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Abstract: In this paper, we revisit the paired image-to-image translation using the conditional
generative adversarial network, the so-called “Pix2Pix”, and propose efficient optimization techniques
for the architecture and the training method to maximize the architecture’s performance to boost the
realism of the generated images. We propose a generative adversarial network-based technique to
create new artificial indoor scenes using a user-defined semantic segmentation map as an input to
define the location, shape, and category of each object in the scene, exactly similar to Pix2Pix. We
train different residual connections-based architectures of the generator and discriminator on the
NYU depth-v2 dataset and a selected indoor subset from the ADE20K dataset, showing that the
proposed models have fewer parameters, less computational complexity, and can generate better
quality images than the state of the art methods following the same technique to generate realistic
indoor images. We also prove that using extra specific labels and more training samples increases
the quality of the generated images; however, the proposed residual connections-based models can
learn better from small datasets (i.e., NYU depth-v2) and can improve the realism of the generated
images in training on bigger datasets (i.e., ADE20K indoor subset) in comparison to Pix2Pix. The
proposed method achieves an LPIPS value of 0.505 and an FID value of 81.067, generating better
quality images than that produced by Pix2Pix and other recent paired Image-to-image translation
methods and outperforming them in terms of LPIPS and FID.

Keywords: generative adversarial networks; convolutional neural networks; image-to-image translation;
semantic image synthesis

1. Introduction

The recent development in unsupervised techniques has shown generative adversarial
networks’ (GAN’s) great ability to generate new images that highly imitate real-world
images. GAN was proposed by Goodfellow et al. [1] as a new framework of generative
models that can learn via an adversarial technique. The paired image-to-Image translation
has recently drawn the attention of computer vision researchers as a difficult task that has
been eased using GAN. Unlike the conventional generative models [2,3], which generate
low-quality images, GAN can produce high-quality images following the same training data
distribution as GAN learns the distribution of the data starting with a normally distributed
noise. Many GAN-based methods have been developed recently to solve hundreds of
computer vision problems. Many recent GAN models suggested using a conditional input
image to generate another output image of the desired application. The most popular is
Isola et al. [4]. They proposed Pix2Pix GAN, which allows image-to-image translation for
different applications, such as labels to street scene, labels to façade, grayscale to a color
image, day to night, and drawing to a realistic image. Their proposal [4] adopted U-Net [5]
architecture, which was originally proposed for medical image semantic segmentation. In
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this paper, we propose a modified GAN model to perform an image-to-image translation
with higher quality than the mentioned study [4] and yet far less complexity. In this paper,
we modify, optimize, and recreate the Pix2Pix GAN model with various architectures and
techniques to generate high-quality images, specifically indoor images, which are beneficial
in interior design, architectural renovations and remodeling, VR/AR applications, and
image style transfer. The contribution of our study can be briefly stated as follows:

• We propose three different UNet-like architectures for the generator network and
three different discriminator architectures to fit with each generator architecture. We
compare them and highlight the advantages and disadvantages of each architecture.

• In the architecture of the generator, we compare two merging techniques (concatenation
and addition) of the same feature size blocks in the encoder and the decoder. We show
that merging using addition gives the same, if not better, results than merging features
using concatenation, while the addition operation is less complex than concatenation.

• We propose relatively lightweight encoder-decoder GAN models with residual con-
nections, less computational complexity, and higher quality of the generated images
than the original U-Net, which is the core of the image-to-image translation approach
using GAN (Pix2Pix).

• We explore the effect of the number of class labels (including the same label decompo-
sition) and the number of training samples on the quality of the generated artificial
images on the NYU depthV2 dataset and ADE20K Indoor subset.

An overview of the paired Image-to-Image translation using Pix2Pix [4] is shown in
Figure 1. A UNet-like generator architecture generates an artificial image, and a discrimi-
nator architecture (patch-by-patch classifier) is used to discriminate between the artificial
and real images. Along the training process, as the discriminator becomes better and better,
the generator also becomes better accordingly. The formation of this paper is as follows.
First, we discuss the related work in Section 2. We present the proposed work in Section 3,
the benchmarks and experiment preparation in Section 4, and the experiments we did and
the obtained results in section 5. Finally, we state the future work and conclusions of our
study in Sections 6 and 7, respectively. The explanation of all undefined abbreviations used
throughout the paper exists in Abbreviations.

