab
x

ab
y

ab
z

 = − 1
m

 µu
µv
TT

 (8)

with ab
x, ab

y and ab
z the specific acceleration along the body axis.

2.2.3. Attitude and Heading Reference Systems

The device that computes the quadrotor’s attitude and rotational velocity from the
IMU measurements is called the attitude and heading reference system (AHRS). Assuming
that the quadrotor carries an AHRS, the following signals are available.

y3 = R =

 r>1
r>2
r>3

 (9)

y4 = Ω =

 p
q
r

 (10)

where ri ∈ S2, i = 1, . . . , 3 are the columns of the rotation matrix transposed,

S2
= {A ∈ R3 | A>A = 1}

is the unit 2-sphere.

2.2.4. Vertical Speed

Through the use of a laser sensor or an ultrasonic sensor, the vertical quadrotor
position can be measured so that the vertical speed can be determined. As a result, it is
presumed that the subsequent measurement is available

y5 = w (11)

Finally, note that the quadrotor translational dynamic, the first equation in (1), ex-
pressed in terms of the measured states reads as

V̇b = gy>3 e3 + y2 − S(y4)Vb (12)
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2.3. Immersion and Invariance Observers

The following developments are based on Chapter 5 of [24]. Consider the following
non-linear, deterministic, time invariant system

η̇ = f1(η, y)
ẏ = f2(η, y)

(13)

where η ∈ R ⊂ Rn and y ∈ Y ⊂ Rm are the unmeasured and measured states, respectively.
It is assumed that the vector fields f1(η, y) and f2(η, y) are forward complete.

Definition 1. The dynamic system

˙̂η = ϕ(η̂, y) (14)

with η̂ ∈ Rn, is an observer for the unmeasured state η if there exists a mapping β : Rn ×Rm →
Rn such that the manifold

M =
{
(η, η̂, y) ⊂ Rn ×Rn ×Rm | β(η̂, y) = η

}
has the following properties

• M is positively invariant,
• All trajectories of (13), (14) that start in a neighbourhood of M asymptotically converge

toM.

The construction of the observer of the form given in Definition 1 requires additional
properties on the mapping β(η̂, y), as stated in the following result.

Theorem 1. Consider the system (13). Suppose that there exist differentiable maps β : Rn ×
Rm → Rn such that

A1 For all η̂ and y the map β(η̂, y) satisfies

det
(

∂β

∂η̂

)
6= 0

A2 The dynamic system

˙̃η = f1(η̃ + β(η̂, y), y)− f1(β(η̂, y), y)− ∂β

∂y
( f2(η̃ + β(η̂, y), y)− f2(β(η̂, y), y)) (15)

has a (globally) asymptotically stable equilibrium at η̃ = 0 uniformily in η̂ and y.

Then, the system (14) with

ϕ(η̂, y) =
(

∂β

∂η̂

)−1(
f1(β(η̂, y), y)− ∂β

∂y
f2(β(η̂, y), y)

)
(16)

is a (global) observer for (13).

The proof of this Theorem is presented in Appendix A. The result expressed in
Theorem 1 is followed to design the velocity observer and the scale factor estimator.

3. Observer and Estimator Design

This section discusses how the observer and the estimator that reconstruct Vb and K,
respectively, are designed from the available measurements of acceleration, scaled position,
attitude, angular velocity, and vertical speed.



Sensors 2022, 22, 8048 7 of 20

3.1. Observation and Estimation Problems

The following terms state the observation problem. Assume that the outputs yi,
i = 1, . . . , 5 are measurable. Design two dynamic systems, likely, of the form

˙̂Vb = ϕ1(V̂b, y2, y3, y4, y5)
˙̂K = ϕ2(K̂, V̂b, y1, y2, y3, y4, y5)

where V̂b ∈ R3 and K̂ ∈ R3, such that two functions exist, β1 ∈ R3 and β2 ∈ R3, that
depend on the available information, and the following identities asymptotically hold

limt→∞ β1(V̂b, y2, y3, y4, y5) = Vb

limt→∞ β2(K̂, V̂b, y1, y2, y3, y4, y5) = K
(17)

3.2. Velocity Observer

According to the immersion and invariance technique, the observation error is defined
as follows

Ṽb = Vb − β1(V̂b, σ) (18)

with β1 element wise reading as

β1 =

 β1x
β1y
β1z

 (19)

where

σ̇ =


ab

x

ab
y

−w

 =


− µ

m
u

− µ

m
v

−w

 = −H̄Vb (20)

and

H̄ =


µ

m
0 0

0
µ

m
0

0 0 1


Equation (18) models the distance to the manifold M of Definition 1, where the

velocity Vb is equal to β1(V̂b, σ). This distance must asymptotically converge to zero to
complete the observer design. Note that the output y2 is not directly used since the time
derivative of Ṽb will require the computation of ẏ2; this is the reason why the new state σ
is introduced.

