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Abstract: A new approach to the estimation and classification of nonlinear frequency modulated
(NLFM) signals is presented in the paper. These problems are crucial in electronic reconnaissance
systems whose role is to indicate what signals are being received and recognized by the intercepting
receiver. NLFM signals offer a variety of useful properties not available for signals with linear
frequency modulation (LFM). In particular, NLFM signals can ensure the desired reduction of side-
lobes of an autocorrelation (AC) function and desired power spectral density (PSD); therefore, such
signals are more frequently used in modern radar and echolocation systems. Due to their nonlinear
properties, the discussed signals are difficult to recognize and therefore require sophisticated methods
of analysis, estimation and classification. NLFM signals with frequency content varying with time
are mainly analyzed by time–frequency algorithms. However, the methods presented in the paper
belong to time–chirp domain, which is relatively rarely cited in the literature. It is proposed to use
polynomial approximations of nonlinear frequency and phase functions describing signals. This
allows for applying the cubic phase function (CPF) as an estimator of phase polynomial coefficients.
Originally, the CPF involved only third-order nonlinearities of the phase function. The extension of
the CPF using nonuniform sampling is used to analyse the higher order polynomial phase. In this
paper, a sixth order polynomial is considered. It is proposed to estimate the instantaneous frequency
using a polynomial with coefficients calculated from the coefficients of the phase polynomial obtained
by CPF. The determined coefficients also constitute the set of distinctive features for a classification
task. The proposed CPF-based classification method was examined for three common NLFM signals
and one LFM signal. Two types of neural network classifiers: learning vector quantization (LVQ) and
multilayer perceptron (MLP) are considered for such defined classification problem. The performance
of both the estimation and classification processes was analyzed using Monte Carlo simulation studies
for different SNRs. The results of the simulation research revealed good estimation performance and
error-free classification for the SNR range encountered in practical applications.

Keywords: NLFM signal classification; NLFM signal estimation; cubic phase function; multiclass
classification; instantaneous frequency rate

1. Introduction

In this paper, an approach based on the time–chirp (T −Ω) transform used for the
estimation and classification of signals with nonlinear frequency modulation (NLFM)
has been presented. The chirp rate (Ω), also called the instantaneous frequency rate
(IFR), is the signal phase acceleration and can be calculated as the time derivative of a
frequency function. The analysis and processing of NLFM signals are exploited in a wide
range of applications for example in Electronic Support Measures/Electronic Intelligence
(ESM/ELINT), Electronic Warfare (EW), Electronic Reconnaissance (ER) systems, as well as
in passive bistatic radar (PBR) [1]. Modern electronic intelligence and electronic support
are designed to automatically distinguish the modulation type of an intercepted radar
signal, which can be utilized in early warning systems or give more information about
hostile radars [2–7]. Passive bistatic radar uses emissions from communications, broadcast,
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or radionavigation transmitters instead of dedicated, cooperative radar transmitters. The
transmitted waveforms are not explicitly designed for passive radar purposes. Therefore,
knowledge about the received signal is crucial in the ability of waveform recognition and
reconstruction. New sources of target illumination in passive radars are constantly being
searched. Solutions with using the 5G cellular network as a source of illumination in
a passive radar system have recently appeared [8]. The NLFM waveform for synthetic
aperture radar (SAR) applications is important for improving spaceborne SAR image
quality and reducing system costs [9,10]. The NLFM waveform was also proposed for
active sonars [11].

The NLFM signal can be synthesized in different ways in order to obtain desired
properties by shaping the power spectral density (PSD). Due to nonlinear frequency modu-
lation, such signals can achieve the desired PSD and desired autocorrelation function with
reduced sidelobes compared to LFM signals [12–14]. In the case of narrowband signals,
the Doppler offset may be miscalculated in the narrowband ambiguity function [15,16].
The potential advantage of NLFM is its Doppler shift tolerance. These properties make
NLFM signals very attractive especially for radar applications. Generally, synthesis of
signals with limitation of the required level of AC-sidelobes and desired power spectral
density is a great challenge. These conditions require multi-objective optimization ap-
proach with strong constraints and high computational load and may result in inconsistent
requirements [11,15,17–20]. Appropriate NLFM chirps achieving the desired shape of the
power spectrum have been suggested as a solution to this problem. Signals for which
parameterized nonlinear frequency modulations satisfy the desired spectral properties,
achieving low level sidelobes, have been proposed by a lot of authors. Signal models
presented by Collins and Atkins [11], Pirce [21] or Yue and Zhang [22] are very popular
and are also the subject of analysis in this paper.

A special class of NLFM signals, which enables the shaping of the PSD and obtains
the desired AC function, is polynomial phased signals (PPS). This kind of nonlinear signal
plays a significant role in modern radar systems, including SAR, ISAR and OTHR systems,
as well as in sonars, biomedicine, machine engine testing, etc., especially in the ISAR, where
due to target movement or extreme target maneuvers, the radar returns contain mainly PPS
components, possibly with high-order phase terms [23,24]. The simplest type of a signal
with a polynomial phase is a signal with linear frequency modulation. Unfortunately, the
PSD of an LFM signal is approximately rectangular and after matched filtering (MF) the
peak-to-sidelobe ratio (PSLR) is rather low, reaching about 13.3 [dB]. Therefore, NLFM
signals are considered to be a good alternative to LFM signals.

Modern radar systems, especially surveillance systems, can emit a pulse train with
inter-pulse and intra-pulse complex modulation, including both linear and nonlinear
frequency modulation. If such radars operate in the dense, hostile electromagnetic environ-
ment, intercepted signals should be recognized or classified by means of spectrum-sensing
systems such as ELINT, ER and EW. The main problem of recognition and estimation of
intercepted signals is the determination of the modulation type and its parameters. If
any information is not available, it is reasonable to assume a phase polynomial for such
signals with a sufficiently high order of polynomial nonlinearity. Even parameterized
nonlinearities, which usually have a complex analytical description, can be approximated
by polynomial form with a sufficiently high order to obtain a simpler description for fur-
ther analysis. In this paper, the polynomial approximation of the NLFM models has been
evaluated for estimation and classification purposes. The set of selected coefficients of
polynomial approximation is suggested as distinctive features allowing the identification of
a type of unknown emission by means of classification. This approach requires a database
containing a set of nonlinearity types. In this paper, the estimation of the PPS parameters
as well as identification by classification of other type of nonlinearities are considered.