Figure 1. Overview of the proposed paired Image-to-Image translation technique.

2. Related Work

GAN [1] mainly consists of two main networks, a generator network and a discrim-
inator network. The generator network aims to generate images from the input data
(a specific probability distribution or conditional known data); however, the discriminator
network aims to recognize whether the generated image is real or fake. The training of
both networks is done adversarially in which the more the generator gets better, the more
the discriminator gets better. The objective function of GAN is as stated in Equation (1):

LGAN = Ex∼P(x)[log(D(x))] + Ez∼P(z)[log(1− D(G(z)))] (1)
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where z represents the input vector fed to the generator, P(x) is the real data distribution,
and p(z) is the input noise distribution. D(x) is the discriminator’s estimate of the real data
probability prediction, and G(z) is the generator output. According to this equation, the
generator aims to minimize this function and the discriminator aims to maximize it. The
recent GAN-based approaches depend mainly on deep convolutional neural networks
(DCNN) to generate images. DCGAN [6] was one of the first approaches to use DCNN to
generate realistic, complex images; they fed a 100-dimensional uniform distribution vector
to an up-sampling CNN architecture, and the generated image was fed to another CNN
discriminator network to classify the image to detect whether it is a real or a fake image.
However, DCGAN does not offer the ability to control the attributes of the output image.
Mirza et al. proposed conditional GAN (CGAN), in which they offered to generate images
conditioned on the class labels encoded in the input vector, which is fed to the generator
instead of the uniform distributed noise vector. This approach helped in developing many
GAN variants for different tasks and applications, such as CycleGAN [7], styleGAN [8],
and Pix2Pix [4]. Isola et al. [4], who proposed Pix2Pix, adopted CGAN and DCGAN con-
cepts. They developed the image-to-image translation with a conditional input to translate
one image from a specific domain to a relevant image in another domain, which was the key
for the previously mentioned applications. They employed U-Net as the generator network
to construct the fake images and used a CNN discriminator (PatchGAN [4]) to recognize
real/fake images using a patch-by-patch classification approach, where the output from
the discriminator was a 30 × 30 map.

Recent research on semantic image synthesis using GAN improved the quality of the
generated images using more complex pipelines. Wang et al. [9] proposed “Pix2PixHD”,
a high-resolution image synthesis with conditional GANs, for realistic image synthesis from
the semantic labels using a multiscale generator and discriminator; they first trained a resid-
ual generator on lower resolution images, then another residual generator to generate the
final high-resolution image. They also incorporated object instance segmentation informa-
tion to improve the generated image’s quality. Park et al. [10] proposed a semantic image
synthesis technique using a spatially-adaptive normalization layer (SPADE), in which they
replaced the batch normalization layers with a new spatially adaptive layer to modulate
the activations in the normalization layer; they demonstrated that the batch normalization
causes semantic information loss of the input features. Tan et al. [11] also proposed a se-
mantic image synthesis technique via modeling of the semantic class distribution; they
could achieve competitive results by class parameters modulation as continuous probabil-
ity distributions instead of discrete distributions. They also proposed a noise-remapping
technique to facilitate the training process. Sushko et al. [12] proposed an adversarial
supervision-based model to generate high-quality generated images by designing the
discriminator as a semantic segmentation network. They strengthened the discriminator
through semantic and spatial awareness, which is also reflected in the generator. They
also employed the perceptual loss [13] to achieve their excellent results. Wang et al. [14]
recently proposed a denoising diffusion probabilistic model for image synthesis. They
fed a noisy image to the encoder of a U-Net generator and fed the semantic layout to the
decoder via the SPADE layer instead of directly feeding the semantic layout to the encoder.
This technique led to competitive results compared to the previous methods. Although the
previously mentioned methods achieved high quality and excellent photo-realistic results,
their architectures were complex and slow in training and testing. In this paper, we chose to
keep the architectures simple by adopting simple discriminator and generator architectures.
while we employed some tricks to improve the quality. We also explore the problems of
a simple image synthesis architecture (i.e., Pix2Pix) and solve those issues by optimization
and modification of that architecture in order to get high-quality realistic images similar to
those of the recent state-of-the-art (SOTA) methods.
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3. Proposed Method

