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Abstract: The growth models of total bacterial count in freshly squeezed strawberry juice were
established by gas and taste sensors in this paper. By selecting the optimal sensors and fusing
the response values, the Modified Gompertz, Logistic, Huang and Baranyi models were used to
predict and simulate the growth of bacteria. The results showed that the R2 values for fitting the
growth model of total bacterial count of the sensor S7 (an electronic nose sensor), of sweetness and
of the principal components scores were 0.890–0.944, 0.861–0.885 and 0.954–0.964, respectively. The
correlation coefficients, or R-values, between models fitted by the response values and total bacterial
count ranged from 0.815 to 0.999. A single system of electronic nose (E-nose) or electronic tongue
(E-tongue) sensors could be used to predict the total bacterial count in freshly squeezed strawberry
juice during cold storage, while the higher rate was gained by the combination of these two systems.
The fusion of E-nose and E-tongue had the best fitting-precision in predicting the total bacterial count
in freshly squeezed strawberry juice during cold storage. This study proved that it was feasible to
predict the growth of bacteria in freshly squeezed strawberry juice using E-nose and E-tongue sensors.

Keywords: total bacterial count; freshly squeezed strawberry juice; E-nose; E-tongue; predictive
microbiology

1. Introduction

Strawberry (Fragaria × ananassa Duch.) is widely planted in the world. Strawberry
juice is a processed product loved by consumers because of its rich flavor, nutrients and
bioactive substances [1]. However, microorganisms will grow and reproduce with the
help of food matrix, such as carbohydrate, protein and fat. Microbial contamination is an
important concern for juice industry and microbial metabolites will affect the flavor and
taste of freshly squeezed strawberry juice, reducing its economic value during cold storage.

Thermal processing treatment can reduce the growth of microorganisms to prolong
the shelf life effectively. However, it can cause the loss of nutrients and change the fla-
vor and appearance of products [2]. Compared with commercially sterilized strawberry
juice, mechanically squeezing fruit juice can retain its nutrients, flavor and taste to the
greatest extent.

At present, there is no unified national standard for evaluating the nutrition, qual-
ity and safety of freshly squeezed strawberry juice. The local standard of the Zhejiang
Province (China) points out that the safety will be lost when the total bacterial count reaches
5 Log(CFU/mL) (CFU: Colony Forming Unit). Many methodologies have been developed
to ensure the quality control of fruit juice. The traditional approach of plate counting is
widely used in food microbial safety detection, but the operation is complex and time-
consuming [3]. Molecular procedures, such as Polymerase Chain Reaction (PCR), real-time
Polymerase Chain Reaction [4], Restriction Fragment Length Polymorphism (RFLP), ri-
bosomal RNA sequencing [5] and DNA probes [6] are also applied. These techniques are
efficient and sensitive, and can provide more information. However, the operations are
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complex and destructive, and the reagents used may be harmful to consumers’ health and
the environment. At present, many studies use the impacts of the metabolites produced by
microorganisms to study the microbial contamination in foodstuff. For example, microbial
volatile organic compounds (MVOCs) produced from metabolic activity and interaction
with other microorganisms [7], as indicators of microbial growth, were applied in food
safety inspection [8]. Ragaert, P. et al. studied the metabolic activity of yeasts in strawberry
agar stored at 7 ◦C by the concentration of MVOCs and the yeasts’ sugar consumption [9].
Nieminen, T. et al. studied the volatile organic compounds (VOCs) to detect the fungal
growth in strawberry jam [10]. Rojas-Flores, C. et al. explored whether the CO2 and VOCs
of fungi can allow for the early detection of anthracnose and soft rot diseases in strawberry
fruit during cold storage [11].