The general description of nonstationary signals embedded in noise can be presented
as follows:

s(t) = A(t)ejφ(t) + sn(t) (1)
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where φ(t) is the phase of the signal, A(t) is the amplitude of the signal and sn(t) is white
Gaussian noise.

There is an unambiguous relationship between frequency function f (t) (the instanta-
neous frequency (IF)) and the instantaneous phase function φ(t) of a nonstationary signal
s(t) through the differentiation operation:

f (t) =
1

2π

dφ(t)
dt

(2)

Knowledge of the IF function automatically determines the phase function and vice
versa. It seems natural to use time–frequency (T-F) distributions for IF analysis and estima-
tion of NLFM signals. However, the most known quadratic T-F distributions, such as the
pseudo Wigner–Ville distribution and the Choi–Williams distribution, contain cross-term
components, and the estimation of the instantaneous frequency modulation is performed
with unacceptable accuracy. Therefore, they are practically useless [2]. For analysis of the
PPS, the high order ambiguity function (HAF) or the product HAF (PHAF) seems to be
attractive. In these distributions, the phase-differentiation (PD) operation is repeated many
times until a single complex sinusoidal signal is obtained [25,26]. The frequency of the
obtained sinusoidal signal indicates the highest order PPS coefficient. Next, the original
signal is dechirped with the use of this PPS coefficient. The remaining parameters are
estimated by repeating the same procedure. Although these methods provide good accu-
racy, they suffer from high computational burden and error propagation during dechirping
operations. Therefore, they seem to be useless for NLFM.

This paper deals with the effective estimation of the PPS of higher order. The pro-
posed method is based on the concept of nonlinear sampling and the cubic phase function
distribution (CPF) developed on the time–chirp (T−Ω) plane [27]. The CPF distribution
turned out to be effective in parameter estimation of the quadratic frequency modulation
signals [28]. In this paper, the CPF is proposed to extract distinctive features of parameter-
ized nonlinearities approximated by a polynomial useful in classification. Nonlinearities
within the paper are replaced by the polynomial form containing sufficient information to
classify NLFM signals. Although the CPF was originally designed for the estimation of the
third order PPS, in this paper, the CPF method is used for estimation of the sixth order PPS.

The classification of NLFM using the set of distinctive properties obtained from the
CPF method on the (T −Ω) plane is presented in the next part of the paper. The classifi-
cation process comprises three types of nonlinearities typical for radar applications. The
classification of NLFM signals is not trivial, especially for signals with abrupt frequency
changes, and requires advanced systems such as neural networks to achieve high classi-
fication efficiency [29–32]. Generally, due to the ability of self-learning and adaptability,
neural networks can outperform other classification approaches. Two neural classifiers
based on learning vector quantization (LVQ) and multilayer perceptron (MLP) networks
have been used and compared. Other concepts of LFM and NLFM classification based on
neural networks can be found in [33–35]. The neural network classification, considered in
this paper, also takes into account the classification between NLFM and LFM signals [36].

The paper is organized as follows: Section 2 presents selected NLFM signals used
in radar and sonar and discusses the use of their polynomial approximations. Section 3
discusses various methods of IF estimation and describes the proposed IF estimator based
on the cubic phase function, while Section 4 presents the results of simulation studies on the
quality of the proposed IF estimator. Section 5 proposes the use of the CPF-based estimator
of phase polynomial coefficients in the classification of the NLFM signals and presents the
results of simulation tests. Section 6 presents the conclusions.

2. Nlfm Signals and Their Polynomial Approximations

In this section, some selected examples of nonlinear functions used for the generation
of NLFM signals for radar and echolocation systems are presented. Then, using the Taylor
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expansion of these functions, some aspects related to the accuracy of the polynomial
approximation are illustrated and discussed.

Currently, NLFM signals are mainly developed for use in radar and sonar technolo-
gies. To present the proposed estimation and classification methods, three representative
NLFM functions have been selected and presented by Formulas (3)–(7). The functions
and their parameters were designed by their authors to minimize the sidelobes of the
autocorrelation function.

The NLFM signal developed by Collins and Atkins [11] consists of a linear and
nonlinear part. The nonlinearity impact is determined by two parameters α and γ:

f1(t, α, γ) =
B
2

[
α tan(2γt/T)

tan(γ)
+

2(1− α)t
T

]
; −T

2
≤ t ≤ T

2
(3)

where B is the signal bandwidth, T is the time duration of the pulse, and α is the parameter
that defines the weight between the linear and nonlinear part, while the parameter γ affects
the intensity of the nonlinear part.

Parameter values that minimize the sidelobes of the autocorrelation function are
α = 0.52 and γ = 1.47 [11].

The NLFM signal proposed by Price [21] also consists of a linear part represented by
the BL parameter and a nonlinear part controlled by BC:

f2(t, BL, BC) =
t
T

(
BL +

BC√
1− 4t2/T2

)
. (4)

In the paper, the following form of Formula (4), explicitly showing the signal band-
width B [12], is used:

f2(t, Bl , Bc) = B
t
T

(
Bl +

Bc√
1− 4t2/T2

)
, (5)

where the parameters: Bl = BL/B and Bc = BC/B, with values Bl = 0.561105 and
Bc = 0.23799 minimizing sidelobes [12], and the time interval−0.45T ≤ t ≤ 0.45T covering
bandwidth B.

The NLFM signal proposed by Yue and Zhang [22] is given by the formula:

f3(t, k1, k2) = Bk1 tan
(

k2
t
T

)
; −T

2
≤ t ≤ T

2
. (6)

where the parameters k1 and k2 that minimize the sidelobes take values: k1 = 0.1171 and
k2 = 2.607.

