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Abstract: In order to recreate viable and human-like conversational responses, the artificial entity, i.e.,
an embodied conversational agent, must express correlated speech (verbal) and gestures (non-verbal)
responses in spoken social interaction. Most of the existing frameworks focus on intent planning
and behavior planning. The realization, however, is left to a limited set of static 3D representations
of conversational expressions. In addition to functional and semantic synchrony between verbal
and non-verbal signals, the final believability of the displayed expression is sculpted by the physical
realization of non-verbal expressions. A major challenge of most conversational systems capable
of reproducing gestures is the diversity in expressiveness. In this paper, we propose a method
for capturing gestures automatically from videos and transforming them into 3D representations
stored as part of the conversational agent’s repository of motor skills. The main advantage of the
proposed method is ensuring the naturalness of the embodied conversational agent’s gestures, which
results in a higher quality of human-computer interaction. The method is based on a Kanade–Lucas–
Tomasi tracker, a Savitzky–Golay filter, a Denavit–Hartenberg-based kinematic model and the EVA
framework. Furthermore, we designed an objective method based on cosine similarity instead of
a subjective evaluation of synthesized movement. The proposed method resulted in a 96% similarity.

Keywords: conversational gestures; 3D gestures; motor skills; gesture reconstruction; kinematics;
embodied conversational agents; Kanade–Lucas–Tomasi tracker; Denavit–Hartenberg

1. Introduction

Visual articulation of information through embodied behavior plays an important
role in spoken social interaction [1]. Speech and gestures (including hand gestures, facial
expressions, posture, and gazing) originate from the same representation, but are not
necessarily based solely on the speech production process; i.e., “speech affects what people
produce in a gesture, and that gesture, in turn, affects what people produce in speech” [2]
(p. 260). In fact, more than 50 percent of visual articulation (i.e., embodied behavior) in
spoken interaction adds non-redundant information to the common ground of the conver-
sation [3]. Moreover, over 70% of the social meaning of a conversation or an interaction is
transmitted through concepts other than words [4] (p. 27).

Recently, face-to-face interaction has been gaining attention, especially in interfaces
where personalization is one of the key drivers, such as eHealth [5] and support for the
elderly in their interaction with information technology [6]. Face-to-face interaction has
been shown to elicit user engagement and stimulate the use of conversational interfaces [7],
where the non-verbal, visual components drive the elicitation of affect and social awareness
in human partners [8]. Overall, embodied conversational agents (ECAs) are becoming indis-
pensable tools in personalizing and personifying everyday scenarios, where non-verbal be-
havior plays a crucial role in both representations of information and its understanding [9].
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However, animating ECAs, whose non-verbal behavior is perceived as believable, is
quite challenging, especially considering the complexity of the underlying bio-mechanical
system [10]. The perceived believability of synthetic behavior and its plausibility depend on
appearance, awareness, personality, emotional state, liveliness, illusion of life, consistency,
diversity, and social fluency [11]. The dis-synchrony (unnaturalness) between verbal and
non-verbal elements is most noticeable in synthesized non-verbal forms (i.e., shapes and
poses), and especially through kinetics and “prosody” (i.e., fluidity, internal dynamics,
movement phases, etc.) synthesis of movement [12].

Thus, two main challenges exist for the synthesized multimodal gestures to be per-
ceived as believable [13]. The first challenge, i.e., the ‘symbolics’ of gesture, is related
to the contextual alignment of visualized ‘shapes’ to speech and situational context, i.e.,
determining what kind of shapes a character should display in the given ‘semantic’ context:
‘What to display to visualize the given communicative intent?’. The symbolic alignment is,
in general, implemented as a rule-based [14] or as a conversational behavior generation
system with a machine learning (ML) baseline [15,16]. The second challenge, i.e., the
‘prosody’ gesture, is then related to the inner and outer fluidity (dynamics) of physical real-
ization (animation) of selected visualizations, i.e., determining the trajectories and fluidity
of movement in the given “non-semantic” context: “How to display the sequence of shapes
to match conversational intent, i.e., acoustic and linguistic properties of spoken content?”.

The first challenge we tackled successfully in [16]. To tackle the second challenge,
a wide range of techniques (data- and prosody-driven approaches) were introduced, to
cope with significant requirements related to the believable fluidity of non-verbal expres-
sions [17]. The main drawback of data/speech/prosody-driven approaches is that they are
generated based on a small set of signals related mainly to the speech signal (e.g., pitch and
prosody). Thus, they cannot facilitate “symbolics” [18].

The main idea behind the proposed method is to create contextually relevant resources
that can be re-used when an embodied conversational agent generates a viable conversa-
tional sequence. The verbal and non-verbal context of an observed sequence, to be fed
to behavior planning, is pre-annotated, and the role of the proposed method is to extract
a possible visual articulation, including inner fluidity. Overall, systems utilizing gesture
templates (e.g., procedural/physical animation) show the capacity to align movement
with momentary context, as well as the context in the planned near future [19]. However,
synthetic gestures still lack believability. To cope with the challenge of addressing the
liveliness, diversity, and consistency of synthetic gestures adequately, we propose to exploit
gesture tracking and 3D reconstruction to deliver a system capable of recording gestures
expressed in the video during face-to-face conversation automatically, and storing them as
gesture prototypes of the so-called “motor skills” [20]. We built the concept based on the
following assumption: ECAs with diverse sets of resources, which preserve the dynamics
and complexity of human movement, will be more successful in their attempt to mimic
human-like conversational behavior. Such entities will be perceived as more believable
virtual entities with human-like (and not human) attributes. Instead of subjective eval-
uation through human observation, we implement an objective measure to evaluate the
naturalness of synthesized movement based on cosine similarity.