We modify the original implementation of Pix2Pix [4], which employs a U-Net [5]-like
generator architecture and PatchGAN discriminator. First, we propose two other generator
architectures employing ResNet [15] and Xception [16] in a shape much similar to U-Net,
but we make use of the feed-forward skip connections that improve the training process
and prevent overfitting. Second, we compare two merging techniques (addition versus
concatenation) in the skip connections that connect the corresponding blocks in the encoder
and decoder. We discuss the generator and discriminator architectures in detail in the
following subsections.

3.1. Proposed Architectures

We modify the original implementation of Pix2Pix [4], which employs a U-Net [5]-like
generator architecture and PatchGAN discriminator. First, we propose two other generator
architectures employing ResNet [15] and Xception [16] in shape much similar to U-Net,
but we make use of the feed-forward skip connections that improve the training process
and prevent overfitting. Second, we compare two merging techniques (addition versus
concatenation) in the skip connections that connect the corresponding blocks in the en-
coder and decoder. We discuss the generator and discriminator architectures in detail
for the original Pix2Pix, which uses VGG-based [17] U-Net and VGG-like discriminator
architecture. The feature merging by concatenation is used to connect the corresponding
blocks in the encoder and decoder. We modified the generator architecture by replacing
the concatenation layers with Addition layers to add features in different levels of the
encoder and the decoder. Merging by addition is much faster and requires fewer learnable
parameters than the case of using the concatenation layer. Figure 2a shows the general
generator architecture, an encoder-decoder CNN architecture with skip connections be-
tween the encoder and the decoder blocks. The encoder in the generator architecture
compresses the input image into a tiny representation, then the decoder stage reconstructs
the output image using the small representation and the merging of the different scale
features from all the different stages in the encoder to the decoder’s features. The Pix2Pix
encoding block, as shown in Figure 2c, consists of a convolutional layer with 4 × 4 kernel
size and N number of the filters, where N increases as the depth of the encoder increases
(64 → 128 → 256 → 512 → 512 → 512 → 512 → 512). Each convolutional layer is
followed by a batch normalization (BN) layer then leaky-Relu activation. The Pix2Pix
decoding block, shown in Figure 2d, is exactly the opposite of the encoder architecture,
with the number of channels N going in the opposite sequence to the encoder’s sequence.
It employs Conv2D-Transpose with a stride of 2 to up-sample the features followed by
batch normalization, a dropout with a rate of 0.5, Relu, and the merging layer. The Pix2Pix
discriminator architecture (Figure 2b) is much similar to the encoder part of the generator.
A patch-by-patch binary classification layer with sigmoid activation is added at the end of
the discriminator to decide whether each region in the generated image is fake or real. The
discriminator architecture classifies the image patch-by-patch into a 32 × 32 mask; each
pixel in the mask corresponds to a small region of 8 × 8 lowing subsections.

The second implementation, a ResNet-Like Generator, and the discriminator are
similar to the original Pix2Pix, but the encoding block is replaced with a custom Residual
block ( Conv2D → BN → Relu→ Conv2D → BN), where the Conv2D layers are 3× 3×N.
The residual block also contains a residual connection with a 1× 1× 1 convolution followed
by relu and Max-pooling layers, as shown in Figure 2f. The ResNet decoding block, shown
in Figure 2g, is an up-sampling (US) residual block consisting of a 2x bilinear-US layer,
followed by two Conv2D layers, BN, Conv2D, BN, a skip connection, Relu, and finally
the merging layer. Those ResNet-like blocks replace the encoding and decoding blocks in
the generator architecture in Figure 2a in the case of the ResNet-like implementation. The
ResNet-like discriminator is similar to the Pix2Pix discriminator, but the encoding blocks
are replaced with the ResNet-like encoding block, as shown in Figure 2e.
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Figure 2. The proposed architectures of generators and discriminators.