In the presented analyses, the LFM signal is also used. It has the same bandwidth B
and the pulse duration T as NLFM signals. The frequency of the LFM signal is described
by the following formula:

fLFM(t) =
B
T

t; −T
2
≤ t ≤ T

2
. (7)

Nonlinear, continuous functions f1(t, α, γ), f2(t, Bl , Bc), f3(t, k1, k2) determined on the
closed interval:− T

2 ≤ t ≤ T
2 , according to the Weierstrass approximation theorem, can

be approximated with desired accuracy using polynomial functions of a sufficiently high
order. The approximation error for a particular nonlinear function depends on the order of
the polynomial.

The proposed estimation and classification method is based on simplified polynomial
models of nonlinear functions that describe the frequency and phase of the NLFM signals.
An important issue is the selection of the order of the approximating polynomial. In the
paper, this issue is analyzed using the Taylor series approximation, which makes it possible
to obtain an analytical description of the signal frequency and phase as a function of time.



Sensors 2022, 22, 8104 5 of 20

Examples of the approximation of the nonlinear functions f1(t, α, γ), f2(t, Bl , Bc),
f3(t, k1, k2) are presented by (8)–(10). Polynomials of the fifth order were calculated using
the Taylor expansion around the time point t = 0:

f Ta
1 (t, α, γ) =

B
T

(
1− α +

αγ

tan(γ)

)
t +

4Bαγ3

3T3tan(γ)
t3 +

32Bαγ5

15T5tan(γ)
t5 + R f 1(t, α, γ) (8)

f Ta
2 (t, Bl , Bc) =

B(Bc + Bl)

T
t +

2BBc

T3 t3 +
6BBc

T5 t5 + R f 2(t, Bc, Bl) (9)

f Ta
3 (t, k1, k2) =

Bk1k2

T
t +

Bk1k2
3

3T3 t3 +
2Bk1k2

5

15T5 t5 + R f 3(t, k1, k2) (10)

where R f 1(t, α, γ), R f 2(t, Bc, Bl) and R f 3(t, k1, k2) are reminder terms.
Figure 1 illustrates a change in the accuracy of f Ta

1 (t, α, γ) approximation depend-
ing on the polynomial order. Figure 1a shows the function f1(t, α, γ) and its polyno-
mial approximations of order M ∈ {5, 9, 13}. Figure 1b shows the error ∆ f1(t, α, γ) of
these approximations.

∆ f1(t, α, γ) = f1(t, α, γ)− f Ta
1 (t, α, γ) (11)

−1 −0.5 0 0.5 1

·10−5

−2

−1

0

1

2

·106

t [s]

f(
t)

[H
z]

(a)

f1(t, α, γ)

f Ta
1 (t, α, γ); M = 5

f Ta
1 (t, α, γ); M = 9

f Ta
1 (t, α, γ); M = 13

−1 −0.5 0 0.5 1

·10−5

−5

0

5

·105

t [s]

∆
f 1
(t

,α
,γ

)
[H

z]

(b)

M = 5
M = 9
M = 13

Figure 1. The accuracyof nonlinear frequency approximations, (a) the function f1(t, α, γ) and its
Taylor polynomial approximations of the order M ∈ {5, 9, 13}, (b) the error of approximations.

As can be seen from the analysis of the results presented in Figure 1, the error of
polynomial approximation for the order M > 5 slowly decreases. Similar results are
obtained for the approximation of the functions f2(t, Bl , Bc) and f3(t, k1, k2).

Based on the relationship (2), it is possible to calculate the analytical functions (12)–(15)
that describe the instantaneous phase of the NLFM and LFM signals:

φ1(t, α, γ) = πB

[
αT ln(tan(2γt/T)2 + 1)

4γ tan(γ)
+

(1− α)t2

T

]
+ φ0

1, (12)

φ2(t, Bl , Bc) =
π

2
B
(

2Bl
T

t2 − Bc
√

T2 − 4t2
)
+ φ0

2, (13)

φ3(t, k1, k2) =
πBTk1

k2
ln
(

tan(k2
t
T
)

2
+ 1
)
+ φ0

3, (14)

φLFM(t) =
πB
T

t2 + φ0, (15)

where φ0
1 , φ0

2 , φ0
3 , φ0 are initial phase values, while the time interval is is − T

2 ≤ t ≤ T
2 .
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The Taylor polynomial approximation is calculated around the time moment t = 0 nd
phase value: φ(0), as the phase function is symmetrical with respect to this point. Taylor
approximations of the phase with polynomials of the sixth order are presented by (16)–(18).

φTa
1 (t, α, γ) =

πB
T

(
1− α +

αγ

tan(γ)

)
t2 +

2πBαγ3

3T3tan(γ)
t4 +

32πBαγ5

45T5tan(γ)
t6 + Rφ1(t, α, γ) (16)

φTa
2 (t, Bl , Bc) = −

π

2
BBcT +

πB(Bc + Bl)

T
t2 +

πBBc

T3 t4 +
2πBBc

T5 t6 + Rφ2(t, Bc, Bl) (17)

φTa
3 (t, k1, k2) =

πBk1k2

T
t2 +

πBk1k2
3

6T3 t4 +
2πBk1k2

5

45T5 t6 + Rφ3(t, k1, k2) (18)

where Rφ1(t, α, γ), Rφ2(t, Bc, Bl), Rφ3(t, k1, k2) are reminder terms.
The influence of polynomial order on the accuracy of the polynomial approximation

of the phase function φ1(t, α, γ) is presented in Figure 2. Figure 2a shows the function
φ1(t, α, γ), and its polynomial approximations of order M ∈ {6, 10, 14}. Figure 2b shows
the error ∆φ1(t, α, γ) of these approximations:

∆φ1(t, α, γ) = φ1(t, α, γ)− φTa
1 (t, α, γ) (19)

−1 −0.5 0 0.5 1

·10−5

0

10

20

30

40

50

t [s]

φ
(t
)

[r
ad

]

(a)

φ1(t, α, γ)

φTa
1 (t, α, γ); M = 6

φTa
1 (t, α, γ); M = 10

φTa
1 (t, α, γ); M = 14

−1 −0.5 0 0.5 1

·10−5

0

1

2

3

4

t [s]

∆
φ

1(
t,

α
,γ

)
[r

ad
]

(b)

M = 6
M = 10
M = 14

Figure 2. The accuracyof phase function approximations, (a) the function φ1(t, α, γ) and its Taylor
polynomial approximations of order M ∈ {6, 10, 14}; (b) the error of approximations.