With the goal of reconstructing conversational gestures as natural as possible, we
present our choice of suitable methods, announced in the title of the paper and our suc-
cessful connection of stated methods in an efficient conversational gestures reconstruction
system. We propose a measure based on cosine similarity for objectively evaluating the
naturalness of synthesized hand movements generated by the proposed method instead
of subjective evaluation through human observation, which is what, to the extent of our
knowledge, was being done to evaluate gestures until now. In addition, we present the
results of our system that were evaluated objectively on an embodied conversational agent
called EVA (An EVA is an embodied conversational agent, developed in the Laboratory
for Digital Signal Processing, Faculty of Electrical Engineering and Computer Science,
University of Maribor [21]).
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The paper is structured as follows. Section “Related Work” provides an overview of
related work on gesture tracking and reconstruction techniques. Section 2 outlines the
formalism used to implement the proposed tracking and reconstruction system. Section 3
shows the results of the system evaluated objectively on an embodied conversational agent
EVA [21]. Section 4 provides the discussion, and the conclusions follow.

Related Work

Synthetic responses are often perceived as lacking in consistency, diversity, and vivid-
ness. Gestures perceived as “random”, “non-aligned”, or “no-sense” distort the perception
of eloquence, competence, human-likeness, and vividness of conversational responses.
Creating believable movements is challenging, since the movements must be meaningful
and natural, reflecting the coupling between gestures and speech [22]. In some cases, it
has been suggested that having no gestures will achieve better persuasion and perceived
believability than inadequate gesturing [23]. The main drawback most systems face in the
context of believability is how to cope with diversity, i.e., how to create a repository of
non-verbal expressions large enough to adequately represent both intent and thought [21].

Much of the complexity associated with the reconstruction process is related to the
“posing” phase, in which the animators must handle a large number of on-screen handles
associated with the character’s virtual skeleton. These handles allow direct or indirect mod-
eling of the available degrees of freedom (DOFs) of all the individual character’s joints [24].
Moreover, to generate believable animation using CAD environments, the animators must
understand and tackle many modeling and animation techniques (e.g., polygonal model-
ing, modeling with NURBS or subdivision, UV skinning, forward and inverse kinematics,
rigging, etc.). The resulting animations are realistic in a given context. However, they may
decrease believability significantly when the internal fluidity (dynamics) is changed due to
different intent or prosodic context. To increase the versatility of the gestural morphology
and to decrease the complexity of designing the movements a conversational agent can
reproduce, we propose to build a 3D corpus of gesture prototypes [20]. For the modeling
environment, we exploited the DAZ3D studio, which simplifies the CAD controls, and,
through a vast repertoire of conversational resources, minimizes the human animator’s
need for ‘artistic’ skills. Each prototype is expressively adjustable, and the EVA realizer [21]
can mitigate the general issues of fluidity. However, since prototypes are generated manu-
ally by observing ‘real-life’ conversational expressions, the inner fluidity and the trajectory
are not captured, but rather defined artificially through a set of orientational in-between
points used to model the forward kinematics. As a result, the increasing complexity of
gestures decreases the observed fluidity and perceived believability significantly.

To capture and preserve a high resolution of inner fluidity, performance-driven an-
imation can be exploited to create 3D resources [25]. In this concept, an actor’s physical
performance is transferred interactively to the virtual character to be animated. The method
requires specialized equipment (e.g., a sensor suit) and specially trained experts, making it
highly expensive and less suitable for non-professional animators. The mapping between
the performer’s and character’s motion is also a complex task, since both entities operate
in different spaces. Thus, the process requires sophisticated configuration steps and au-
tomatic retargeting [26]. In [27], the authors outline a sophisticated system consisting of
multiple cameras and passive sensors to compensate for the lack of naturalness and capture
movement generated during the conversation. Most multi-view methods utilize multiple
cameras and exploit the image depth and shape from silhouette cues to capture the moving
actor [28], or reconstruct gestures via a multi-view photometric stereo approach [29]. These
methods typically require a high-resolution scan of the person as an input.

With advances in deep learning (DL) and image processing and the availability of
depth camera sensors, new opportunities arise that could enable end-to-end reconstruction
and capture of 3D resources. Methods integrating Kinect or similar depth sensors [30–32]
or multi-view data [33,34] achieve impressive reconstructions, but do not register all frames
to the same canonical template, and require complicated capture setups. Moreover, to
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represent conversational movement viably, the captured resources must originate from real-
life situations integrating spontaneous behavior [35]. Recreation, even when performed by
professional actors, will always reflect artificialness, resulting in less spontaneous and less
diverse responses [36].