The third implementation is an Xception-like [16] implementation. In this imple-
mentation, we adopt the Xception block [16], which mainly uses the Depth-wise separa-
ble convolution (DW-Conv2D). The DW-Conv2D consists of a depth-wise convolution
(a convolution applied to each channel separately) followed by a point-wise convolution
(a 1× 1 convolution that projects the input features into the required number of the output
features). The DW-Conv2D performance is similar to the convolution but much more
efficient in speed and learning performance. The Xception-like encoding block is similar
to that of the ResNet-like block, but the Conv2D is replaced with the DW-Conv2D, the
max-pooling is moved to be before the residual connection, and the final Relu activation
is after it, as shown in Figure 2i. The Xception-like decoding block consists of a repeated
Conv2D, BN. Relu, followed by a 2X bilinear-US layer, a residual connection with another
2X bilinear-US and a 1× 1× N Conv2D, is adopted, and the residual connection is fol-
lowed by Relu activation and the merging layer, as shown in Figure 2j. The Xception-like
discriminator is similar to the Pix2Pix discriminator while replacing the encoding block
with the Xception-like encoding block.

In each of the previously mentioned architectures, we compared the feature merging
of the encoder and decoder (using skip connections) using concatenation and addition
separately. During training and validation, we used an input image size of 256 × 256 × 1
for the generator input as we fed the semantic input map as a grayscale image in the case of
NYU depth V2 [18] since the number of labels was small (14 label or 41 labels), which could
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be encoded in a grayscale image, which is different from the implementation of pix2pix [4],
in which the segmentation image feeds an RGB image with a unique color for each label.
In contrast, we fed the semantic input map with a shape of 256× 256× 3, as the number of
labels was large (100 labels) in the case of ADE20K indoor dataset [19].

3.2. Loss Function

The loss function for the proposed method was much similar to that for Pix2Pix, using
a mixture of GAN loss and L1 loss. The GAN loss can be used individually to learn the
image generation process; however, the generated image has a lot of artifacts. The L1 loss
individually generates blurry images with much lesser details, so the mixture between
them gives the best results according to [4]. The conditioned GAN loss can be defined as
stated in Equation (2):

LGAN = Ex,y[log(D(x, y))] + Ex,z[log(1− D(x, G(x, z)))] (2)

where D(x, y) is the probability that the generated image is real given the conditioned input
(the semantic mask x and target real image y) and G(x, z) is the generator output given
the conditioned input semantic image x and noise z. The generator (G) tries to minimize
the loss and the discriminator (D) tries to maximize the loss. The L1 loss can be defined as
stated in Equation (3):

LL1 = Ex,y,z[|y− G(x, z)|] (3)

which tries to minimize the mean absolute error (L1 distance) between the generated
fake image G(x, z) and the target real image y. The generator objective is minimizing
the weighted sum of the two objectives LGAN and LL1, and it can be stated as shown in
Equation (4):

GENobj = argminG(LGAN + λLL1) (4)

where the value of λ is chosen empirically as 100. The discriminator objective can be stated
as shown in Equation (5):

DISCobj = argmaxD(LGAN) (5)

where the discriminator aims to maximize the GAN loss (LGAN) to increase its ability to
recognize the fake images generated by the generator.

4. Benchmarks and Experiment Preparation

In this section, we present the benchmarks employed in our experiments (NYU
depthV2 [18] and ADE20K-indoor [19] datasets), training and test configurations
(Section 4.3), and the evaluation metrics (Section 4.4).

4.1. NYU Depth-V2

NYU depthV2 is a popular indoor scene dataset for image segmentation and depth
estimation. It comprises 1449 semantic segmentation annotated images of 640 × 480
size and contains 14 main and 41 extended labels. The labels contain most objects that
can be seen in general indoor scenes, such as bedrooms, kitchens, living rooms, offices,
libraries, and bathrooms. We split the dataset into 1000 images for training and 449 images
for validation.

4.2. ADE20K Indoor Subset

ADE20K is a big dataset for scene parsing; it includes 150 main classes of general
outdoor and indoor objects. We selected an indoor scenes (bedrooms, kitchens, living
rooms, and toilets) subset called “Home and Hotels” in the main ADE20K dataset as we
focused this research on the indoor scenes containing 100 different labels. The subset
contained 5991 training images and 517 validation images. The images had variable sizes
and were resized to a fixed size of 256× 256 during training and validation.
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4.3. Training and Test Configurations

In the training of the proposed GAN method, we resized the input segmentation
masks and the ground truth RGB images into the size of 256× 256 to speed up the training
process. We used a desktop machine with Nvidia RTX3090 GPU, Intel Core i7-8700 CPU,
and 64 Gigabyte RAM. We used the same specification in the test process.