The time derivative of Ṽb is given by

˙̃Vb = V̇b − ∂β1

∂V̂b
˙̂Vb − ∂β1

∂σ
σ̇ (21)

Substituting V̇b, the body velocity Vb and the time derivative of σ from Equations (12),
(18), and (20), respectively, one has

˙̃Vb = gy>3 e3 + y2 − S(y4)(Ṽb + β1)−
∂β1

∂V̂b
˙̂Vb +

∂β1

∂σ
H̄(Ṽb + β1) (22)

Now, the observer state dynamic ˙̂Vb is defined in terms of the known signals, as

˙̂Vb =
∂β1

∂V̂b

−1(
gy>3 e3 + y2 − S(y4)β1 +

∂β1

∂σ
H̄β1

)
(23)
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Substituting (23) into (22), one obtains

˙̃Vb = −S(y4)Ṽb +
∂β1

∂σ
H̄Ṽb (24)

Consider the following Lyapunov function to define the function β1(V̂b, σ)

νV =
1
2

Ṽb>Ṽb (25)

it follows that
ν̇V = Ṽb> ∂β1

∂σ
H̄Ṽb (26)

Hence, to guarantee that the time derivative of νV is negative-definite, the matrix ∂β1
∂σ H̄

must also be negative-definite. On the other hand, Equation (23) requires the matrix ∂β1
∂V̂b to

be invertible. Note that selecting

β1(V̂b, σ) = V̂b − Γvσ (27)

with

Γv =

 γvx 0 0
0 γvy 0
0 0 γvz

 (28)

and γvx, γvy and γvz positive gains, it follows that

ν̇V = −Ṽb>Γv H̄Ṽb = −Ṽb>diag(h)Ṽb,
∂β1

∂V̂b
= I3 (29)

with h =
[

γvxµ
m

γvyµ
m γvz

]>
and I3 the 3 × 3 identity matrix. As a result, ∂β1

∂σ H̄ is

negative-definite and ∂β1
∂V̂b is invertible.

3.3. Scale Factor Estimator

In reference [25], the scale factor estimator needs the translational velocity as a measur-
able output, but in this work it is available through the observer designed (27) according
to (17). It is important to note also in this equation that β2 depends on states expressed in
mixed inertial and body coordinates, unlike β1 which depends only on states expressed in
body coordinates. In order to have all the states expressed in inertial coordinates, β1 needs
to be translated with the rotation matrix. The inertial velocity is introduced as follows

Vi = y3Vb (30)

Additionally, the inertial velocity observer error is defined

Ṽi = Vi − V̂i (31)

with
V̂i = y3β1 (32)

Now, the scale factor estimation error is defined in the following form

K̃ = K− β2(K̂, y1, V̂i) (33)

with β2 element wise reading as

β2 =

 β2x
β2y
β2z

 (34)
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The derivative with respect to the time of the estimation error is

˙̃K = −∂β2

∂K̂
˙̂K− ∂β2

∂y1
ẏ1 −

∂β2

∂V̂i
˙̂Vi (35)

From Equations (1) and (2), it follows that

ẏ1 = diag(K)y3Vb = diag(K)Vi

ẏ3 = y3S(y4)
(36)

By combining Equations (18) and (32), one obtains

V̂i = y3(Vb − Ṽb) (37)

thus,
˙̂Vi = ge3 + y3y2 − Γv H̄Ṽi (38)

Substituting (36) and (37) into (35), one obtains

˙̃K = −∂β2

∂K̂
˙̂K− ∂β2

∂y1
diag(K)Vi − ∂β2

∂V̂i

(
ge3 + y3y2 − Γv H̄Ṽi

)
(39)