If we want to create a sufficiently large inventory of gestures that will enable the
generation of natural gestures in interaction, and if we want to achieve a time-efficient
generation of such an inventory, it makes sense to use a multitude of existing video record-
ings, and, consequently, it makes sense to use a method based on the use of video materials
recorded with one camera. Most conversational corpora consist of TV interviews and
theatrical plays that have shown themselves to be an appropriate resource of spontaneous
conversational expressions, and are significantly more suitable for research in wider ‘dis-
course concepts’ than any artificially recorded material [37]. Most methods related to
3D Pose and Shape Estimation from monocular sources refer to (Deep) Convolutional
Neural Networks ((D) CNNs) and leverage 2D joint tracking and predict 3D joint poses
in the form of stick figures [38–42]. The major challenge with deep learning and similar
probabilistic approaches is that the tracking process involves predicting the most probable
configuration of the artificial skeleton. Thus, the captured conversational movement will
approximate something known to the model rather than an exact replication of what is ob-
served. Overall, the DNN-based approaches work well within the constraints of the known
context (i.e., a fixed environment and known classes). However, in uncertainty, the models
tend to underperform and require retraining [43]. The inconsistency and uncertainty of
deep models (e.g., Pose Net, Open Pose) in many cases result in issues such as incoherence
in fluidity (e.g., sudden shifts) and over smoothing of actual movement [44], leading to a
decrease in believability when replicated as part of synthetic conversational behavior.

With our main motivation in mind, i.e., to capture conversational expressions from
monocular video as similar to the original as possible, and by preserving the ‘prosody
of movement’, i.e., fluidity and dynamics, we designed a novel system, which consists
of a Kanade–Lucas–Tomasi tracker (KLT) [45] to track the observed body parts based
on optical flow, and a Denavit–Hartenberg-based kinematic model [46] to reconstruct
tracked features as 3D templates and store them as part of the EVA’s [20] motor skills
repository. However, as with any image processing algorithm, mismatches in either tracking
or reconstruction will always appear. Thus, in addition to the non-predictive method,
it is crucial to have an objective measure to evaluate this effect. Instead of subjective
evaluation of believability through perceptive experiments, as generally utilized in the
field of embodied conversational agents, we propose a new method that allows for easy
assessment of the mismatch generated in the tracking and reconstruction process.

2. Materials and Methods
2.1. Materials

The material we used in our work is a video signal with FullHD resolution and a
different density of frames per second (frame rate). To test our system, conversational
gestures were recorded with a video camera in a laboratory environment with a relatively
impoverished background with only one actor. The resolution of the laboratory videos
was FullHD (1920 × 1080) with H.264 compression and a frame rate of 30 FPS. In addition
to laboratory videos, video clips from a video podcast were also selected; their content
included spontaneously created conversational gestures and a diverse conversation with
two performing actors. We used video content with a large number of spontaneously
generated gestures. Such video content usually consists of videos with conversations. It
is necessary to be aware that certain video content with professional actors (talk shows,
evening news, etc.) does not offer a large amount of spontaneous and/or naturally created
gestures. Professional actors know how to create conversational gestures that are not created
spontaneously, but are acted out. We subjectively selected video content with gestures
created spontaneously as our experimental example. The podcast videos were streamed
from a social network, where they were published with the purpose of sharing video
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content. The resolution of the obtained video was also FullHD (1920× 1080) with a different
frame rate (25 FPS) than the laboratory video sources. Between 10 and 19 conversational
gestures for each type of movement were analyzed, to evaluate the conversational gesture
reconstruction from the EVAPose system. The analysis was performed for laboratory and
spontaneously generated conversational gestures. We captured the spontaneous gestures
from the video podcast, Gospoda [47].

2.2. Laboratory Set-Up

The core idea of the proposed method is to capture conversational expressions from
different human collocutors engaged in interaction contained in the EVA-Corpus Video
dataset, and store them back as “motor-skills” in the EVA-Corpus MotorSkills dataset,
i.e., 3D artefacts to be re-used by embodied conversational agents during human-machine
interaction. The workflow with individual steps is outlined in Figure 1.
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Figure 1. Workflow to capture conversational behavior in spontaneous discourse automatically, store
it as gesture templates, and interconnect the captured templates with other verbal and nonverbal
features of the observed sequence. The hand shape is not tracked; a CNN model was used to select
the shape from a dictionary of possible shapes based on the HamNoSys notation system [48].

The input to the proposed method was a color video stream, a conversational sequence
contained in the EVA Corpus Video dataset. In the preparation phase, the best-fitting track-
ing points are selected automatically. The tracked points were filtered to reduce noise
and possible inaccuracy in tracking—visualized as ‘jitter’ or sudden and instant jumps
of the observed object from one position to another. The tracked geometry is sent to
the Denavit–Hartenberg-based kinematic model and transformed into (Reconstruction
in Figure 1) Euler angles (yaw, pitch, and roll) stored as a procedural animation (Create
Resource in Figure 1). To validate the captured conversational expression (including the
articulated shapes and inner fluidity) and compare it against the original, the expression
was synthesized on our proprietary ECA realizer [21] by its in-scene recorder (Animation
and Capture in Figure 1) functionality. If the synthetic system is recognized as simi-
lar (similarity index above 70%), the realization is registered as a possible visualization
of the conversational concept. The following sections highlight the individual steps in
more detail.
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2.3. Preparation Step

Tracking arbitrary objects consistently and accurately in video sequences is challenging.
Selecting robust features that best correspond to physical points and can, at the same time,
be tracked well (e.g., mitigate occlusions, disocclusions and features that do not correspond
to points in the world) is the first step in delivering an effective tracker. Shi-Tomasi’s
implementation [45,49] represents a robust method to select “good features” and can, at
the same time, compensate for lack of naturalness if and when these features are lost due
to occlusion or “loss of visibility”; a common occurrence when tracking the movement
of hands in multiparty discourse. Unlike the Harris Corner Detector, the Shi-Tomasi
implementation proposes a variation in the selection of corners, and proposes a pixel to be
considered as a corner by comparing the eigenvalues, i.e.:

R = min(λ1, λ2)> λ, (1)

where λ1 and λ2 are two eigenvalues of a symmetric matrix and λ is the predefined
threshold. The pixel is considered a corner when both λ1 and λ2 are above the threshold.
Figure 2 highlights the selection of the N strongest corners as defined by Shi-Tomasi (a)
and selected tracking points (b), to be tracked and used as input in the reconstruction.
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Figure 2. Example of (a) Good features as extracted by the Shi-Tomasi detector and (b) Tracking points
as the strongest corners in a specific region, representing the “tracked” joints in the human skeleton.