4.4. Evaluation Metrcis

We evaluate the proposed GAN models using two popular evaluation metrics in this
study. The first evaluation metric was LPIPS [13], which is a perceptual similarity compari-
son metric that compares the features extracted by a classification CNN, i.e., AlexNet [20],
pre-trained on Imagenet [21] for the two images in comparison by calculating the mean
squared error (MSE) of the features extracted from last convolutional layer in AlexNet, as
shown in Equation (6). The more the LPIPS values, the more diverse the image:

LPIPS = ∑
l

1
Wl Hl

||Alex_ f eatures(y)− Alex_ f eatures(ŷ)||2 (6)

where Wl and Hl are the feature maps’ height and width, respectively. l is an iterator over
the features count. y and ŷ are the ground truth and the generated images, respectively.

The second metric is Frechet Inception Distance (FID) [22], which employs the Inception-
V3 [23] pre-trained model to extract the last 1D vector generated by the global average
pooling layer before the classification layer. Multivariate Gaussian distribution is applied to
the 1D vectors to obtain the mean and the covariance; then, FID is measured by calculating
the Wasserstein-2 distance between the probability distribution of the real image and the
probability distribution of the generated image. Equation (7) represents the FID metric.

FID = ||µ1 − µ2||2 − Tr(C1 + C2 − 2
√

C1C2) (7)

where µ and C are the mean and covariance matrices. Tr represents the sum of the main di-
agonal elements in the matrix. The higher the FID, the less probabilistically similar to the real
image it is, which means less FID is better for more diverse and realistic generated images.

5. Experimental Results

In this section, we show the effect of the feature merging technique on the quality of
the generated image (Section 5.1), the effect of the number of labels, and training samples on
the quality of the generated images (Section 5.2), a comparison between the proposed GAN
models (Section 5.3) and the training stability of the proposed GAN models (Section 5.4),
and comparisons with SOTA methods in semantic image synthesis (Section 5.5).

5.1. Effect of the Feature Merging Technique on the Quality of the Generated Image

We proposed merging the features of the same size in the encoder and decoder using
concatenation and addition techniques. Merging by addition gives the model the ability
to generate better quality images, and it consumes fewer computations as the number of
parameters in case of addition is much less than that in the case of concatenation. Table 1
shows the number of parameters for each of the proposed architectures, highlighting that
the number of parameters in the case of merging by addition is much less than that for
the concatenation, while for the LPIPS (the best is 0.514 versus 0.505 for Pix2Pix with
addition and with concatenation, respectively) and FID (the best is 122.732 versus 135.447
for ResNet-ED with addition and concatenation, respectively), the values are better, as well
as in case of addition for architecture. Tables 2 and 3 introduce better results for the case
of merging by addition compared to merging by concatenation, proving that merging by
addition is much more efficient and faster than merging by concatenation. Figures 3–5 also
show better quality images in the case of merging by addition for each architecture (Pix2Pix,
Xception-ED, and ResNet-ED), whereas Xception-ED+Add generates better quality images
than Pix2Pix+Add, and ResNet-ED+Add generates the best quality images of all.
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Table 1. Comparison between the proposed GAN models trained on NYU depth V2 with 14 semantic
labels in terms of the generator and discriminator parameter count (G params. and D Params.) LPIPS
and FID metrics.

GAN Model ED Merging Technique G params. D params. LPIPS FID

Pix2Pix Concatenatation 54,423,811 2,768,385 0.505 237.440
Pix2Pix Addition 39,085,315 2,768,385 0.514 228.568

Xception-ED Concatenation 33,452,515 41,825 0.471 203.329
Xception-ED Addition 25,600,483 41,825 0.495 198.594
ResNet-ED Concatenation 62,620,675 828,865 0.490 135.447
ResNet-ED Addition 51,274,755 828,865 0.509 122.732

Figure 3. Sample results were obtained by Pix2Pix, Xception-ED, and ResNet-ED with concatenation
and addition as feature merging of the encoder and decoder features while training with 14 semantic
labels on the NYU depthV2 dataset.