Predictive microbiology has been applied in the food and food inspections indus-
tries [12]. As a scientific-based tool, it evaluates the microbiological relations under certain
environmental variables by applying and developing mathematic models [13], which can
be classified into kinetic and probability models [14], empirical and mechanistic models [15]
and primary, secondary and tertiary models [16] by the variables for modeling. For instance,
the growth of Proteus mirabilis [17], Pseudomonas spp. [18] and Salmonella [19] in chicken were
modeled and predicted under different temperatures. The growth model of Pseudomonas
spp. [20], Aeromonas spp. and Listeria monocytogenes [21] in pork were performed. This
tool was also applied on beef [22,23], vegetables [24–26], fruit [27] and so on. At present,
many studies have completed rapid, accurate and non-destructive fitting of colony growth
models by using hyperspectral imaging (HSI), an electronic nose (E-nose), etc., according
to the optical and odor characteristics caused by the growth of microorganisms. Zhou et al.
constructed the growth model of P. fluorescens in pork using HSI with the R2 ranging from
0.849–0.974 [6]. Achata, EM et al. predicted the growth of total viable count (TVC) on
beef Longissimus dorsi muscle stored at 4 ◦C and 10 ◦C using HSI and chemometrics [28].
Tao et al. investigated the contamination of Escherichia coli (E. coli) in pork meat with R2 at
0.939 [29]. Zheng et al. performed the real-time prediction of TVC using HSI in pork during
refrigerated storage and obtained the best model by the SVR with second derivation with
Rp at 0.94. [30]. Gu et al. completed the growth prediction of Pseudomonas aeruginosa on agar
plates and meat stored at 4 ◦C and 10 ◦C by E-nose sensing, and selected optimal sensors
to fit the growth with higher correlation coefficients [31]. Tirnson, K et al. constructed a
BPNN prediction model of the total bacterial count in chicken with R2 at 0.94 using an
E-nose to evaluate the meat’s freshness [32]. Han et al. evaluated the freshness of fish
stored at 4 ◦C quantitatively by E-nose and E-tongue with three-layer radial basis function
neural network (RBF-NN) models [33]. Qiu et al. applied E-nose and E-tongue technology
to the qualification and quantization of processed strawberry juice. The E-tongue system
was shown to provide a better to qualitative discrimination and prediction than the E-nose
among four kinds of different processed strawberry juices [34]. Meanwhile, strawberry
juice under different processing approaches could be discriminated and characterized by
E-tongue sensing with higher accuracy than E-nose by LDA, PLSR, RF and SVM [35]. The
simultaneous utilization of these two systems could predict the quality of strawberry juice
with higher accuracy.

There existed definite relationship between microbial contamination and the features
of aroma and taste. E-tongue is capable of performing qualitative and quantitative analysis
in the food safety index [36]. Aroma and taste features change in accordance with the
deterioration of juice quality. In this study, we constructed the predictive growth model of
total bacterial count respectively by use of the E-nose, E-tongue and the fusion information
of the two systems, and compared the models to find a better way to predict the shelf life
of freshly squeezed strawberry juice quickly and accurately.
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2. Materials and Methods
2.1. Chemicals

Analytical reagents required for E-tongue detection were obtained from Sinopharm
Chemical Reagent Co., Ltd. (Shanghai, China) as follows: potassium chloride, silver
chloride, tartaric acid, ethanol, hydrochloric acid and potassium hydroxide.

2.2. Preparation of Freshly Squeezed Strawberry Juice

“Hong Yan” strawberries of the same maturity level (80% mature) were harvested
in the Suoshi village, Nanjing, Jiangsu province, China. They were transported to the
laboratory within 1 h to dissipate the field heat. Strawberries without mechanical damage
were selected and the sepals were removed. They were squeezed using a juicer (SJ109-
200, SUPOR Co., Ltd., Hangzhou, China) and filtered with two layers of 120-mesh gauze.
Freshly squeezed strawberry juice was put into 50 mL test tubes that had been sterilized at
121 ◦C for 15 min, and then stored at a temperature of 4 ± 1 ◦C and humidity of 95% for
7 days.

The total bacterial count was determined every 12 h, and the aroma and taste char-
acteristics of freshly squeezed strawberry juice were measured with E-nose and E-tongue
sensors, respectively.

2.3. Determination of Total Bacterial Count of Freshly Squeezed Strawberry Juice during Cold
Storage by Plate Counting

According to the national standard “Food Safety National Standard Microbiological
Examination of Food—Determination of Total Bacterial Count” (GB 4789.2-2016), 25 mL of
freshly squeezed strawberry juice was taken into a 225 mL triangular conical flask. Gradient
dilution was carried out and two plates were set for each gradient. Ten repetitions were
set at each storage time. The average values were used to fit the growth curve of the total
bacterial count in freshly squeezed strawberry juice during cold storage.

2.4. Acquisition of E-Nose Information

An E-nose device (Airsense Analytics GmBh, Schwerin, Germany) is equipped with
10 sensors, each of which is sensitive to specific substances. The response values are
related to the intensity of VOCs. The conditions of the E-nose were modified based on the
Qiu et al. [37] as follows: Flow rate was set at 150 mL/min. Measurement time was set
at 90 s in order to obtain stable responses. Gas flushing time was set at 60 s to eliminate
interference between samples. Sample preparation time was 5 s, and automatic zeroing
time was 5 s.