Now, substituting K from (33) and Vi from (31), the scale factor estimation error
becomes

˙̃K = −∂β2

∂K̂
˙̂K− ∂β2

∂y1
diag(K̃ + β2)

(
Ṽi + V̂i

)
− ∂β2

∂V̂i

(
ge3 + y3y2 − Γv H̄Ṽi

)
(40)

The dynamic of the scale factor estimator state is defined in terms of the known signals
as follows

˙̂K =
∂β2

∂K̂

−1(
−∂β2

∂y1
diag(β2)V̂i − ∂β2

∂V̂i
(ge3 + y3y2)

)
(41)

After substituting ˙̂K into the scale factor estimator error (40), it follows that

˙̃K = −∂β2

∂y1

(
diag(K̃)V̂i + diag(K̃ + β2)Ṽi

)
+

∂β2

∂V̂i
Γv H̄Ṽi (42)

Once again, the function β2 needs to be defined to ensure that the estimation error
K̃ converges to zero with ∂β2

∂K̂
an invertible matrix. Thus, the following vector function

is proposed
β2(K̂, y1, V̂i) = K̂ + Γkdiag(y1)V̂i = K̂ + Γkdiag(V̂i)y1 (43)

with

Γk =

 γkx 0 0
0 γky 0
0 0 γkz

 (44)

and γki, i = x, y, z the scale factor estimator gains.
Replacing (43) into (42), one obtains

˙̃K = −Γkdiag(V̂i)
(

diag(V̂i)K̃ + diag(Ṽi)K
)
+ Γkdiag(y1)ΓvH̄Ṽi (45)
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where (3), (4) and (33) had been considered. From (31), it follows that

˙̃K = −Γk

(
diag(Vi)diag(Vi) + diag(Ṽi)diag(Ṽi)

)
K̃

+2Γkdiag(Vi)diag(Ṽi)K̃− Γk

(
diag(Vi)− diag(Ṽi)

)
diag(Ṽi)K

+Γkdiag(y1)Γv H̄Ṽi (46)

The following assumptions are considered to state the main result of this paper.

Assumption 1. The following identity holds.

lim
t→∞

∫ t

0
diag(Vi(τ))diag(Vi(τ))dτ = ∞I

with I ∈ R3×3 the identity matrix.

Assumption 2. There exist control inputs TT and Mb such that the following quadrotor states can
be upper bounded, this is

‖Vi‖ ≤ κ0, ‖y1‖ ≤ κ1 (47)

for some not-necessarily constants κ0 and κ1. The notation ‖(·)‖ stands for the Euclidean norm for
a matrix or vector (·).

Remark 2. Assumption 1 is the persistence of the excitation condition; in this case, fulfilling
this condition implies that the quadrotor must move to estimate the scale factor successfully.
Assumption 2 means that a control loop allows the quadrotor to fly stably; consequently, the
quadrotor dynamics is forward complete.

The following Proposition summarizes the main result of this work.

Proposition 1. Under Assumptions 1 and 2, there are matrix gains Γv and Γk such that the
dynamic systems (23) and (41) are local observers for the translational velocity and estimators of the
scale factor. The translational velocity and scaling factor are rebuilt in (27) and (43).

The proof of this Proposition is reported in Appendix B.

4. Numerical Simulations

A numerical simulation study was performed on different platforms to evaluate the
observer and estimator’s performance.

4.1. Matlab-Simulink

The first one was performed using Matlab-Simulink, to avoid problems such as sensors’
noise and external disturbances so that we can evaluate the estimators by themselves.
A program was designed to simulate a quadrotor in a closed loop with the controller
developed in [28], tracking a circular trajectory on the Cartesian plane and a sinusoidal form
on the vertical plane. To fulfill Assumption 1, the desired trajectories were xd = Acos(ωt),
yd = Asin(ωt) and zd = Acos(ωt). For the velocity observer, the initial conditions used
were Vb(0) =

[
−0.2 0.3 0.2

]> with a proposed µ = 0.6 and gains γvx = 1.2, γvy = 1.2
and γvz = 1.2. Regarding the monocular-vision positioning algorithm for this numerical
simulation, any real values for the scale factor K can be used; nevertheless, in more realistic
simulations such as the ones in the next section, it is observed that the scaled position
is always smaller than the real position, Xs < X, so K < 1; hence, the real values of the
scale factor for this simulation where fixed at K = [0.65 0.7 0.55]>. The gains used for the
estimator were γkx = 2.0, γky = 2.0 and γkz = 2.0.
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Figure 2 shows the velocity observer error Ṽb for this simulation, where it can be seen
that the velocities converge to zero correctly. Note that the velocity error on the Z axis, w̃, is
always zero because the speed on this axis is measurable, (11).