As outlined in Figure 2, the algorithm operates over grayscale images. The “quality” of
corners (i.e., the λ threshold) is specified as a value between 0 and 1. All the corners below
the threshold are rejected. Since we wanted to track only specific artefacts representing
the shoulder, elbow, and wrist “joints”, the user selects the regions of interest. Based on
the manual selection of the region of interest, the algorithm selects the strongest corner
automatically (i.e., the “green” circles in Figure 2b) as the final tracking point, and “rejects”
all nearby corners of interest. In the tracking process, the tracking points are regarded
as features.

2.4. KLT Feature Tracker

The KLT feature tracker [50] computes the displacement of features between consec-
utive frames by aligning a second image J to an input image I, where I(x,y) represent the
intensity of the image at [x y]T.

Let:
u =

[
ux uy

]T, (2)

where u represents the point at coordinates (x, y) in the first image I. The goal of tracking is
to find point v in the second image J, where the displacement d is minimal; thus I(u) and
J(v) are similar:

v = u + d =
[
ux + dx uy + dy

]T. (3)
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The displacement d =
[
dx dy

]T represents the image velocity (optical flow) at u. The
minimal difference is computed as the mean squared error function:

ε(d) =
ux+wx

∑
x=ux−wx

uy+wy

∑
y=uy−wy

(
I(x, y)− J

(
x + dx, y + dy

))2 (4)

where wx, wy represent the integration window size parameter of the template window of
size (2wx + 1)×

(
2wy + 1

)
.

The intensity of the image is represented by a small template window of n× n, centered
at one of the feature points. J(x) is the same window in the next frame. d represents the
displacement vector, and η represents the error introduced due to the shape change.

During the tracking process, the goal is to find point v in image J that corresponds to
point u in the image I:

vopt = G−1b, (5)

where:

G .
=

px+wx

∑
x=px−wx

py+wy

∑
y=py−wy

[
I2
x Ix Iy

Ix Iy I2
y

]
(6)

Ix and Iy represent image derivatives.
The image mismatch vector b is defined as:

b .
=

px+wx

∑
x=px−wx

py+wy

∑
y=py−wy

[
δI Ix
δI Iy

]
(7)

δI represents the image difference. In standard optical flow computation, the goal is to find
vopt as displacement v, which minimizes the matching function ε(v ):

ε(v) = ε
(
vx, vy

) px+wx

∑
x=px−wx

py+wy

∑
y=py−wy

(
A(x, y)− B

(
x + vx, y + vy

))2 (8)

where optimum v is calculated through Taylor expansion:

∂ε(v)
∂v

∣∣∣∣
v=vopt

=
1
2

[
∂ε(v)

∂v

]
≈ Gv− b (9)

Because of the first-order Taylor approximation, this is only valid when the pixel
displacement is small. Thus, the standard optical flow computation is performed in k steps
and defined by:

v = dL = vK =
K

∑
k=1

ηk (10)

where v represents the final optical flow and dL the displacement, K the number of iterations
to reach convergence, and new pixel displacement (i.e., one step in the LK optical flow
computation) ηk is defined as:

ηk = G−1bk (11)

Derivatives Ix, Iy in the image mismatch vector are computed at the beginning, and
only δI is recomputed at each step k. The overall iteration completes when ηk is smaller
than the threshold, or the maximum number of iterations is reached.

The implementation of the KLT tracker used in our research is highlighted in Figure 3.
The preparation step, definition of feature points and tracking points according to the
defined process, is described in Section 2.1. Feature points were selected according to Shi-
Tomasi’s approach, and the tracking points were set to regions representing the “shoulder”,
“elbow”, and “wrist” joints. We used a 5× 5 points integration window.
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The tracking process implements the iterative optical flow computation and matches
tracking features between the current imagei (J) and the previous imagei−1 (I) by tracking
feature points, where i is on the interval [1, n] and n is the last frame of the video recording
of the conversational sequence. If point v in imagei that corresponds to point u in imagei−1
cannot be found (i.e., the feature falls outside of the image), and/or the image path around
the track point varies too much (i.e., the cost function is larger than a threshold), the feature
point is regarded as lost and is deleted. To recreate the expression, all tracking points must
be registered in all frames, and the missing feature points must be replaced. The process
exploits the Shi-Tomasi detector to create a new set of good features to replace lost features.
The tracking points are relocated automatically to the closest new best feature point. The
new feature points and 2D coordinates of each tracking point are saved, and the algorithm
may proceed with the next frame. The tracking process completes when the last frame of
the video is reached.

2.5. Filtering

The designed tracker implements “tracking-by-detection” and does not implement fea-
ture descriptors, such as SIFT [51]. This means that the tracking accuracy varies depending
on the rotation, scale, and image perspective distortions (including lighting changes). The
inaccuracy results in a “long-distance” move of a tracking point instead of a small shift in
position (i.e., noise). While reconstructing the movement on the ECA, the jumps will be ob-
served as instant “jumps”—movements which cannot be expected in real life. To avoid this,
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we implemented a digital filter based on the Savitzky–Golay algorithm [52]. The Savitzky–
Golay filter belongs to the family of FIR filters, and provides an estimate of the derivative
of the smoothed signal using convolutional sets derived from least-squares formulas coeffi-
cients. Savitzky–Golay filters minimize the least-squares error in fitting a polynomial to a
sequence of noisy data. Consequently, the precision of data increases without distorting
the signal tendency. Thus, the method is suitable for signal smoothing [53,54].