5 mL of freshly squeezed strawberry juice was drawn into 250 mL glass beakers
sealed with tin foil. Samples were then kept at room temperature for 20 min to balance
the headspace gas. Twenty samples were selected for each experiment. Fifteen samples
were selected as a training dataset and five samples as a testing dataset. Response values of
sensors after 70 s were stable, thus, values at 80 s were recorded for subsequent analysis.

2.5. Acquisition of E-Tongue Information

An E-tongue device (TS-5000Z, Insent, Atsugi, Japan) is composed of 6 basic taste sensor
electrodes, including freshness, saltiness, sourness, bitterness, astringency and sweetness.

Measurement parameters were based on the research of Tian et al. [38]. Measurement
time was set to 120 s and rinsing time of sensors was 10 s for each detection. A total of
60 mL of filtered freshly squeezed strawberry juice was used for E-tongue analysis with a
TS-5000 taste system. Response values of sweetness were recorded 5 times, and the other
taste information was collected 4 times. Each sample of different storage times was set to
20 repetitions.
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2.6. Data Analyzing Methods

Growth curves of total bacterial count in freshly squeezed strawberry juice were
fitted with MATLAB (R2015b, MathWork Inc., Natick, MA, USA). ANOVA and Pearson
correlation analyses between response values of sensors and plate-counting results were
completed using SPSS 18.0 software (IBM Corp., Armonk, NY, USA). Significant difference
was analyzed through the Duncan method (p < 0.05). Graphs regarding the growth curves
were drawn by Origin 2022.

2.7. Growth Curve Fitting

Data from traditional plate counting of total bacteria count and the response values of
E-nose and E-tongue sensors were plotted to fit with the growth curve [6,31]. The Modified
Gompertz, Logistic, Huang and Baranyi models were used to simulate the growth of total
bacteria in freshly squeezed strawberry juice.

Modified Gompertz model:

N(t) = N0 + (Nmax − N0)× e−e
[

µmax×2.718
Nmax−N0 ×(λ−t)+1]

Logistic model:

N(t) = N0 +
Nmax − N0

1 + eµmax×(λ−t)

Huang model:

N(t) = N0 + Nmax − ln[eN0 +
(

eNmax − eN0
)
× e−µmax×(t+ 1

4×ln 1+e−4×(t−λ)

1+e4×λ )

Baranyi model:

N(t) = N0 + µmax ×
[

t +
1

µmax
× ln

(
e−µmax×t+e−λ×µmax−e−µmax×t−λ×µmax

)
−

ln

1 +
eµmax×t+ 1

µmax ×ln(e−µmax×t+e−λ×µmax −e−µmax×t−λ×µmax −1)

eNmax−N0


For these four growth models, N0: initial total bacterial count or response values of

E-nose and E-tongue; Nmax: maximum total bacterial count or respond values of E-nose
and E-tongue; µmax: maximum specific growth rate (h−1); λ: lag time (h).

Root mean square errors (RMSE) and coefficient of determination (R2) were used to
evaluate the fitting of these growth models [39]. High values of R2 and low values of RMSE
represent a good model [40].

RMSE : RMSE =

√
∑n

i=1
(
yi − yp

)2

n − p

R2 : R2 = 1 − (n − 1)
(n − p)

(
∑n

i=1
(
yi − yp

)2

∑n
i=1(yi − ym)

2

)
n: the number of observed data points; p: the number of parameters; yi: the mea-

sured values (LogCFU/mL); yp: the predicted values (LogCFU/mL); ym: the mean values
(LogCFU/mL).

3. Results and Discussions
3.1. Growth Simulation of Total Bacterial Count by Traditional Plate-Counting Methods

The data obtained from plate counting was used for fitting the growth curve of the
Modified Gompertz, Logistic, Huang and Baranyi models. As shown in Figure 1(A1–A4),
the logarithm of total bacterial count (LogCFU/mL) increased nonlinearly with storage
time. Growth of total bacterial count in freshly squeezed strawberry juice was slow at 4 ◦C
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with a long period of lag phase. Low temperature and the ratio of sugar to acid could, to
some extent, inhibit the activity of bacterial growth in juice [41].