As can be seen from the analysis of the results presented in Figure 2, the error of poly-
nomial approximation of phase function is quite small compared to phase value. Similar
results are obtained for the approximation of the functions φ2(t, Bl , Bc) and φ3(t, k1, k2).

In the paper, the polynomial approximation of a phase function has been analyzed
to classify NLFM signals. The nonlinear change in the frequency of analyzed signals is
described by the odd function, which results in an odd order of approximating polynomial.
Taking into account this feature and the relationship (2), the polynomial approximation
of the phase function is of an even order. In our case, after preliminary investigation,
we decided that the order of the polynomial approximation of the phase function can be
limited to M = 6. The set of selected coefficients of the approximating polynomial is chosen
as a set of distinctive features in the proposed method of classification of NLFM signals.
The sixth order of the approximating polynomial seems sufficient to constitute a set of
distinctive features. Although the selected order of the approximating polynomial does
not guarantee a perfect polynomial fitting, especially on signal parts with abrupt nonlinear
changes, it allows for effective classification with the low computational load.

3. The CPF-Based Estimator of the IFR

The recognition of signals with nonlinear frequency modulation is usually performed
with the use of estimation of the instantaneous frequency of the signal. There are many
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methods for analyzing nonlinear frequency functions, including all distributions of the
group belonging to the Cohen class. These are, among others, time–frequency distributions
such as the Wigner–Ville distribution, the Choi–Wiliams distribution and the short-time
Fourier transform (STFT). A large group of signals with a nonlinear frequency are PPS.
Very good estimation results of the higher order PPS are obtained by the quasi-maximum
likelihood (QML) method, which is an extended version of the STFT transformation [37–39].
Estimation of the IF is performed by the STFT. Coefficients of the PPS are obtained from
the IF estimates using the classical polynomial regression. The QML method requires an
additional refining procedure to improve the quality of coarse estimates of polynomial
coefficients. The refining process consists of four steps: dechirping the received signal using
coarse initial estimates of the polynomial phase parameters provided by the STFT, filtering
through an M-point moving average (MA) filter combined with an M-fold decimation,
polynomial phase estimation of the obtained signal by phase unwrapping and least squares
estimation. The final estimates are calculated as a combination of estimates obtained in step
3 with the initial coarse estimates [40]. In the last step of the QML method, the optimal STFT
window is searched by maximizing the quasi-ML function. Rather than directly searching
through all parameters of phase polynomial, the maximum QML function is calculated for
the estimates provided by STFT and polynomial regression. The QML is computationally
exhaustive for higher order PPS because it requires multiple STFT calculations and multiple
polynomial regression calculations, which are slow but precise processes. Therefore, it is
desirable to search for a new transform with results comparable to the QML transform, but
with less computational effort. A proposed alternative method of estimating the parameters
of approximating polynomials is the CPF distribution defined for discrete signals.

Discrete signals of interest (i.e., PPS) zr(n) are characterized by a constant amplitude
b0 and phase φ(n) and are defined as:

zr(n) = zs(n) + zw(n) = b0ejφ(n) + zw(n), −N − 1
2
≤ n ≤ N − 1

2
, (20)

where the phase function φ(n) is described by the M− th order polynomial with coefficients
am and zw(n) is Gaussian white noise with variance σ2. The discrete phase function is
specified by the following formula:

φ(n) =
M

∑
m=0

aφmnm (21)

The CPF is defined as follows:

CPFzr (n, Ω) =

N−1
2

∑
m=0

zr(n + m)zr(n−m)e−jΩm2
(22)

where Ω is the frequency rate.
The discrete time tn = nTs resulting from sampling with the period Ts and the discrete

frequency rate Ω define a discrete grid on the time—frequency rate plane (n, Ω). Therefore,
the discrete results of the estimation of phase polynomial coefficients may differ from the
continuous case if the discrete grid is sparse. The estimate of IFR [28,41] for each point in
time is obtained as follows:

ÎFR(n) = argmax
Ω

CPFzr (n, Ω) (23)

The CPF presented in the literature is mainly used to estimate the parameters of
a signal phase polynomial up to the third order [28,41,42]. However, according to the
analysis presented in Section 2, the proposed classification approach requires estimation
of the coefficients of the sixth order phase polynomial. In this paper, the extension of
the CPF to analysis of a sixth order polynomial is considered. The proposed approach
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assumes that only one run of the CPF-based method is used to estimate coefficients of the
phase polynomial of the required order. Having had the set of estimated phase polynomial
coefficients, the set of frequency polynomial coefficients can also be calculated according to
the relationship (2). The proposed method based on the CPF has a lower computational
load than the QML and other commonly known methods dedicated to the analysis of
signals in the frequency or time–frequency domains.

NLFM signals are most often defined by frequency functions, such as functions
f1(t, α, γ), f2(t, BL, BC) and f3(t, k1, k2) given in Section 2 described by (3)–(6). Gener-
ating signals by means of Equation (1) requires the knowledge of the corresponding phase
functions, which for the analyzed signals are represented by the functions φ1(t, α, γ),
φ2(t, BL, BC) and φ3(t, k1, k2) described by (12)–(14). The CPF algorithm, which processes
the received noise-disturbed signal (20), estimates the coefficients of the discrete phase
polynomial model. In the proposed classification method, these coefficients of the phase
polynomial are used as a set of distinctive features. Classification methods are described
in more detail in Section 5. Moreover, the estimation of the instantaneous frequency with
the use of a discrete polynomial approximating the continuous frequency function is pro-
posed. The coefficients of the approximating frequency polynomial are calculated from the
coefficients of the phase polynomial obtained using CPF.