Let us consider the captured tracked points as a compositum of captured movements,
i.e., the main signal f (l), corrupted randomly by distortions, i.e., w(l), thus the real signal
(stream of tracking points) is defined as:

x(l) = f (l) + w(l), l = 0, . . . , L (12)

where x(l) indicates the lth tracking point (i.e., the lth frame) in the signal with L points
(sequence of data). The goal is to smooth the x(l) to reduce the level of the remaining noise
to as low as possible, i.e., to minimize the following MSE:

εn =
M

∑
i=−M

(P(i)− x(i))2 =
M

∑
i=−M

(
n

∑
k=0

akik − x(i)

)2

(13)

where the smoothing is carried out with a symmetric window with width N = 2M + 1
samples around the “reconstruction point”. In this case, smoothing can be represented as a
polynomial with the order n(P(i)) = ∑n

k=0 akik; k = 0, . . . , n, and ak is the kth coefficient of
the polynomial.

The filter output is then equal to the value of polynomial (n) in the central point y(0);
y(0) = p(0) = a0. To calculate the next point, the window N is shifted by 1 unit. Savitzky
and Golay [52] showed that the above process of ‘filtering’ is equivalent to convolving
samples in windows with a fixed impulse response:

y(k) =
M

∑
i=−M

wix(k− 1) (14)

To select the SG parameters used for smoothing optimally, we applied the power
spectrum analysis. A power spectrum analysis was performed on an arbitrarily selected
area of an unfiltered input signal. The analysis showed the level of the signal power
spectrum and noise. Such analysis was also calculated for a filtered input signal with SG
parameters of choice. In the area of the high frequency harmonics, we checked at what
distance from the densification of the signal spectrum there was still a greater change in
the spectrum of the individual filtered signal at the noise level. It was found that, with a
window width of N = 9 and a polynomial degree 3, we achieved a sufficient smoothing
effect. Figure 4 shows the power spectrum of the smoothed signal, the smoothed signal
with a third-degree polynomial, and a window width of 9 is highlighted. It can be seen that
the level of the power spectrum of the smoothed signal is less intense at slow transitions of
the input signal than at faster ones. From this, we can conclude that the parameters selected
preserve the signal’s slower jumps, while the smoothing increases in the areas with faster
jumps (a part of the signal with a higher frequency). Figure 5 shows the smoothing results
using an SG filter with a window width N = 9 and a polynomial of the 3rd order. For the
objective weight function w, a cubic function was used.
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2.6. Denavit–Hartenberg Based Reconstruction

As highlighted in Figure 1, the tracking points are sent to the reconstruction phase. In
the first step, internal angles are calculated from tracking points using basic angle functions
based on the player’s position in the video scene. The internal angle is calculated between
the starting point oa (in our case the player’s shoulder on the video signal) and the end of
the player’s arm (end-effector) oe f . In the case when the player is facing us, the internal

angle is calculated as q8 = arctan2
(

oa, oe f

)
. For each joint that rotates, we can write

qi = arctan2(oa, oi). Signal tracking points for each joint are marked as oi.
In this phase, 2D coordinates of tracked points are converted into Euler angles, which

can be animated by our conversational agent. The arm is deconstructed into a manipulator
consisting of three spherical joints: the shoulder, the elbow, and the wrist joint. Figure 6
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outlines the designed manipulator. The end-effector is placed at the far end of the arm
(e.g., the tip of the hand) as a reference point used in the automatic kinematic
analysis algorithm.
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The goal is to determine the rotation of each joint in the mechanism of human arm
movement from the positions of the tracking points. As outlined in Figure 6, the proposed
kinematic model assumes each spherical joint is represented by multiple revolute joints
that permit linear motion along a single axis. Using a single degree of freedom allows us
to represent each angle of rotation of the spherical joint with a single real number, and
the rotation in the spherical joint as a composition of single-axis rotation. This allows
us to determine the position, and, more importantly, the orientation of tracking points
in a systematic way, where the cumulative effect (Ai) is calculated using the Denavit–
Hartenberg (D–H) convention [46].

We assumed the proposed model consisted of eight revolute joints and ten links. We
assumed that jointi connects linki−1 with linki. Thus, when jointi was actuated, linki and
further links in the kinematic chain of the robot arm moved. To perform the kinematic
analysis, a coordinate frame was attached to each link, i.e., xiyizi to linki, represented
by the tracking point. Using the D–H convention, we assumed Ai was a homogeneous
transformation matrix which expresses the position and orientation of xiyizi in respect to
xi−1yi−1zi−1. The Ai varied as the configuration of the manipulator was changed; however,
since we assumed the use of revolute joints, Ai is a function of a single joint variable and
can be represented as the product of four basic transformations, rotation, and translation
around the zi−1 and xi axes:

Ai−1
i = Trans(zi−1, di)Rot(zi−1, θi)Trans(xi, ai)Rot(xi, αi) =

=


1 0 0 0
0 1 0 0
0 0 1 di
0 0 0 1




cθi −sθi 0 0
sθi cθi 0 0
0 0 1 0
0 0 0 1




1 0 0 ai
0 1 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 cαi −sαi 0
0 sαi cαi 0
0 0 0 1

 =


cθi −sθicαi sθisαi aicθi
sθi cθicαi −cθisαi aisθi
0 sαi cαi di
0 0 0 1

 (15)

where θi, di, ai, αi are parameters associated with linki and jointi denoted as joint angle, link
offset, link length, and link twist. The parameters mentioned above are shown in Figure 6.