Figure 1. Fitting of the Modified Gompertz, Logistic, Huang and Baranyi models to the total bacterial
count (A1–A4), the response values of S7 (B1–B4), sweetness (C1–C4) and the scores of PC1–PC4
extracted from E-nose and E-tongue readings (D1–D4) for freshly squeezed strawberry juice during
cold storage.

Different kinetic-fitting models and parameters of total bacterial count in freshly
squeezed strawberry juice during cold storage at 4 ◦C are shown in Table 1. The fitting
of the Logistic and Baranyi models, both with R2 at 0.971, were better than those of the
Modified Gompertz and Huang models. At the same time, the lag time of the total bacterial
count in freshly squeezed strawberry juice fitted by these two dynamic models was longer.
Low temperature (4 ± 1 ◦C) may inhibit the growth of microorganisms. They could adapt
to the new condition during the longer lag time and then grow quickly. Among these
four growth models, the simulated values of the total bacterial count by Logistic and
Baranyi models were close with each other. R2 ranged from 0.944–0.971, while RMSE was
0.103–0.143. A good model is obtained when R2 is closer to 1 and the RMSE value is smaller.
These four growth models could be used to stimulate the growth of the total bacterial count
in freshly squeezed strawberry juice, although the fitting of Logistic and Baranyi models
were strongest.
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Table 1. Different kinetic-fitting models and parameters of the total bacterial count by traditional
plate counting in freshly squeezed strawberry juice during cold storage.

Models λ(h) µmax (h−1) R2 RMSE N0 (LogCFU/mL) Nmax (LogCFU/mL)

Modified Gompertz 45.000 0.013 0.953 0.132 3.878 6.117
Logistic 108.400 0.062 0.971 0.103 3.992 5.341
Huang 55.180 0.015 0.944 0.143 3.975 6.558
Baranyi 97.850 0.064 0.971 0.104 3.996 5.337

3.2. E-Nose Testing Results
3.2.1. Gas Sensor Selection

The activity of microorganisms causes the spoilage of freshly squeezed strawberry
juice. The coordination and balance of flavor and taste were broken by reducing the
sugar consumption and the generation of metabolites, deteriorating the appearance, taste
and nutrition of freshly squeezed strawberry juice and reducing its economic value. An
E-nose consisting of 10 sensors can detect the overall aroma characteristics of freshly
squeezed strawberry juice during storage. Response values of volatile organic compounds
in freshly squeezed strawberry juice at different storage times are shown in the radar chart
(Figure 2A).

Figure 2. Radar chart (A) of response values and loadings analysis (B) of sensors in E-nose; radar
chart of response values of taste sensors for freshly squeezed strawberry juice during cold storage (C).

With the extension of storage time, the response values became lower, indicating that
the intensity of VOCs decreased. Loadings analysis, characterizing the contribution rate of
sensors to the overall flavor characteristics, is shown in Figure 2B with the variance of PC1
reaching 95.73% and the variance of PC2 reaching 4.22%. S2, S7 and S9 contributed greatly
to the first and second principal components, which are in accordance with Liu et al. [42].
Results showed that the aroma characteristics of freshly squeezed strawberry juice consisted
of nitrogen oxides, inorganic sulfides and aromatic components (Table 2).

Table 2. The description of E-nose sensor performance.

Number Sensors Sensitivity

S1 W1C Sensitive to aromatics, benzene
S2 W5S High sensitivity, especially nitrogen oxides
S3 W3C Ammonia, aromatic components
S4 W6S Mainly selective for hydrogen
S5 W5C Sensitive to alkane aromatic components
S6 W1S Sensitive to short-chain alkanes, methane
S7 W1W Sensitive to inorganic sulfides
S8 W2S Sensitive to alcohol, ether, aldehydes and ketones
S9 W2W Aromatic components, organic sulfides

S10 W3S Sensitive to long-chain alkanes

Note: Reprinted/Adapted with permission from Ref. [43]. 2018, Fan J. et al.
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ANOVA was performed in SPSS 18.0 to explore the significance of the response values
of 10 sensors. The sensor which could distinguish the most difference between the aroma
characteristics of the freshly squeezed strawberry juice stored at 4 ± 1 ◦C for different
times could be selected to fit the growth curve of total bacterial count [31]. As shown in
Table 3, sensor S7 could distinguish the aroma characteristics of freshly squeezed strawberry
juice samples at 12 time points in storage, while other sensors distinguished less. Freshly
squeezed strawberry juice samples stored at 7 time points were distinguished by sensor
S1, sensor S8 and sensor S10, and 9 time points by sensor S2 and sensor S9. Sensor S3
and sensor S6 could distinguish freshly squeezed strawberry juice stored at 8 time points.
Sensor S4 and sensor S5 could discriminate 6 and 10 time points respectively.