The proposed M− th order polynomial approximating frequency function f (n) is of
the form:

f̂ (n) =
M

∑
m=0

a f mnm, (24)

where a f m are the coefficients of the frequency polynomial.
The coefficients of the frequency polynomial (24) can be obtained from phase polyno-

mial coefficients using relationships (2) and take the following value:

a f m =
(m + 1)aφm+1

2πTs
(25)

where the coefficients aφm of the phase polynomial are obtained by the CPF.
Modification of the kernel of the classical CPF distribution (22) with the use of nonuni-

form sampling allows for higher order PPS decomposition. By sampling the signal at
nonuniformly spaced time moments, the order of the PPS estimator can be lowered [43].
The kernel of the original CPF distribution (22) is as follows:

K(zr, n) = zr(n−m)zr(n + m) (26)

and the modified kernel takes the following form:

K(zr, n) = zr

(
n−
√

Cm
)

zr

(
n +
√

Cm
)

, m = 0, 1, . . . ,
N − 2

2
− |n| (27)

where
√

Cm defines the nonlinear sampling [44].
The proposed sampling allows the calculation of the CPF using the FFT method, which

results in a significant reduction of the computational load.
If we consider the modified kernel for n = 0 and the signal model (2) processed by this

kernel, a third order polynomial form is obtained with only even coefficients from the set
of all coefficients of the sixth order phase polynomial, which is proposed as a polynomial
approximation of considered nonlinearities:

K(zr, 0) = zr1(m) = ej2(Ca2m+C2a4m+C3a6m3) (28)

where the parameter C = (N − 1)/2 controls the sampling process, and a2, a4, a6 are
polynomial parameters related to phase polynomial coefficients from (21).
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The kernel K(zr, 0) creates the signal with the polynomial phase of the 3rd order. Coef-
ficients of such a polynomial can be efficiently computed using the CPF distribution (22).
Parameters 2Ca2, 2C2a4 and 2C3a6 are related to aφ2, aφ4, aφ6, respectively. Therefore, the
estimation of the polynomial parameters can be performed directly by the CPF procedure:

Ω̂1 = arg max
Ω

CPFzr (n1, Ω) (29)

Ω̂2 = arg max
Ω

CPFzr (n2, Ω) (30)

It is natural to assume the parameter n1 = 0, but parameter n2 should be chosen to
obtain a statistically optimal estimate of parameters. It strongly depends on the properties
of analyzed signals. The Ω̂1 and Ω̂2 allow for calculating âφ4 and âφ6 according to Equations
(31) and (32) [28]:

âφ4 =
Ω1n2 −Ω2n1

4C2(n2 − n1)
(31)

âφ6 =
Ω2 −Ω1

12C3(n2 − n1)
(32)

An estimate of a2 from (28) is obtained by dechirping and finding the Fourier transform
peak and âφ2 can be calculated as follows:

âφ2 =
â2

2C
(33)

The kernel (28) is independent of the remaining parameters aφ1, aφ3, aφ5 of the phase
polynomial. The accuracy of the estimation process depends on the SNR, and operations
above a certain SNR threshold are performed with acceptable accuracy.

The estimated parameters aφ2, aφ4 and aφ6 are used for the estimation of the nonlinear
frequency function and the signal classification process. The proposed method including
estimation and classification is summarized in the flow diagram presented in Figure 3.

Acquisition of signal zr(n)

Calculation of kernel K(zr, n) (according to (27)

Calculation of Ω̂1, Ω̂2 with using CPF (according to (29), (30))

Calculation of âφ4, âφ6 (according to (31), (32))

Calculation of âφ2 (according to (33))

Passing âφ2, âφ4 and âφ6
to estimation and classification procedures

NLFM IF estimation
(according to (27)–(33))

Section 4

NLFM signals classification
(using LVQ, MLP classifiers)

Section 5

Figure 3. Flow diagram of the proposed method including estimation and classification.
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4. Frequency Estimation of NLFM Signals Based on CPF

Simulation investigations of the proposed algorithms were carried out for three
waveforms NLFM and one LFM waveforms. The NLFM functions, marked as f1(t, α, γ),
f2(t, BL, BC) and f3(t, k1, k2), are presented in Section 2 and are described by (3)–(6). Their
specific parameters ensuring minimal sidelobes are presented there. The up-chirp LFM
waveform fLFM(t) is described by Formula (15). The following time and bandwidth pa-
rameters for all signals were assumed: pulse duration T = 20 · 10−6 s. (with time frame:
−T/2 ≤ t ≤ T/2); sampling frequency fs = 100 MHz; signal bandwidth B = 5 MHz. The
signal noise was assumed to be complex Gaussian with variance depending on the SNR.
To evaluate the proposed methods, Nsr = 500 Monte Carlo simulations were carried out
for each case.

For assumed sixth order phase polynomial and odd frequency functions, the estima-
tion function takes the form:

f̂ (n) = a f 1n + a f 3n3 + a f 5n5, (34)

where a f 1, a f 3 and a f 5 are polynomial coefficients that can be calculated as follows:

a f 1 =
aφ2

πTs
(35)

a f 3 =
aφ4

πTs
(36)

a f 5 =
aφ6

πTs
(37)

where aφ2, aφ4 and aφ6 are the coefficients of the polynomial approximating phase obtained
from the CPF.

The quality of the estimation of the instantaneous frequency of the signal can be
assessed by the root mean square error (RMSE) determined according to the relationship:

RMSE(k) =

√√√√ 1
Nsr

[
Nsr

∑
n=1

(
f̂n(k)− fNLFM(k)

)2
]

(38)

where Nsr is the number of simulation runs.
Figures 4 and 5 show the RMSE of the estimation of the instantaneous value of

the frequency of NLFM signals obtained using the proposed CPF-based method. For
comparison, Figure 5b shows the RMSE for the LFM signal.
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Figure 4. The RMSEof estimation of the instantaneous value of the frequency: (a) f1(t, α, γ),
(b) f2(t, Bl , Bc).
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Figure 5. The RMSEof estimation of the instantaneous value of the frequency: (a) f3(t, k1, k2);
(b) fLFM(t).