Figure 3 shows the scale factor estimator error K̃ that also proves the correct conver-
gence of the estimator. In this graph the cascade behavior of (46) with (24) can also be seen,
which means that ˙̃K will always converge after ˙̃Vb due to the interconnection term Ψ.

Figure 2. Velocity observer error Ṽb. ũ (continuous line), ṽ (dashed line), w̃ (dotted line).

Figure 3. Scale factor estimator error K̃. k̃x (continuous line), k̃y (dashed line), k̃z (dotted line).

4.2. Gazebo

It is time to put the observers to the test in a simulator, such as Gazebo, which is more
like reality after confirming their proper operation in a controlled setting. The Gazebo is
an open-source 3D robotics simulator. It incorporates the open dynamics engine (ODE) as
a physics engine, OpenGL for graphics, support code for sensor simulation, and actuator
control. The robot operating system (ROS) and the Gazebo simulator are wholly linked.

In the previous simulation, it was easy to set simulation values for the constant µ
and the scaled position Xs delivered by a monocular-vision algorithm. In the Gazebo
simulation, such values will have to be treated more rigorously as would be performed in
an actual experiment.
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4.2.1. Calculation of µ

µ is a term related to the drag coefficient, a positive constant representing a combina-
tion of the profile and induced drag forces on the rotors, known in the helicopter literature
as “rotor drag” [27,29]. Like any other parameter of the quadrotor, such as its weight (m), it
must be measured before experiments. Due to the units of this parameter, listed in Table 1,
it is known as the “mass flow rate”.

From Equation (8), it can be seen that

ab
x = − µ

m
u

ab
y = − µ

m
v

(48)

From any of these two equations, the constant µ can be measured by having access to
the accelerometer and translational velocities measurements, for example

µ = − ab
x

u
m (49)

We have access to both of these measurements in Gazebo, so a circular trajectory
tracking simulation was performed to measure these states. The calculated value for the
quadrotor used in Gazebo is µ = 0.18.

With µ calculated, Figure 4 shows the Equation (48) on the X axis with the quadrotor
following a circular trajectory, where it can be seen that the relation holds, so the calculated
µ is correct. Note that the accelerometer readings (ab

x) have noise added due to the rotors.

0 5 10 15 20 25 30 35

Time (s)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

A
c

c
e

le
ra

ti
o

n
 (

m
/s

²)

Figure 4. Relation between accelerometer and µ on the Xb axis. ab
x (continuous line), − µ

m
u

(dashed line).

4.2.2. Monocular-Vision Algorithm

As mentioned before, the designed scale factor estimator works with any computer-
vision algorithm that implements a monocular camera and delivers position measurements.
For this simulation, we use ORB-SLAM2 [15] due to its precision and accuracy, it is easy to
install and well-documented, and it has ROS integration. Hence, it is easy to add to the
Gazebo environment.

4.2.3. Trajectory Tracking Control Using the Scale Factor Estimator

The simulation involves flying the quadrotor running ORB-SLAM2 from the visual
information obtained by its onboard monocular camera without position control following
a diagonal trajectory in the horizontal plane to obtain the information required to make the
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identities in (17) hold. After this step, the scale factor K will be known through β2, so the
quadrotor will be able to measure its actual position with y1, (2). Then, the quadrotor will
follow a lemniscate trajectory autonomously (closed-loop).

The low-level controller of the quadrotor is driven by [30], which is a driver to inter-
face with Parrot AR-Drone quadrotors through ROS. It takes translational velocities as
control inputs.

Figure 5 shows the Gazebo environment with the SLAM algorithm running. The
window on the left shows what the onboard camera is seeing with the features (points)
detected, and the window on the right depicts the mapping construction.

Figure 5. Gazebo environment.