Figure 4. Sample results were obtained by Pix2Pix, Xception-ED, and ResNet-ED with concatenation
and addition as feature merging of the encoder and decoder features, while training with 41 semantic
labels on the NYU depthV2 dataset.
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Figure 5. Sample results were obtained by Pix2Pix, Xception-ED, and ResNet-ED with concatenation
and addition as feature merging of the encoder and decoder features while training with 100 semantic
labels on the ADE20k indoor dataset.

Table 2. Comparison between the proposed GAN models trained on NYU depth V2 with 41 semantic
labels in terms of LPIPS and FID metrics. Note that the generator and discriminator parameter counts
for each model are the same as those values reported in Table 1.

GAN Model ED Merging Technique LPIPS FID

Pix2Pix Concatenation 0.520 230.413
Pix2Pix Addition 0.522 218.635

Xception-ED Concatenation 0.472 193.458
Xception-ED Addition 0.465 189.727
ResNet-ED Concatenation 0.473 130.681
ResNet-ED Addition 0.497 115.235

Table 3. Comparison between the proposed GAN models trained on ADE20K indoor subset with
100 semantic labels in terms of LPIPS and FID metrics. Note that the generator and discriminator
parameter counts for each model are the same as those values reported in Table 1.

Method ED Merging Technique LPIPS FID

Pix2Pix Concatenation 0.515 140.241
Pix2Pix Addition 0.525 137.905

Xception-ED Concatenation 0.508 135.501
Xception-ED Addition 0.522 131.256
ResNet-ED Concatenation 0.491 95.402
ResNet-ED Addition 0.505 81.067
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5.2. Effect of the Number of Labels and Training Samples on the Quality of the Generated Image

We trained the proposed GAN models on the NYU-depthV2 dataset using a different
number of labels. The original segmentation labels of the NYU depth V2 dataset were
14 labels, and the extended labels were 41 labels. Figure 3 shows the obtained results using
the proposed models trained using 14 semantic labels, where Pix2Pix generates the worst
quality, Xception-ED generates better quality images, and ResNet-ED generates the best
quality images. Figure 4 shows the results obtained when the proposed models are trained
on 41 semantic labels. The results, in this case, had better quality than the results in the
case of 14 semantic labels. The proposed GAN models could learn the same object in the
case of training on 41 semantic labels since each specific item or object had a unique label.
In comparison, in the case of 14 labels, the labels were general. One label represented
more than one object, so the GAN model generated general objects with many possibilities
instead of the same target object. In the case of the ADE20K indoor subset, the proposed
GAN models were trained on 100 labels, and the number of training images was 5991,
which was much higher than that for NYU-depthV2 (1000 images). The results obtained
using the model trained on ADE20K were much better in quality due to the higher number
of labels (each specific object has a unique label) and training images than in the case of
the NYU depth V2 dataset. Figure 5 shows the generated images using the proposed GAN
models trained on the ADE20K indoor subset with 100 segmentation labels. Tables 1–3
also prove that the more semantic labels and data samples during training, the higher the
quality of the generated images. The LPIPS and FID values in the case of the ADE20K
indoor subset were much better (e.g., FID value of 81.067 for ResNet-ED+Add) than those
for NYU depth V2 (e.g., FID values of 115.235 and 122.732 for ResNet-ED+Add with 41
and 14 semantic labels, respectively).