The analysis of RMSE presented in Figures 4 and 5 shows that the estimation error
level is mainly around 0.5% of the bandwidth B, except for the edges where it increases
to 5%.

Then, the mean square error (MSE) dependence on the SNR was determined for the
estimates of the individual NLFM and LFM signals. The MSE was defined as follows:

MSE(SNR) = log10
1

Nsr

1
Nsl

Nsr

∑
n=1

Nsr

∑
n=1

(
f̂n(k)− fNLFM(k)

)2
(39)

where Nsr is the number of simulation runs, and Nsl is the number of signal samples
(signal length).

The MSE defined in this way allows for determining the estimation error for the entire
signal (the entire pulse) and enabling the comparison of the obtained results with the
results presented in the publication [2]. Figure 6 presents the MSE of estimation of the
instantaneous frequency in various SNR conditions.
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Figure 6. The MSEof estimation of the instantaneous frequency under various SNR conditions.

The analysis of the MSE of NLFM signals estimation presented in Figure 6 shows
that the estimation error level of the NLFM signal depends on its type. The error remains
constant at SNR ≥ 0 dB and increases slightly for SNR = −1 dB. However, in the case of
SNR ≤ −2 dB, the MSE increases significantly. On the other hand, the MSE for LFM is much
lower than for NLFM, and the error decreases as the noise level decreases. Compared to
other methods of estimation of the IF, the method based on CPF shows a similar estimation
quality. For example, comparing the obtained results with those presented in [2], it can be
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noticed that, for LFM, the MSE obtained using the CPF method for SNR ≥ 2 dB is smaller
than for the QML method, which, according to [2], shows lower estimation errors than
methods such as the backward finite difference (BFD) method, central finite difference
(CFD) estimator, Kay estimator, estimators based on the Choi–Williams distribution (CWD)
and pseudo-Wigner distribution (PWD). However, for a higher noise level, QML provides
better results. In the case of the estimation of NLFM signals, the QML method comes up
with a slightly lower MSE than the CPF method over the entire SNR range.

The complexity of the QML algorithm, in terms of the number of operations per-
formed, depends on the assumed instantaneous frequency (IF) resolution in the procedure
of searching the STFT maximum. Similarly, the complexity of the CPF algorithm strongly
depends on the instantaneous frequency rate (IFR) resolution in the procedure of searching
for the CPF maximum. These maximization operations are performed on two different
planes i.e., time–frequency (T-F) and time–chirp rate (T-FR). This imposes different res-
olution requirements that must be applied when we calculate the maximum points for
the STFT and the CPF in successive identical time moments. This affects the accuracy of
the estimation, as well as the execution time of the algorithms. In the comparison, the
experiments with the typical values of the procedure parameters in both algorithms showed
the lower computational load for the CPF algorithm compared to the QML method several
dozen times.

Despite the slightly lower quality of the estimation, considering the much lower
computational load of the CPF method compared to the QML, it can be concluded that the
CPF may be preferred in real-time applications.

5. Classification of Signals Based on Phase Polynomial Coefficiencies Obtained
from CPF

The classification procedure presented in this paper concerns the problem of recog-
nizing signal types with nonlinear frequency modulation. The main problem is to find a
set of distinctive features that allow the received signals to be distinguished and classified
into a class related to a specific emitter. Generally, three kinds of classification tasks are
mainly used:

1. Binary classification—in this case, there are only two classes;
2. Multiclass classification—in this case, there are more than two classes, and the classi-

fier can only report one of them as output;
3. Multilabel classification—in this case, the classifier is allowed to choose many answers.

This type of classification can be simply considered as a combination of multiple
independent binary classifiers.

The classification task considered in the paper can be associated with a multiclass
classification, in which the class is defined by a specific type of nonlinearity of the frequency
function. Therefore, it is the type of classification indicated in item 2 of the above three-
point list.

Many different modifications of the multiclass classification method have been pro-
posed in the literature [45–47]. The proposed method uses multiclass classification with a
vector of features. The classification between three types of NLFM signals and one LFM
signal described in Section 2 is considered. The feature vector is formed by aggregation
of selected CPF coefficients describing the polynomial approximation of the considered
phase functions.

The extracted features are processed by the classifier to select the most probable class.
A supervised classification is considered, where the classes are known in advance and
samples of the features describing each class are available. The feature vectors for individual
nonlinearities can be treated as a pattern in the feature space. Therefore, classification
carried out, especially by a neural network, is a problem of recognizing patterns [33,34].
In this paper, two types of neural network classifiers: learning vector quantization (LVQ)
and multilayer perceptron (MLP) are considered. The LVQ neural network has been
chosen because of its high ability to learn data classification, where similar input vectors



Sensors 2022, 22, 8104 13 of 20

are grouped into a region represented by the so-called coded vector (CV). LVQ can be
applied directly to multiclass classification problems. LVQ is a supervised version of
vector quantization. LVQ uses known target output classifications for each input pattern
in supervised learning of the neural network. The input space of samples is covered by
the “codebook vectors” (CVs) determined during the neural network learning stage. The
LVQ neural network is built as a feedforward net with one hidden layer of neurons (the
Kohonen layer), fully connected with the input layer and one output layer. During the
training stage, the values of weights used to form the coded vectors are adjusted, according
to the previously predefined input patterns. The distance di of an input vector signed x
to the weight vector wi of each node in the Kohonen layer is computed. The node of a
particular class, which has the smallest distance to the presented input vector (for example
the Euclidean distance), is declared to be the winner:

di = ‖wi − x‖ =

√√√√ M

∑
j=1

(wij − xj)2 (40)

The weights will be moved closer to that class, which is expected as the winning
class. Otherwise, they will be moved away. The classification after learning is relied on
finding a Voronoi cell, specified by the CV with the smallest distance to the input vector
and assigning it to a particular class.