In order to verify the correlation between the response values of sensors in E-nose
and the total bacterial count, a Pearson correlation analysis was performed. As shown
in Table 4, there was negative correlation (with a coefficient of −0.937) between response
values of S7 and the total bacterial count, indicating that inorganic sulfides contributed
more for aroma characteristic in freshly squeezed strawberry juice. It was closely related to
the metabolites produced by microbial growth.

Combined with the results of the loadings analysis, ANOVA and Pearson correlation
analysis, S7 was selected to fit the growth curve of total bacterial count in freshly squeezed
strawberry juice during cold storage.

3.2.2. Growth Simulation of Total Bacterial Count in Freshly Squeezed Strawberry Juice by
an E-Nose Sensor S7

Response values of S7 were used to fit the growth curve of total bacterial count in
the freshly squeezed strawberry juice during cold storage. The fitting curves are shown
in Figure 1(B1–B4). Equation and parameters are shown in Table 5. Lag time in Modified
Gompertz and Logistic models was longer than in Huang and Baranyi models. R2 of
training dataset ranged from 0.890 to 0.922, and from 0.893–0.923 in the testing dataset, both
with the lower RMSE values. The correlation analysis between the fitting results and the
total bacterial counts, as estimated by plate counting methods of plate agar, showed that
correlation coefficients of these four models were 0.955, 0.826, 0.984 and 0.995, respectively,
which could accurately simulate and predict the growth stage of total bacterial count of
freshly squeezed strawberry juice during cold storage. The Huang model had the best
fitting-efficiency by using S7 of the E-nose.
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Table 3. ANOVA of the response values in E-nose of freshly squeezed strawberry juice during cold storage.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

0 h 0.754 ± 0.020 g 16.176 ± 2.912 a 0.881 ± 0.011 h 1.065 ± 0.007 a 0.915 ± 0.005 j 1.776 ± 0.093 a 10.719 ± 0.942 a 1.358 ± 0.039 ab 6.022 ± 0.433 a 1.113 ± 0.005 cd

12 h 0.772 ± 0.014 f 13.414 ± 1.918 b 0.891 ± 0.007 g 1.051 ± 0.006 b 0.924 ± 0.005 hi 1.670 ± 0.071 b 9.445 ± 0.995 b 1.337 ± 0.035 ab 5.334 ± 0.491 b 1.116 ± 0.005 bc

24 h 0.769 ± 0.013 f 12.626 ± 2.205 b 0.888 ± 0.008 g 1.047 ± 0.004 c 0.922 ± 0.005 i 1.633 ± 0.035 bc 9.115 ± 0.865 bc 1.335 ± 0.019 ab 5.124 ± 0.375 b 1.113 ± 0.004 cd

36 h 0.783 ± 0.017 e 10.269 ± 3.127 d 0.898 ± 0.007 f 1.051 ± 0.009 b 0.929 ± 0.005 g 1.651 ± 0.065 bc 8.733 ± 1.298 c 1.345 ± 0.034 a 4.816 ± 0.561 c 1.130 ± 0.008 a

48 h 0.787 ± 0.008 e 11.444 ± 1.352 c 0.896 ± 0.004 f 1.048 ± 0.008 bc 0.926 ± 0.003 h 1.623 ± 0.033 c 7.937 ± 1.016 d 1.317 ± 0.020 c 4.557 ± 0.401 d 1.127 ± 0.012 a

60 h 0.789 ± 0.014 e 9.672 ± 1.278 de 0.899 ± 0.007 f 1.047 ± 0.005 c 0.930 ± 0.005 g 1.639 ± 0.064 bc 7.676 ± 0.992 def 1.328 ± 0.033 bc 4.451 ± 0.395 d 1.127 ± 0.009 a

72 h 0.804 ± 0.012 d 8.997 ± 1.217 ef 0.907 ± 0.007 e 1.045 ± 0.005 c 0.934 ± 0.004 f 1.566 ± 0.034 de 7.731 ± 0.610 de 1.293 ± 0.019 d 4.356 ± 0.282 d 1.127 ± 0.008 a