5.3. Comparison between the Proposed GAN Models

We compared the proposed GAN models to identify the best models in terms of LPIPS
and FID metrics. In each comparison, in Tables 1–3, the best model in terms of FID metic
was clearly ResNet-ED+ADD as it attained FID values of 122.732, 115.235, and 81.067 for
14 and 41 semantic labels of NYU depth V2 and 100 labels of the ADE20K subset. The
FID values decreased, going down in the table from Pix2Pix to Xception-ED and then
ResNet-ED, where merging by addition always has lower FID values than merging by
concatenation. In the case of the LPIPS metric, ResNet was not the best in all cases, only
for the NYU depth V2 with 14 labels. In the case of NYU depth V2 with 41 semantic labels
and ADE20K subset with 100 semantic labels, Pix2Pix+Add had the highest LPIPS, which
meant more diversity in the generated images; on the other hand, it had lower quality
than the images generated by Xception-ED and ResNet-ED. The reason for that may be
a bad quality itself of the generated images from Pix2Pix+Add, which make the images
more diverse and lower in quality, but ResNet-ED+Add can still attain an acceptable LPIPS,
which puts it at the top of the models with the best FID and an average LPIPS value.

5.4. Training Stability and Loss Improvement of the Proposed GAN Models

In Figure 6, we show the loss improvement (the generator, discriminator, and L1 losses)
of the proposed GAN models trained on NYU depth V2 with 14 and 41 semantic labels.
While training Pix2Pix+Concat and Pix2Pix+Add on NYU depth V2, the training exhibited
some overshooting, but still, the training was stable, and the generator and discriminator
losses were converging. While training Xception-ED (with concatenation or with addition)
on NYU depth V2, the training process was much more stable, and the losses smoothly
improved with less convergence than in the case of the 14 labels. While training ResNet-ED
(with concatenation or with addition), the training was stable, and the losses converged
until epoch 170; after this epoch, the losses started to diverge, and the training process
became less stable, so we tested the model in epochs 170∼180 to get the one that generates
the best results. In the case of the proposed models that are trained on ADE20K indoor
subset with 100 semantic labels (Figure 7), Pix2Pix-based models had very low stability
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during training, and the loss strongly fluctuated; however, in the case of Xception-ED and
ResNet-Ed-based models, the training was extremely stable and smooth and the losses
converged rapidly. In general, The images generated in the case of 100 labels of ADE20K
were more realistic than those trained using 14 or 41 labels on NYU-depthv2, which was
reflected in the stability and the convergence of losses during training. The number of
labels and the dataset size plays important roles in the stability of the training process, as it
is obvious from the visual comparison between the sub-figures in Figures 6 and 7.

Figure 6. Loss improvement during training on NYU depth V2 dataset for Pix2Pix in (a–d), Xception-
ED in (e–h), and ResNet-ED in (i–l) with concatenation and addition as feature merging of the encoder
and decoder features with 14 and 41 semantic labels separately.

Figure 7. Loss improvement during training on ADE20K indoor subset for Pix2Pix in (a,b), Xception-
ED in (c,d), and ResNet-ED in (e,f) with concatenation and addition as feature merging of the encoder
and decoder features with 100 semantic labels.
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5.5. Comparison between the Proposed Method and State-of-the-Art Methods

We compare the best-proposed generator model (ResNet-ED+Add) with the SOTA
methods in the semantic image synthesis task on the ADE20K Indoor subset. Table 4
shows the LPIPS and FID values obtained while validating those pre-trained models (pre-
trained on ADE20K whole dataset) on the ADE20K indoor subset. The SOTA methods
in the comparison are very recent methods in semantic image synthesis, published in the
last 4 years (2018∼2022) including Pix2PixHd [9], SPADE [10], SCGAN [24], INADE [11],
OASIS [12], and SDM [14] (which is the state-of-the-art best model published earlier in
2022 based on the diffusion models). The proposed model (ResNet-ED+Add) could attain
the best (lower) FID (81.067) among other methods in comparison while it ranked two in
the LPIPS as SDM [14] can attain the highest (best) LPIPS value, which means it has better
diversity than the proposed model. Figure 8 shows a quality comparison between the
proposed model (ResNet-ED+Add) and the SOTA methods on the ADE20K indoor subset.
All of the methods in the comparison and our model can generate realistic images with
extremely high quality to the point that one cannot tell that they are fake generated images
as they have the same realism as the ground truth image, but with different styles and
colors. The difference in the quality can only be sensed numerically from the comparison
in Table 4, in which our method can attain the best FID value; however, this value is very
close to SDM, OASIS, and SCGAN, which also attain very small FID values.