The designed LVQ classifier contains 4N competing neurons with the logistic sigmoid
function as an activation function, where N is the number of classes. The MLP is a
fundamental type of neural network architecture with the ability to learn nonlinear models.
The multi-layer perceptron (MLP) is a type of artificial neural network organized in several
layers in which the flow of information takes place from the input layer to the output
layer; therefore, it is a feedforward network. Each layer is made up of a variable number
of neurons, and the neurons of the last layer (called the “output”) are the outputs of the
entire system. A network of such perceptrons is termed a neural network of perceptrons.
A perceptron with only an input and output layer is called a simple perceptron. A single
layer feed-forward network consists of one or more output neurons o, each of which is
connected with a weighting factor wio to all of the inputs i. The input of the neuron is the
weighted sum of the inputs plus the bias term θ. A example of a single layer network with
n inputs and one output is shown in Figure 7.

x1

x2

xn

+1

...

w1
w2

wn

θ

y

Figure 7. Single layer network with one output and n inputs.

The output of the network is formed by the activation of the output neuron, which is
some function of inputs:

y = f

(
N

∑
i=1

wixi + θ

)
(41)

The training of a neural network is the procedure of setting its weights. If there is
one hidden layer, this one is a two layer perceptron. The aim of the supervised MLP
network training is to achieve an appropriately small mean square error obtained in the
Levenberg–Marquardt backpropagation procedure by adjusting weights. The complexity
of the neural network classifier strongly depends on a number of neurons, which require an
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adjustment of their weighs at the learning stage. Therefore, the neural architecture should
be as simple as possible.

For the assumed classification task, a simple single hidden layer MLP classifier with
the number of neurons equal to 2N has been chosen.

Evaluation of the classification process requires appropriate quality criteria. The
classification performance is usually visualized using the confusion matrix, which is a table
summarizing true and false decisions. The matrix compares the actual types of objects with
those predicted by the classifier. This issue can be easily presented on the example of binary
classification. In this case, the 2× 2 confusion matrix is formulated as shown in Figure 8.

True
PositiveP

P′

False
Negative

N’

False
Positive

N
True
Negative

ac
tu

al
va

lu
e

prediction outcome

Figure 8. Interpretation of the binary confusion matrix.

The abbreviations TP, TN, FP and FN shown in Figure 8 denote:

• true positives (TP): the actual value is positive and the prediction is also positive;
• true negatives (TN): the actual value is negative and the prediction is also negative;
• false positives (FP): the actual value is negative, but the prediction is positive (type

I error);
• false negatives (FN): the actual value is positive, but the prediction is negative (type

II error).

It is difficult to compare the properties of different classifiers based on the confu-
sion matrix alone. Therefore, a simpler description of the classification can be obtained
using metrics calculated on the basis of data from the confusion matrix. Some common
metrics [48] can be calculated as follows:

1. Accuracy (ACC)

ACC =
TP + TN

TP + TN + FP + FN
(42)

2. Precision also known as positive predictive value (PPV)

PPV =
TP

TP + FP
(43)

3. Sensitivity also known as recall, hit rate or true positive rate (TPR)

TPR =
TP

TP + FN
(44)

The above metrics are defined similarly for multiclass classifiers. To evaluate the perfor-
mance of the proposed multiclass model, the N × N confusion matrix is used, where N is
the number of classes that describe the NLFM or LFM signals. The quality of the selected
classifiers can be assessed by comparing the metrics calculated from their confusion matrix.

The performance of the proposed method was evaluated with the use of the simulation
experiment. The proposed CPF-based classification method was tested for three NLFM
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( f1(t, α, γ), f2(t, Bl , Bl), f3(t, k1, k2)) and one LFM ( fLFM(t)) signal. Their specific parame-
ters are presented in Section 2. The simulation parameters were assumed to be the same as
in the case of simulation presented in Section 4, namely: pulse duration T = 20 · 10−6 s.;
sampling frequency fs = 100 MHz; signal bandwidth B = 5 MHz and Gaussian noise with
variance depending on SNR. Thus, having four signals to recognize, the problem of 4-class
classification is studied. The feature vector used in the classification process was formed by
the coefficients (aφ2, aφ4, aφ6) of the polynomial which is an approximate signal phase. The
coefficients are determined by the proposed CPF method. Figure 9 shows an example of
the realizations of the coefficients aφ2, aφ4 and aφ6 obtained by CPF for four signal classes
in the case of SNR = 5 dB, SNR = 1 dB, SNR = −1 dB and SNR = −5 dB. Each signal
is marked with a different colour. The points in the figure represent the estimates of the
coefficients aφ2, aφ4 and aφ6 obtained in Nsr = 500 realizations of individual signals.
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Figure 9. Example ofthe realizations of the coefficients aφ2, aφ4 and aφ6 obtained by CPF for four signal
classes in the case of (a) SNR = 5 dB; (b) SNR = 1 dB; (c) SNR = −1 dB; and (d) SNR = −5 dB.

The analysis of the spatial position of the coefficients aφ2, aφ4 and aφ6 shown in Figure 9
shows that, in the case of SNR = 5 dB and SNR = 1 dB, the constellations of points
corresponding to individual signals are well separable, which should result in the effective
operation of classification algorithms. In the case of SNR = −1 dB, a significant relocation
of several points can be observed, which may cause deterioration of the separation and
thus of the quality of the classification. For SNR = −5 dB, the spaces of the individual
coefficients overlap, which may result in the incorrect classification.

The classification task was addressed using LVQ and MLP neural networks. The
tests were carried out at different SNRs. In each case, Nsr = 500 Monte Carlo simulations
were carried out for each signal. The Nl = 1400 realizations constituted a training set and
the remaining Nt = 600 realizations were used to test the classifiers. Figures 10 and 11
show the confusion matrices for MLP and LVQ classifiers obtained for SNR = −1 dB and
SNR = −5 dB, respectively.