84 h 0.826 ± 0.010 b 8.170 ± 0.705 fg 0.919 ± 0.005 b 1.041 ± 0.013 d 0.943 ± 0.003 c 1.492 ± 0.040 g 7.243 ± 0.656 fg 1.244 ± 0.021 f 4.073 ± 0.283 e 1.108 ± 0.004 ef

96 h 0.806 ± 0.013 cd 8.627 ± 1.105 f 0.908 ± 0.007 de 1.04 ± 0.003 de 0.936 ± 0.004 ef 1.575 ± 0.040 d 7.318 ± 0.550 efg 1.293 ± 0.023 d 4.129 ± 0.258 e 1.125 ± 0.007 a

108 h 0.810 ± 0.012 cd 8.220 ± 1.179 fg 0.910 ± 0.006 de 1.037 ± 0.002 ef 0.938 ± 0.004 de 1.567 ± 0.033 de 7.171 ± 0.586 gh 1.284 ± 0.018 de 4.019 ± 0.248 ef 1.119 ± 0.007 b

120 h 0.819 ± 0.022 bc 7.406 ± 1.410 g 0.915 ± 0.013 cd 1.037 ± 0.003 ef 0.941 ± 0.008 d 1.536 ± 0.055 def 6.778 ± 0.382 hi 1.270 ± 0.028 e 3.851 ± 0.193 fg 1.115 ± 0.008 bc

132 h 0.822 ± 0.011 b 6.375 ± 0.805 h 0.916 ± 0.006 bc 1.034 ± 0.003 fg 0.943 ± 0.004 c 1.535 ± 0.030 ef 6.673 ± 0.496 ij 1.271 ± 0.015 e 3.802 ± 0.224 g 1.111 ± 0.007 de

144 h 0.851 ± 0.013 a 5.727 ± 0.651 h 0.931 ± 0.006 a 1.034 ± 0.003 fg 0.954 ± 0.004 b 1.455 ± 0.043 h 6.245 ± 0.578 jk 1.221 ± 0.022 g 3.590 ± 0.272 h 1.105 ± 0.006 fg

156 h 0.847 ± 0.033 a 4.738 ± 1.115 i 0.933 ± 0.015 a 1.035 ± 0.005 fg 0.958 ± 0.008 a 1.522 ± 0.083 f 5.947 ± 0.756 kl 1.241 ± 0.042 f 3.387 ± 0.310 i 1.101 ± 0.008 g

168 h 0.842 ± 0.029 a 4.737 ± 0.989 i 0.931 ± 0.015 a 1.033 ± 0.004 g 0.956 ± 0.009 ab 1.527 ± 0.093 f 5.724 ± 0.604 l 1.254 ± 0.046 f 3.215 ± 0.287 i 1.106 ± 0.006 f

Note: Values are means ± standard deviation; different lower case letters mean statistically significant (p < 0.05).

Table 4. Pearson correlation analysis between the E-nose response values and the total bacterial count of freshly squeezed strawberry juice during cold storage.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Log(CFU/mL)

S1 1
S2 −0.960 ** 1
S3 0.996 ** −0.960 ** 1
S4 −0.903 ** 0.943 ** −0.887 ** 1
S5 0.986 ** −0.959 ** 0.996 ** −0.889 ** 1
S6 −0.935 ** 0.903 ** −0.908 ** 0.921 ** −0.885 ** 1
S7 −0.951 ** 0.981 ** −0.943 ** 0.950 ** −0.934 ** 0.906 ** 1
S8 −0.972 ** 0.885 ** −0.954 ** 0.869 ** −0.934 ** 0.952 ** 0.890 ** 1
S9 −0.954 ** 0.987 ** −0.950 ** 0.953 ** −0.942 ** 0.909 ** 0.998 ** 0.891 ** 1

S10 −0.569 * 0.415 −0.585 * 0.434 −0.615 * 0.459 0.389 0.635 * 0.392 1
Log(CFU/mL) 0.847 ** −0.906 ** 0.823 ** −0.883 ** 0.791 ** −0.875 ** −0.937 ** −0.806 ** −0.934 ** −0.142 1

Note: * means statistically significant (p < 0.05); ** means statistically extremely significant (p < 0.01).
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Table 5. Different kinetic-fitting models and parameters of E-nose sensor S7 in freshly squeezed
strawberry juice during cold storage.

