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Abstract: IoT devices can be deployed almost anywhere, but they usually need to be connected to
other IoT devices, either through the Internet or local area networks. For such communications,
many IoT devices make use of wireless communications, whose coverage is key: if no coverage
is available, an IoT device becomes isolated. This can happen both indoors (e.g., large buildings,
industrial warehouses) or outdoors (e.g., rural areas, cities). To tackle such an issue, opportunistic
networks can be useful, since they use gateways to provide services to IoT devices when they are in
range (i.e., IoT devices take the opportunity of having a nearby gateway to exchange data or to use a
computing service). Moreover, opportunistic networks can provide Edge Computing capabilities,
thus creating Opportunistic Edge Computing (OEC) systems, which deploy smart gateways able to
perform certain tasks faster than a remote Cloud. This article presents a novel decentralized OEC
system based on Bluetooth 5 IoT nodes whose latency is evaluated to determine the feasibility of
using it in practical applications. The obtained results indicate that, for the selected scenario, the
average end-to-end latency is relatively low (736 ms), but it is impacted by factors such as the location
of the bootstrap node, the smart gateway hardware or the use of high-security mechanisms.

Keywords: opportunistic networks; Opportunistic Edge Computing; OEC systems; opportunistic
IoT; bluetooth 5; decentralized IoT

1. Introduction
We are heading to an era where billions of households and industrial objects will be

interconnected and will be able to collaborate and to interact with each other and with
their surrounding environments. In fact, some reports estimate that 75,000 million Internet
of Things (IoT) devices will be in operation by 2025 [1]. Many of such IoT devices will be
constrained in terms of storage, computing power, and power consumption, so they must rely
on other remote devices to perform compute-intensive tasks. Moreover, smart IoT devices
can be anywhere and need to be connected (e.g., to a Local Area Network (LAN) or to the
Internet), but, in some areas, wireless communications coverage is not always available.

Opportunistic Edge Computing (OEC) systems have the ability to discover deployed
IoT or Industrial IoT (IIoT) devices to provide them with Edge Computing services in an
opportunistic way. Thus, since such IoT/IIoT devices are usually scattered throughout
remote or large scenarios, their connectivity and computational tasks depend on external
devices that cannot be accessed continuously. Moreover, such scattered IoT/IIoT devices
usually rely on batteries to operate, so it is essential to minimize their power consumption
and to optimize the resources they need to carry out their tasks.

To confront the previous challenges, this article proposes an OEC IoT architecture
able to make systems independent from a continuous Internet connection in cases where
communications are not possible due to the lack of wireless communications coverage
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or when network connectivity failures occur. Specifically, the main contributions of this
work include:

• First, in order to establish the basics, it reviews the state of the art on OEC systems.
• Second, it details the design and implementation of a novel OEC system based on

Bluetooth 5 and on the use of Single-Board Computers (SBCs). Such a system is de-
centralized (there is not a single central controller), distributed (storage is distributed
among all the nodes that make up the network), scalable (the OEC system can grow
by adding more nodes without affecting the service) and modular (the system is able
to adapt to support different communication technologies). Moreover, the system
architecture supports providing services such as Resource Sharing (to improve pro-
cessing speed), Data Routing (to find the path that should take the data from one IoT
node to another) or Node Discovery (to find IoT nodes easily). None of the previ-
ous characteristics have been found together in a single development described in
current literature.

• Third, it analyzes the feasibility of the proposed OEC system through performance
tests that estimate the system latency in end-to-end communications, when using
a different location of the bootstrap node, for different IoT hardware and when en-
abling/disabling communications security mechanisms. As a result, this article pro-
vides useful guidelines for the developers of future OEC systems.

• Finally, all the source code used for running the experiments presented in this article
is available online, thus allowing any researcher or developer to use, to adapt and to
extend the developed OEC system.

The rest of this article is structured as follows. Section 2 analyzes current state of the
art in relation to opportunistic Edge Computing systems. Section 3 describes the design
and implementation of the proposed OEC solution. Section 4 presents the performed
experiments. Finally, Section 5 summarizes the key findings, while Section 6 is dedicated to
the conclusions.

2. State of the Art
2.1. Opportunistic Edge Computing Systems

OEC systems can help in challenging scenarios where IoT/IIoT devices have:

• No or intermittent Internet connectivity due to poor wireless coverage or to certain
communications restrictions (e.g., due to their expected battery life).

• Limited local storage and computing power.
• Reduced mobility, which prevents IoT/IIoT nodes from communicating with other

remote nodes and components of the IoT/IIoT architecture.

In particular, opportunistic collaboration becomes advisable in Cloud Computing
environments, which are not inherently energy-efficient or secure, and have limitations
when it comes to large-scale IoT implementations in terms of cost, capacity, unavailability
of services or susceptibility to manipulation [2].

The technological evolution of SBCs and similar IoT devices allows them to provide a
significant amount of computing power, letting them act as end nodes or gateways either
in traditional Edge Computing systems [3] or in the latest Fog Computing architectures [4].
Moreover, the use of opportunistic communications by such low-power devices allows
for coining the term Opportunistic Edge Computing, a concept that has similarities with
other paradigms like Mobile Ad-Hoc Networks (MANETS), but it goes beyond them by
providing more services than just routing capabilities. Unfortunately, different terms are
used to denote similar approaches to OEC, such as Parked Vehicle Edge Computing [5],
Proximal Mobile Edge Server [6], Mobile IoT [7], or Opportunistic Fog Computing [8].