Since revolute joints were used, the Ai−1
i is a function of a single variable θi and the

other three parameters are denoted as D–H parameters and are constant for a given link.
The D–H parameters for each link of the proposed kinematic model are shown in Table 1.
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Table 1. The Denavit–Hartenberg parameters for the kinematic model.

Linki ai di αi θ

1 a1 a1 π/2 q1
2 0 0 − π/2 q2
3 0 0 π/2 q3
4 0 0 − π/2 q4
5 a5 a5 0 q5
6 0 0 − π/2 q6
7 0 0 π/2 q7
8 0 0 0 q8

End-Effector
9 −lx lz 0 0

10 −ly 0 0 0

Where link lengths a1, a5,−lx,−ly and link offsets d4, ly, were calculated as the
average values of measurements performed over multiple human arms:

(an, dn, ln) =

(
∑

np
1 an

np
,

∑
np
1 dn

np
,

∑
np
1 ln
np

)
(16)

where np represents the number of candidates participating in the measurements (np = 10)
and the variable ln represents the end-effector position. For our case, we calculated the
D–N parameters as a1 = 30 cm , a5 = 30 cm , d4 = 30 cm, lx = 1, 5 cm, ly = 2.0 cm and
lz = 12 cm.

Using the D–H parameters in Table 1, we calculated the homogeneous transformation
matrices Ai−1

i for each joint, and created a reference transformation matrix for the forward
kinematics of the proposed kinematic model:

A0
9 = A0

1 A1
2 A2

3 A3
4 A4

5 A5
6 A6

7 A7
8 A8

9, (17)

where the last two matrices A7
8 and A8

9 are the matrices of the end effector.
However, it is not trivial to represent any arbitrary homogeneous transformation using

only four parameters [46,55]. Given two consecutive frames, 0 and 1, with given coordi-
nate frames x0y0z0 and x1y1z1 respectively, we assumed there exists an A1

0 homogeneous
transformation matrix. Moreover, we assumed the axis x1 was perpendicular to z0, and
x1 intersects the z0 axis. Under these conditions, there exist unique numbers a, d, θ, α, and
Equation (15) can also be written as:

Ai−1
i =

[
R p

0 0 0 1

]
(18)

where R describes the rotation matrix of joints and p describes the displacement. We can
write the rotation in a homogeneous transform matrix as:

Ri = Ri,z(γ)Ri,y(β)Ri,x(α) =

yawcosγi −sinγi 0
sinγi cosγi 0

0 0 1


pitch cosβi 0 sinβi

0 1 0
−sinβi 0 cosβi


roll1 0 0

0 cosαi −sinαi
0 sinαi cosαi

 (19)

where the angles α, β, and γ represent the Euler rotation. The names of each rotation angles
are roll, pitch, and yaw. Since the embodied conversation agent EVA [21] has a default
position different from our kinematic model, the calculated data must be adjusted to be
suitable for the EVA-Script Template using a 90-degree rotation of α angle (roll):

Ri
adjustment−−−−−−→ Ri,EVA = Ri,z(γ)Ri,y(β)Ri,x(α + 90) (20)
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The above adjustment represents a method to normalize scene results to any given
space of any embodied conversational agent with an underlying three joint-based skeletal
structure. The calculated data can now be used for 3D conversational resources, as defined
by the final component, i.e., the Resource Generator.

2.7. Resource Generator

In this step, the captured and reconstructed stream of Euler angles is transformed
into a procedural animation, an EVA-Script Template compatible with the repository of
“motor skills”. In the EVA Framework, a conversational expression or gesture is defined as
a function of conversational intent and its realization through visualization (i.e., movement
model) [16], i.e.:

Ĝ = T−1
m Ĥ (21)

where Ĝ represents gesture T−1
m contextual interpretation based on conversational intent,

and Ĥ is the movement model used to “visualize” the conversational intent. The movement
model is then defined as a transition between the pose at the beginning (PS) and the pose
at the end (PE), via a trajectory (J), carried out over time t.

Ĥ = J(PS, PE)|t (22)

Since the realization engine utilizes procedural animation and forward kinematics, the
trajectory J is specified as a sequence of in-between frames, i.e., J = {PS+1, . . . , PE−1 }.
The attribute t is used to “optimize” the number of in-between-frames given the time
constraint t, and the realizers targeted frame rate f :

N = round
(

nJ + 1
t× f

)
(23)

Here, N represents the number of in-between frames in J to skip, nJ represents the total
number of frames captured by J. We added 1 frame to preserve the number of in-between
frames, since the first transformation from configuration PS−1 to PS (i.e., the start pose)
is captured by J. The t× f represents the maximum number of frames the realizer can
implement without any impact on the inner fluidity. Namely, adding too many in-between
frames will “slow” down the gesture synthesis. The remaining series of configurations are,
afterwards, transformed into an EVA template [22]. The overall process is outlined by the
following pseudocode:

Algorithm 1. Proposed algorithm for creating resources.