Models λ (h) µmax (h−1)
Training Testing

r
Rc

2 RMSEc Rp
2 RMSEp

Modified Gompertz 10.000 0.031 0.890 0.458 0.893 0.478 0.955
Logistic 22.300 0.027 0.914 0.405 0.919 0.401 0.826
Huang 2.400 0.030 0.920 0.407 0.920 0.414 0.984
Baranyi 2.900 0.030 0.922 0.370 0.923 0.407 0.995

3.3. E-Tongue Testing Results
3.3.1. Taste Sensor Selection

Taste features of freshly squeezed strawberry juice are shown in Figure 2C. Sourness
in freshly squeezed strawberry juice was the highest at 120 h, while bitterness was high at
156 h. Pearson correlation analysis was performed between the total bacterial count from
plate agar and the six basic tastes (freshness, saltiness, sourness, bitterness, astringency and
sweetness) and aftertastes A and B (Table 6).

Bitterness, umami and saltiness were negatively correlated with the logarithm of total
bacterial count. There was a very significant positive correlation (a coefficient of 0.772)
between the response value of sweetness and total bacterial count. So, it’s feasible to
simulate the growth of bacteria in freshly squeezed strawberry juice during cold storage
by E-tongue.

3.3.2. Growth Simulation of Total Bacterial Count in Freshly Squeezed Strawberry Juice by
Sweetness Sensor

Sweetness was used to fit the growth curve of the total bacterial count in the freshly
squeezed strawberry juice during cold storage shown in Figure 1(C1–C4). Equation and
parameters are shown in Table 7. Lag time in logistic and Baranyi models was longer than
in Modified Gompertz and Huang models, which was in accordance with the results of
total bacterial count on plate agar. R2 of training dataset ranged from 0.861 to 0.875, and
from 0.873–0.885 in the testing dataset. The correlation analysis between the fitting results
and the estimated results of total bacterial count showed that correlation coefficients of
these four models were 0.976, 0.954, 0.970 and 0.999, respectively, which could accurately
simulate and predict the growth of total bacterial count during the cold storage of freshly
squeezed strawberry juice. The fitting result of the Baranyi model by sweetness was closest
to the total bacterial count on plate agar.
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Table 6. Pearson correlation analysis between the E-tongue response values and the total bacterial count of freshly squeezed strawberry juice during cold storage.

Sourness Bitterness Astringency Aftertaste-B Aftertaste-A Umami Richness Saltiness Sweetness Log(CFU/mL)

Sourness 1
Bitterness 0.292 1

Astringency 0.667 ** 0.764 ** 1
Aftertaste-B 0.342 0.931 ** 0.702 ** 1
Aftertaste-A 0.577 * 0.405 0.666 ** 0.512 1

Umami −0.812 ** −0.511 −0.774 ** −0.514 * −0.464 1
Richness 0.032 −0.092 0.106 0.095 0.121 −0.131 1
Saltiness −0.622 * −0.722 ** −0.904 ** −0.622 * −0.372 0.854 ** −0.076 1

Sweetness 0.533 * 0.323 0.668 ** 0.302 0.325 −0.867 ** 0.304 −0.777 ** 1
Log(CFU/mL) 0.243 −0.044 0.219 0.092 0.166 −0.578 * 0.641 ** −0.349 0.772 ** 1

Note: * means statistically significant (p < 0.05); ** means statistically extremely significant (p < 0.01).
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Table 7. Different kinetic-fitting models and parameters of sweetness by E-tongue in freshly squeezed
strawberry juice during cold storage.

Models λ (h) µmax(h−1)
Training Testing

r
Rc

2 RMSEc Rp
2 RMSEp

Modified Gompertz 23.240 0.020 0.863 0.345 0.873 0.310 0.976
Logistic 83.590 0.053 0.875 0.345 0.885 0.295 0.954
Huang 38.070 0.030 0.861 0.364 0.881 0.290 0.970
Baranyi 69.820 0.065 0.874 0.331 0.884 0.296 0.999

3.4. Fusion Results of E-Nose and E-Tongue
3.4.1. Principal Component Scores of All Sensors in E-Nose and E-Tongue

Growth of total bacterial count in freshly squeezed strawberry juice during cold
storage could cause obvious deterioration in both taste and flavor. In order to characterize
the growth curve of total bacterial count more comprehensively, the principal component
score method was used to fuse the response signals of E-nose and E-tongue. Combined
with the gravel map (Figure 3), four principal components to maximize the information of
E-nose and E-tongue were extracted with the total variations at 91.903%.