The first step is to fly the quadrotor in open-loop over a diagonal trajectory from
position (0, 0) to (3, 3), after that to the position (−3,−3) and finally back to the origin
(0, 0), always maintaining a constant velocity of ud = 0.2 and vd = 0.2 .

Figures 6 and 7 show the real velocity and the estimated by the observer. With the
initial conditions of the real velocity and the observer being the same, Vb(0) = [0 0 0]>, and
the high gains γvx = 30, γvy = 30 and γvz = 30, make the observer converge immediately.
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Figure 6. Observed speed on the Xb axis. u (continuous line), β1x (dashed line).
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Figure 7. Observed speed on the Yb axis. v (continuous line), β1y (dashed line).

Figures 8 and 9 show the scale factor estimation on the X and Y axes, respectively.
Note that from time 0 s to 6 s, the estimator remains in zero because, in that period,
the quadrotor takes off and holds in hover for some seconds, so Assumption 1 is not
fulfilled. In the period 22 s to 60 s, some peaks appear because the quadrotor reaches the
coordinates (3, 3) and (−3,−3), respectively. Hence, it changes velocity abruptly to change
its direction of movement to reach the next point. These changes in velocity can also be
seen in Figures 6 and 7 in the time periods.
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Figure 8. Estimated scale factor β2x on the Xi axis.

After the open-loop routine, β2 is calculated to converge at kx = 0.175 and ky = 0.13.
It can also be seen in Figures 8 and 9 that K̃ converges exponentially, as it was anticipated
in (A7). From this point, knowing the scale factor K, the quadrotor will be able to measure
its actual position through y1 in (2) as follows

X = diag(K)−1y1 (50)

Finally, using the estimated information, the quadrotor will follow a lemniscate
trajectory autonomously in closed-loop; that is, xd = 1.5cos(ωt) and yd = sin(2ωt).
Figures 10 and 11 show the real position and the position measured by the quadrotor
on the X and Y axis, respectively, along the lemniscate trajectory.
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Figure 9. Estimated scale factor β2y on the Yi axis.

Figure 12 shows the XY graph of the trajectory validating the closed-loop control of
the quadrotor using the proposed scale factor estimator. The quadrotor completed the
whole lemniscate trajectory twice with the given simulation time. The big arrow indicates
the direction the onboard camera faces the whole trajectory, the line on the left represents
the buildings’ location, and the small arrows indicate the quadrotor motion direction.
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Figure 10. Quadrotor position on the Xi axis. x (continuous line),
xs

kx
(dashed line).

As shown in Figure 12, the SLAM algorithm has better precision in the left part of the
lemniscate because the camera is closer to the buildings, so more image features fed the
algorithm. On the diagonals, the SLAM algorithm performs better when the quadrotor
moves towards the buildings than when it moves away. Although the scale factor estimator
recovers the actual position dimension, it does not help in any sense to improve the SLAM
algorithm performance.

Changing the position of the house on the right in the Gazebo environment, we ran a
second simulation to check if small changes in the initial conditions of the monocular-vision
algorithm influence the final value of the scale factor. In this case, the house on the right is
closer to the quadrotor, as shown in Figure 13. At the end of the simulation, the calculated
scale factor values were kx = 0.232 and ky = 0.166, proving that the scale factor is different
even for the same environment but with minor changes in the initial conditions.
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Figure 11. Quadrotor position on the Yi axis. y (continuous line),
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(dashed line).

Figure 12. Lemniscate trajectory tracking using the scale factor estimator. Real position (continuous
line), desired position (dashed line).
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Figure 13. Gazebo environment with different initial conditions.

5. Conclusions

This article proposed a velocity observer in cascade with a scale factor estimator. The
significant contributions of this work are listed next:

• The velocity observer does not neglect the Coriolis term, offering greater accuracy in
fast flights.

• The scale factor estimator allows taking advantage of all the benefits of monocular
cameras, obtaining the accuracy of a stereoscopic camera without increasing the
processing power.

• Lyapunov’s arguments prove asymptotic convergence to zero of the observer and
estimator errors, and the simulations validate the correct performance and use of the
proposed theory.

• It is illustrated that the scale factor is not the same in all axes, as some authors
assume. It is even different from experimenting in the same environment if the initial
conditions change.

• The proposed approach allows for position trajectory tracking to be performed directly
using the measurements of a monocular-vision positioning algorithm, removing the
limitations of a GPS or a motion capture system.