t = calculate_from timestamps
f = from_config
N = round_up (size(frame) + 1)/(t × f )
if N > 1 then H = array (t × f)
else H = array (size(frame) + 2)
H [0] = to_unit(frame [0])
for i = 1 to size(frame) − 2:
if i mod N == 0 then:
append(toUnit(frame[i]), H)
else:
continue
append(toUnit(frame[size(frame) − 1]), H)
createGesture (H, t)

The algorithm always takes the first and the last frame as the start and end poses,
respectively, and every ith in-between frame, such as i mod N equals zero. Other frames are
dropped. The function toUnit maps the 3D definition of each frame into the EVAScript’s
unit notation, i.e., {key, list} pair where key represents the articulated joint (e.g., collar,
shoulder, elbow, forearm, or wrist) and list represents a sequence of 3D configurations for
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the joint (i.e., the sequence of yaw, pitch, roll configurations) that constitute the 3D trans-
formation from pose i to pose j. The function createGesture then defines Ĝ as a procedural
fragment written in EVAScript markup as shown in Figure 7.
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Figure 7. An example of procedural animation formulated in EVAScriptMarkup, each
<sequence><parallel> represents configurations Pi, Pi+1 as the transition between two consecutive
frames adjusted to the frame rate scaling. durationUp represents the duration of the transition, and
is calculated as sizeo f (H)

t and the value represents the 3D configuration of the “joint” (movement
controller) in Euler angles expressed in roll–pitch–yaw (HPR) notation.

3. Results

In this section, we will present the content related to evaluating the reconstructed
motion. Aspects will be presented of the evaluation of the reconstructed movement, evalu-
ation procedures, and the characteristics used in such procedures. Here, we should keep in
mind that the main objective is creating natural movement from sources whose content
is naturally generated conversation. The existing corpora of reconstructed conversational
gestures suffer from a relatively small number of artificially generated gestures. The use of
social networks and their video content sharing allows us to obtain resources with the con-
tent of naturally generated conversational gestures. Although we can create a large number
of reconstructed conversational gestures in this way, we have to evaluate these gestures
objectively and subjectively. In our evaluation, we focused on objective evaluation, which
allows us to remove poorly reconstructed gestures before evaluating them subjectively.

As already mentioned, the assessment of the similarity between actual and recon-
structed movement in most cases comes from the context of use. In some cases, only the
rough course of the movement may be of interest, while, in others, the accuracy of the
reconstruction of the movement of each joint is necessary. Usually, a 3D reconstructed
movement is considered to be similar to the real one if the only difference is a global
geometric transformation such as translation or rotation, and the speed of conversational
gestures can also be taken into account [56]. In the case of conversational gestures, such
an aspect is not satisfactory, since logical and numerical similarities are missing. Aspects
taking into account logical and numerical similarities define the logical similarities of
movement as several versions of the same action or sequence of actions. In most cases, the
algorithms used to evaluate logical and numerical similarities are based on quantitative
characteristics [57]. However, it is necessary to consider that a logically similar movement
can be numerically different, and vice versa. In many contexts of use, partial similarities
are important, and we reconstructed the movement of some parts of the body differently
from others. In this aspect, it is necessary to be aware that considering the extracted charac-
teristics in the similarity measure of “unimportant” parts of the body can impact the result
negatively [58].

In our case, the similarity between the input signal, tracked using the Kanade–Lucas–
Tomasi tracker, and the reconstructed signal, tracked with the same tracker, was calculated
using local similarity assessment features. This approach aimed to address the partial,
logical, and numerical aspects of the similarity between reconstructed and actual human
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movement. The cosine distance features were used to compare the two signals on the
entire time axis (marked as sim1) to assess the similarity. At the same time, the similarity
of both signals was also assessed at selected time points, representing the moment of the
conversational gesture position (sim2) with the greatest similarity. An important feature that
must be considered in our case is the number of displayed images per second (frame rate)
measured in FPS. With this feature, we added a new dimension to the similarity assessment,
which captured the aspect of the global transformation with time to a certain extent. By
taking into account the time feature, we can evaluate the directly reconstructed gestures
quantitatively. We performed an experimental evaluation for two methods: OpenPose and
our proposed EVAPose. Due to the fact that the OpenPose method failed to provide results
for the original frame rate of the recording, we defined the condition sim2, which enabled
us to compare the results of the methods at a similar frame rate. In this, we implemented
the proposed EVAPose method in a way that it generated the same frame rate as the
OpenPose method. A similarity assessment was made between the input video signal
and the reconstructed signal using the proposed EVAPose and OpenPose systems. The
similarity score marked with sim1 means the average of the scores of individual gestures.
The sim2 rating contains the maximum value from the average of the ratings of individual
gestures. Both systems measured both ratings. Similarity scores for the cases used in the
evaluation are given in Table 2.

Table 2. Similarity scores for the considered cases. sim2 in both cases contains moments of the
reconstructed signal from the EVAPose with the highest similarity values max(sim1).

System Type Type of Movement 30 FPS Adjusted FPS
sim1 sim2 sim1 sim2

An ideal example,
a laboratory
environment

EVAPose
Up/down (vertical movement)
(46s)—10 gestures

86.85 98.30 91.25 ⊗ 98.30

Left/right (horizontal movement)
(46s)—10 gestures (single gesture
measured in seconds)

82.3 92.45 89.65 ⊗ 96.88

OpenPose [42] Up/down (vertical movement) - 97.2 97.50 ∅ 97.19
Left/right (horizontal movement) - 79.31 86.75 ∅ 90.31

Real case from
Gospoda ([47])

EVAPose
Example of up/down gesture
(vertical movement) (19 gestures)

82.45 93.56 90.01 ⊗ 93.56

Example of a left/right gesture
(horizontal movement) (12 gestures)

79.9 89.72 85.14 ⊗ 89.72

OpenPose [42] Example of up/down gesture
(vertical movement) (19 gestures)

- 95.01 95.33 ∅ 96.12

Example of a left/right gesture
(12 gestures)

- 85.91 89.87 ∅ 90.33

⊗ 19 FPS; ∅ 11 FPS.