Table 4. Comparison between the proposed ResNet-ED and SOTA methods on the ADE20K Indoor
subset in terms of LPIPS and FID metrics. Note that all other methods are trained on the whole
ADE20k dataset, while ours is only trained on the ADEK20 Indoor subset. Note that the best values
in terms of LPIPS and FID are bolded.

Method LPIPS FID

Pix2PixHD [9] 0.125 135.271
DAGAN [25] 0.344 90.105
SPADE [10] 0.221 106.401
SCGAN [24] 0.341 87.141

GroupDNet [26] 0.232 117.511
CC-FPSE [27] 0.311 97.452
INADE [11] 0.491 109.340
OASIS [12] 0.364 85.322
SDM [14] 0.552 83.244

ResNet-ED+Add (Ours) 0.505 81.067

As the ADE20k indoor subset was custom-made in our study and never used in any
previous research, testing in our selected test set gives the models trained on the ADE20K
whole dataset an advantage. Our method was trained on specific labels, which were the
indoor object labels that are supposed to give more concise output. In contrast, other
methods in the comparison in Table 4 were trained on more objects (a total of 150 labels)
and more training samples, which gives them the ability to generate more diverse objects so
they can obtain better results (SDM attained better LPIPS value than ours) as the LPIPS and
FID metrics measure both consistency and diversity (the generated output is better when it
is consistent with the target image in terms of the image content and the location of each
object, but it should be much different in style and colors than the ground truth image).
SDM [14] seems to be better in LPIPS value than ours because the model was trained on
more semantic labels and dataset size, so it might generate more diverse outputs than ours,
which was trained on fewer labels and less datasets. Additionally, diffusion-based models
naturally produce more variable outputs than GAN-based models in the image synthesis
task, as proved in [28]. Therefore, we consider that attaining a better FID value than SDM
is a good achievement of our study.
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Figure 8. Quality comparison between the best proposed model (ResNet-ED+Add) and SOTA
methods in image synthesis on ADE20K indoor subset; the methods in the comparison are CC-
FPSE [27], SPADE [10], INADE [11], SCGAN [24], SDM [14], and OASIS [12].

6. Future Work

In the current work, we achieved good quality of the generated images; however, in
our future work, we will consider the deep unsupervised active learning technique [29]
to improve the quality of the generated images, in which the model can learn and acquire
new knowledge during the testing process. The well-predicted pixels or semantics during
the test process can improve the model’s general knowledge so the overall accuracy can
be improved.

7. Conclusions

The proposed GAN models could successfully construct artificial indoor images with
high quality and impressive visual details, while input is a semantic label. It also generates
better-quality images than Pix2Pix, which is proved in the experimental results section. The
proposed merging with the Addition-based model is less complex than the UNet-based
generator of Pix2Pix. We also proved by experiments that using more training images
and semantic segmentation labels in the input segmentation map generates better quality
images than the generic few labels. We also proved that the proposed residual models
based on Xception and ResNet architectures could attain better results than those based on
non-residual generator architecture (such as UNet). Additionally, the training process is
much more stable, and the losses converge faster than those of Pix2Pix-based models. The
proposed models attained good LPIPS, and FID values as the best model (ResNet-ED+Add)
can attain an FID value of 81.067 and LPIPS value of 0.505, which outperformed the SOTA
methods in semantic image synthesis in terms of FID and ranked 2 in terms of LPIPS. The
proposed method benefits many modern applications, such as VR/AR applications, Image
editing, interior design, and neural style transfer.
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Abbreviations
The following abbreviations are used in this manuscript:

GAN Generative Adversarial Network
DCGAN Deep Convolutional Generative Adversarial Network
CGAN Conditional Generative Adversarial Network
Pix2Pix image-to-image translation-based GenerativeAdversarial Network
CycleGAN Cycle Consistency Generative Adversarial Network
StyleGAN Style-Based Generator for Generative Adversarial Networks
SPADE Spatially Adaptive Normalization
DAGAN Dual Attention Generative Adversarial Network
SCGAN Semantic Composition Generative Adversarial Network
INADE INstance-Adaptive DEnormalization
OASIS Only Adversarial Supervision for Semantic Image Synthesis
SDM Semantic Diffusion Model
ED Encoder-Decoder
Concat. Concatenation-based architecure
Add. Addition-based architecure
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