According to the analysis of the confusion matrix presented in Figure 10, for SNR = −1
dB, the classification is correct in the case of the MLP classifier and slightly worse for
the LVQ. This means that even the significant relocation of points corresponding to the
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individual signals, which is visible in Figure 9, does not affect the proper classification
performed by classifiers. However, as it results from the analysis of the confusion matrix
shown in Figure 11, in the case of SNR = −5 dB, the classification is not correct for both
MLP and LVQ. This result corresponds to the results shown in Figure 9, where for this SNR
the constellations of points overlap.
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Figure 10. Confusion matrices for the LVQ (a) and MLP (b) classifiers obtained for SNR = −1 dB.
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Figure 11. Confusion matrices for the LVQ (a) and MLP (b) classifiers obtained for SNR = −5 dB.

The quality of the MLP and LVQ classifiers was also analyzed with the use of ACC
metrics. The results for −5 dB≤ SNR ≤ 5 dB are shown in Figure 12.
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Figure 12. Accuracy (42) metrics of MLP and LVQ classifiers.

As can be seen in Figure 12, both classifiers for SNR ≥ −1 dB provide almost 100%
correct identifications of signals. In the case of SNR = −2 dB, the classification accuracy
slightly decreases, with MLP being a more effective classifier. For SNR below −2 dB, the
classification quality for the MLP algorithm gradually decreases, while in the case of LVQ,
the decisions are made completely randomly.

The ACC metrics assess the overall quality of classification without being able to
evaluate the identification ability of each class. In this case, PPV and TPR metrics can be
used. For multiclass classification, the PPV for each class is the ratio of a correctly predicted
class to all predicted classes, while TPR is defined as the ratio of a correctly predicted class
to all true class values. Figures 13 and 14 show the PPV and TPR metrics for four classes
for MLP and LVQ classifiers. When analyzing the results of the PPV metrics, it should be
kept in mind that, in case of the absence of recognition of a given class (both TP and FP),
according to definition (43), the PPV value is undefined, and therefore there are missing
points in the figure.
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Figure 13. PPV (a) and TPR (b) metrics of the LVQ classifier.
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Figure 14. PPV (a) and TPR (b) metrics of the MLP classifier.



Sensors 2022, 22, 8104 18 of 20

The analysis of Figures 13 and 14 allows for assessing the quality of the MLP and
LVQ classifiers. The quality of the classifier is indicated by the combined analysis of PPV
and TPR values. As can be seen in these figures, in the case of SNR ≥ −1 dB, both
PPV and TPR for all classes take values approximately equal to one, which means that
errors of type I and type II are at a minimum level. This means that the identification
of each class for SNR ≥ −1 dB is very good for both MLP and LVQ classifiers. As can
be seen in the figures, for the SNR = −2 dB, the classifiers’ performance breaks down.
In this case, for the MLP classifier, the PPV and TPR metrics take values in the range of
< 0.937, 1 > while for LVQ slightly less, i.e., < 0.84, 0.947 >. This means a slight decrease
in the quality of the classification, while the MLP classifier is slightly better. In the case of
SNR ≤ −3 dB, the quality of both classifiers is slightly degraded. In this case, as can be
seen in Figure 8 for the LVQ classifier, there is a significant dispersion of type I and type II
errors, which means favoring certain classes. However, in the case of MLP (Figure 14), type
I and type II errors are at a similar level, and the predictions of classes are more uniform.
The incorrect classification results from errors in the estimation of parameters aφ2, aφ4 and
aφ6 the determination of which depends on the accuracy of the IFR estimation (23). Due to
noise, the location of the maximum CPF obtained for IFR0 for noiseless NLFM is shifted to
a new random location:

ÎFR = IFR0 + δIFR (45)

It should be emphasized that, for SNR ≥ −1 dB, which is important for practical
applications, the classification is error-free for the analyzed classifiers. Classification errors
appear for SNR ≤ −2 dB. Due to the gradual shifting and overlapping of the aφ2, aφ4 and
aφ6 parameter space, visible in Figure 9, classification becomes problematic. An additional
source of error is the use of the polynomial approximation of the NLFM functions proposed
for classification, as discussed in Section 3.

6. Conclusions

In this paper, estimation and classification of NLFM signals based on the time–chirp
representation have been presented. The majority of useful nonlinearities can be defined or
successfully approximated by the polynomial form. However, NLFM radar signals, with
the desired PSD and desired AC, require a sufficiently high order of the polynomial for
representation of phase and frequency functions. Simulation experiments have shown that
CPF is an efficient method of obtaining a polynomial approximation of a phase function.

Having had the coefficients of the phase polynomial from the CPF, the coefficients of
the frequency polynomial can be calculated. Based on this relation, the IF estimation of
considered NLFM signals is proposed. The simulation results revealed a slightly higher
estimation MSE for the proposed CPF-based compared to the QML for NLFM signals. Due
to much lower computational load of the proposed approach, the CPF-based method might
be preferred in real-time applications.

The promising idea for classification of signals with nonlinear frequency modulations
is to use the CPF distribution for the extraction of distinctive features. The modification
of the CPF algorithm based on the nonuniform sampling is used for estimation of phase
polynomial coefficients for a polynomial of the sixth order. Such calculated coefficients
constitute distinctive features for classification.

The classification process has been successfully performed by the LVQ and MLP
classifiers, which have the ability to process nonlinear models. Simulations were carried
out for different SNRs. The training and classification tasks were performed without the
preliminary noise reduction process. This means that classifiers were trained on data with
noise that significantly distorted a classified signal, especially for SNR < −1. This results
in an unacceptable decrease in the effectiveness of the classification. PPV and TPR measures
were successfully used to assess classification results. The results of the research showed
that the proposed approach allows for classifying four classes: three considered NLFM
signals and an LFM signal. It should be emphasized that, for SNR ≥ −1 dB, which is
important for practical applications, the obtained classification is error-free for the analyzed
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classifiers. The proposed classification process can be easily extended to more than four
classes.
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