The results of the reconstructed motion from video clips created in the laboratory are
shown in the upper part of Table 2. The content of such videos was created to test the system,
and does not show naturally generated conversational gestures. The lower part of Table 2
shows the results of conversational gestures, which are gesticulated in a spontaneous and
natural way. Table 2 lists one of the tested sources with such content, where the content
was, in most cases, a content-varied conversation between two actors with different and
spontaneous gestures. The language used by the two actors was Slovenian. The results
show how the proposed system compared with the OpenPose system [42]. Conversational
gestures containing the most movement in the vertical and horizontal directions were
selected for comparison. We considered such types of conversational gestures as the
geometric basis for more complex gestures, which consist of a combination of horizontal
and vertical movements.

To assess naturalness, we monitored events that occurred during the reconstructed
gesture. We noticed that the signal from the OpenPose system did not have a smooth
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continuous transition compared to the EVAPose system. At some moments, an unnatural
movement occurred, triggered by a sudden jump in the angle of a single joint. To detect
such jumps, we analyzed the signal by differentiating the reconstructed signal (position as
a function of time) three times (Figure 8). The third derivative showed us the jerks (jumps)
and their number. Figure 8 shows the third derivative of the reconstructed signal (position
as a function of the number of samples) as a function of the number of samples.
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Figure 8. The red and blue curves represent the third derivative (jerk) of the reconstructed signal
(position) from EVAPose and OpenPose, respectively. The third derivative is shown as a function of
the number of samples. The number and amplitude of jerks in this type of analysis show unnatural
and high−energy concentrated spikes on the reconstructed signal. Only a section of the entire signal
(120 samples/1380 samples) is shown for easier and better presentation of the reconstructed signal’s
third derivative.

4. Discussion

It can be seen from Table 2 that, in absolute terms, the similarity score using the
OpenPose system was better than the score using the proposed system. The highest frame
rate achieved by the OpenPose system was 11 FPS. To achieve comparability, we adjusted
the frame rate of the proposed system by increasing the degree of the polynomial in the
smoothing process (described in previous chapters). When we reached a frame rate of
19 FPS, the similarity did not improve anymore, but the computational complexity of the
proposed method increased tremendously. The same gesture was reconstructed in all
videos containing multiple vertical and horizontal movements. By reducing the frame
rate in the EVAPose system, it was shown that the similarity had improved. In the case
of horizontal movement from the video content created in a laboratory environment, the
score exceeded that of the OpenPose system. The laboratory video content with a length of
46 s, which was given to the input of the proposed system, contained 10 gestures that were
reconstructed completely successfully.

The results show that, despite the lower average score, a gesture was reconstructed
better (in the sense of naturalness) with the proposed system than with the OpenPose
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system. The better reconstruction in terms of naturalness was manifested mainly in the
jumps of the reconstructed signal. It can be seen from Figure 8 that the EVAPose system had
a smaller number of jerks with a larger amplitude. It is also important that the EVAPose
system jerks were not aligned with the OpenPose system jerks, which can undoubtedly
be attributed to the fact that the jerks are not the result of naturally generated jumps in
conversational gestures, but are a statistical error in the algorithms.

The results show that, for the real case from the Gospoda dataset, the proposed system
did not reach the similarity level achieved by the OpenPose system; however, the results
were comparable. On the other hand, the EVAPose system can maintain the frame rates. In
the case with an adjusted frame rate, the video content with a lower frame rate was chosen
only to test the EVAPose system at different frame rates. Here, it is worth emphasizing that
the preliminary laboratory experiments in the subjective similarity evaluation showed that
the objective assessment could reach the subjective level of assessment in all cases.

Despite the better evaluation, the reconstruction with the OpenPose system did not
provide a sufficiently large degree of naturalness. Even though the gesture was captured
from video content in which a spontaneously created conversational gesture appeared, the
OpenPose reconstruction system introduced an error in the reconstruction of the rotation
of individual joints, which a human cannot create. We concluded that the cause of such
errors comes from the learning process in the learning technologies. Unlike our system,
the OpenPose system does not have clearly defined areas of rotation of individual joints in
the human body. In our case, we defined the rotation areas of individual joints using the
Denavit–Hartenberg notation before calculating forward kinematics, thus ensuring that
unnatural joint rotations did not occur. The choice of forward kinematics and the notation of
the kinematic model according to Denavit–Hartenberg also allowed a continuous transition
of a specific movement.

As already stated, the assessment of similarity is relative in nature, because the systems
can be used in different ways, in some of which the similarity assessment is important,
and computational complexity of gesture reconstruction does not matter, nor how long the
reconstruction process takes. In other cases, however, we wanted to preserve the frame
rate, and can settle for a lower similarity score of the speech gesture reconstruction. In this
case, we must be aware that the frame rate was preserved at the expense of lower similarity,
which was conditioned by the acceptability of the gestures generated in this way, and by
the perception of their naturalness and other important characteristics of successful spoken
social interaction.
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