Figure 3. The gravel map of the principal components scores to the fusion of E-nose and E-tongue for
freshly squeezed strawberry juice during cold storage.

Scores of the first four principal components are shown in Table 8. With the extension
of storage time, there was a downward trend on scores. Because of the negative correlation,
the inverses of scores in freshly squeezed strawberry juice were used to fit the growth curve.

3.4.2. Growth Simulation of Total Bacterial Count in Freshly Squeezed Strawberry Juice by
Scores of the First Four Principal Components

The fitting results are shown in Figure 1(D1–D4), and the model parameters are shown
in Table 9. R2 ranged from 0.954 to 0.964, among which the Baranyi model had the highest
accuracy. The lag time obtained by the Logistic model was 75.67 h, while only 0.96 h by the
Huang model. Correlation analyses were performed between the fitting results of principal
components scores and the total bacterial count on plate agar with correlation coefficients
ranging from 0.944 to 0.997. Compared with the fitting results of the growth curve using
an E-nose or E-tongue system only, the fitting results of principal components scores were
closer to the real growth stages of total bacterial in freshly squeezed strawberry juice during
cold storage.
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Table 8. Principal components scores of the response values of E-nose and E-tongue for freshly
squeezed strawberry juice during cold storage.

Time/h
PC1 PC2 PC3 PC4

Score
60.98% 18.43% 6.99% 5.51%

0 5.50 3.34 −0.51 −1.84 3.83
12 3.73 1.64 −1.07 0.00 2.50
24 3.38 0.50 −0.65 0.64 2.14
36 3.16 0.17 −0.37 1.67 2.02
48 1.94 0.50 0.80 0.85 1.37
60 2.13 −0.50 0.39 0.18 1.25
72 1.33 −1.87 1.32 0.34 0.58
84 −0.53 −2.28 −0.66 −0.44 −0.81
96 0.90 −1.68 0.94 −0.45 0.28
108 −2.08 −0.03 1.16 0.09 −1.19
120 −3.31 1.41 2.39 −0.37 −1.61
132 −2.42 −0.53 −0.83 −1.34 −1.70
144 −3.59 −2.38 −1.32 −1.35 −2.79
156 −5.24 0.81 −1.80 1.72 −3.08
168 −4.89 0.90 0.20 0.29 −2.79

Table 9. Different kinetic-fitting models and parameters from scores of PC1–PC4 extracted by E-nose
and E-tongue sensors for freshly squeezed strawberry juice during cold storage.

Models λ(h) µmax(h−1) R2 RMSE r

Modified
Gompertz 9.240 0.050 0.954 0.505 0.968

Logistic 75.670 0.022 0.961 0.462 0.944
Huang 0.960 0.045 0.963 0.450 0.993
Baranyi 8.897 0.045 0.964 0.464 0.997

4. Conclusions

Gas and taste sensors were applied to predict the growth of bacteria based on changes
in the odor and taste features of freshly squeezed strawberry juice during cold storage. For
the E-nose, sensor S7 was selected to fit the growth curve of total bacterial count, with R2

values ranging from 0.890 to 0.923 and RMSE values from 0.370 to 0.478. For the E-tongue,
sweetness was selected to simulate the growth curve of total bacterial count, with R2 values
ranging from 0.861 to 0.885 and RMSE values from 0.290 to 0.364. The growth stage fitted
by sweetness was closer to the fitting results of log(CFU/mL). Comparing the fitting results
of traditional plate-counting estimates of total bacteria, correlation coefficients of these
four models by S7 in E-nose ranged from 0.826–0.995, which were lower than those by
sweetness in E-tongue (0.954–0.999). The fusion of the two systems, E-nose and E-tongue,
was performed by principal components scores. Four principal components were extracted
from E-nose and E-tongue to simulate the growth of microorganisms with a variance of
91.903%. R2 was improved to 0.954–0.964, and the correlation coefficients ranged from 0.944
to 0.997. The results indicated that microbial contamination was related to the changes
in the aroma and taste features of freshly squeezed strawberry juice during cold storage.
E-nose and E-tongue readings could be applied to simulate and predict the growth of
bacteria in freshly squeezed strawberry juice during cold storage. Gas and taste sensors
have potential applications as tools for the predictive microbiology of fruit juice.
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