In future work, experiments will be carried out by a real quadrotor in more complex
environments, combined with other kinds of computer vision algorithms such as person
recognition or obstacle avoidance.
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Appendix A. Proof of Theorem 1

Proof. The distance of the trajectories of systems (13) and (14) to the setM is characterized by

η̃ = η − β(η̂, y)

The η̃ dynamic is given by

˙̃η = f1(η, y)− ∂β

∂η̂
ϕ(η̂, y)− ∂β

∂y
f2(η, y) (A1)

thus, replacing ϕ(η̂, y) from Equation (16) into (A1), it follows that the η̃ dynamic becomes
equal to (15). Finally, assumption A2 implies that (globally)

lim
t→∞

β(η̂, y) = η (A2)

Appendix B. Proof of Proposition 1

Proof. The proof is divided into the following steps. In the first step, it is shown that
the velocity observer error converges exponentially to zero. Then, it is proven that the
trajectories of the estimation error do not explode in finite time. Finally, it is verified that
the interconnection term between the observer and estimator dynamics satisfies a linear
growth condition to the estimator error.

Note that considering Equation (27), the time derivative of the Lyapunov function (26)
can be written as follows

ν̇V = −Ṽb>Γv H̄Ṽb (A3)

as a result, one has Ṽb converges exponentially to zero.
Now, to prove that the estimation error trajectories do not explode in finite time,

consider the following Lyapunov function

νK =
1
2

K̃>K̃ (A4)

whose derivative with respect to time along the estimator dynamic (46) is

ν̇K = −K̃>Γk

(
diag(Vi)diag(Vi) + diag(Ṽi)diag(Ṽi)

)
K̃

+2K̃>Γkdiag(Vi)diag(Ṽi)K̃

−K̃>Γk

(
diag(Vi)− diag(Ṽi)

)
diag(Ṽi)K

+K̃>Γkdiag(y1)Γv H̄Ṽi (A5)

thus, (λM(·) stands for the maximal eigenvalue of matrix ·.)

ν̇K ≤ λM(Γk)
(
‖diag(Vi)‖2 + ‖diag(Ṽi)‖2

)
‖K̃‖2

+2λM(Γk)‖diag(Vi)‖‖diag(Ṽi)‖‖K̃‖2

+λM(Γk)
(
‖diag(Vi)‖+ ‖diag(Ṽi)‖

)
‖diag(Ṽi)‖‖K‖‖K̃‖

+λM(Γk)‖diag(y1)‖λM(Γv)λM(H̄)‖Ṽi‖‖K̃‖ (A6)

Hence, since the quadrotor dynamics is forward complete, the relationship in (A6)
implies that the dynamic of K̃ does not blow up in finite time. Note that if the error signal
Ṽb is equal to zero the estimation error dynamic (46) reduces to

˙̃K = −Γkdiag(Vi)diag(Vi)K̃ (A7)
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and the time derivative of the Lyapunov function (A4) along the trajectories of (A7) becomes

ν̇K = −K̃>Γkdiag(Vi)diag(Vi)K̃ (A8)

then, from Assumption 1 and selecting Γk as a positive-definite matrix, it follows that the
estimation error K̃ converges asymptotically to zero.

The last step in this proof is to prove that the interconnection term between the
estimator and observer dynamics given by

Ψ = −Γkdiag(Ṽi)diag(Ṽi)K̃ + 2Γkdiag(Vi)diag(Ṽi)K̃

−Γk

(
diag(Vi)− diag(Ṽi)

)
diag(Ṽi)K

+Γkdiag(y1)Γv H̄Ṽi (A9)

grows lineally with respect to K̃. From, Assumption 2 one has

Ψ ≤ λM(Γk)
(
‖Ṽi‖2 + 2κ0‖Ṽi‖

)
‖K̃‖+ λM(Γk)

(
κ0 + ‖Ṽi‖)

)
‖Ṽi‖‖K‖

+λM(Γk)κ1λM(Γv)λM(H̄)‖Ṽi‖ (A10)

The inequality (A10) shows that the interconnection term Ψ grows linearly with respect
to the estimation error K̃; thus, Assumption 4.5 of [31] is satisfied. As a result, the cascade
system (46) and (24) is asymptotically stable. Hence, the proof is concluded.
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