Different OEC systems were already deployed in IoT fields such as wildlife monitor-
ing [9] or smart cities [10]. However, in most of such IoT systems there is still an important
requirement: they rely on the existence of an Internet connection when they need to make
use of certain remote cloud services.
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As an example, Figure 1 shows an OEC architecture for a smart city. In such an
example, IoT smart gateways are deployed throughout the city (either at specific static
spots (e.g., public buildings) or in vehicles (e.g., public transport)) to monitor, interact
and provide services to vehicles, citizens and to the city infrastructure in places where no
communications are available or where it is expensive to provide such communications.
Thus, when an IoT node is in range of a smart gateway, the former has the opportunity
of making use of the Edge Computing services provided by the latter. Such services
usually involve sending data from IoT nodes to remote destinations, which is accomplished
by collecting and routing them through the Smart Device and Routing layers. Then,
the information can go to the Cloud, where it can be stored and processed with the help
of third-party services or by combining them with information that comes from other
IoT/IIoT networks.

Smart Device Layer

IoT Node E

Gateway Gateway

Gateway

Cloud

Remote Users Other IoT/IIoT
Networks

Third-Party 
Services

OEC Infraestructure

OEC City

Routing Layer

IoT Node B

IoT Node C

Nodo IoT D

Autonomous Vehicles
Wearables

IoT Node F

IoT Node A

AR/MR DevicesUAVsWerables

Figure 1. Example of OEC architecture for a smart city.

Table 1 shows a comparison among some of the most relevant OEC solutions that can
be found in the literature. The compared systems provide solutions for fields such as smart
agriculture, wildlife monitoring or smart cities, and are able to make use of parked vehicles
or Unmanned Aerial Vehicles (UAVs) as opportunistic Edge Computing devices.
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As it can be observed in Table 1, only part of the compared opportunistic systems are
decentralized (i.e., all nodes are connected without relying on one or several central servers).
For instance, in [7] the authors propose a computing paradigm where mobile IoT devices
are able to share unused resources (i.e., storage and computing power) in an opportunistic
way. Thus, a distributed scheme is devised with the objective of allocating the available
resources and for executing the provided services (this is achieved by using blockchain and
smart contracts [11]). To demonstrate the feasibility of the proposed solution, the authors
implemented and evaluated it on low-cost SBCs (specifically, on Raspberry Pis).

In the case of [12], the authors propose a decentralized Fog Computing architec-
ture [13] for IoT environments that makes use of blockchain and virtualization technologies.
In addition, the mentioned paper presents a prototype based on a Raspberry Pi that is used
to validate the feasibility of the proposed system.

Another feature that is compared in Table 1 is modularity, which is defined as the
adaptability of the proposed architecture to support different communication technologies.
For example, the solutions described in [8,12,14] were devised to be modular. Specifically,
in [8] the authors present a Fog Computing system whose feasibility for being used as an
opportunistic Fog Computing solution is evaluated. Moreover, the authors propose a Fog
Computing network architecture made up of virtual clusters, which allow for abstracting
the complexity of the lower layers. Furthermore, the authors show simulation results
for various scenarios in order to determine the feasibility of building an opportunistic
Fog Computing network. Similarly, in [14] an edge-fog-cloud architecture is proposed to
improve energy efficiency in smart agriculture systems. Such an architecture enables the
data collection from various sensors to process and to analyze agricultural data that require
real-time operations. Thus, real-time processing can be performed by the edge and fog
layers to reduce the computational load of the cloud, which helps to improve the overall
power consumption and to provide agricultural applications/services efficiently. According
to the presented results, the proposed architecture reduces total energy consumption by
36% and carbon emissions by 43%.

Resource sharing is another feature compared in Table 1, since it is really important
for OEC systems to improve network computational resource efficiency to run applications
and to provide services close to the deployed IoT/IIoT devices. Some of the publications
that deal with such a feature are [5,7]. For instance, in the case of [5] the authors present
a paradigm called Parked Vehicle Edge Computing (PVEC), in which parked vehicles
act as edge nodes of a vehicular network. The article describes the system architecture
and a protocol that supports secure communications among the deployed network nodes.
Moreover, the authors solve the resource scheduling optimization problem using the
Stackelberg game approach [15].

Data routing and node discovery are also essential for OEC systems. In the case of
opportunistic data routing, it is defined as the ability of the network to carry information
from one node to another when the receiving node is not within the communications range
of the sending node. Regarding node discovery, it is the capacity of the nodes to scan
the network looking for other nodes. Among the articles that describe implementations
with both features are [9,16]. For example, in [16], the authors propose a Fog Computing
network based on UAVs. Thus, the system harnesses both the benefits of applying the
Fog Computing principles and the mobility of UAVs, which allow the fog network to be
deployed in the place where it is needed. The authors also propose a service-oriented
platform where all IoT resources are regarded as a set of services to be used to develop
IoT applications.
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Table 1. Main characteristics of the most relevant theoretical and practical OEC solutions.

System Architecture
Type

Application
Field Decentralized Communication

Technologies
Security

Mechanisms Distributed Scalable Modular Resource
Sharing

Data
Routing

Node
Discovery Hardware Other Features

[5]
(Theoretical

Article)
Edge Computing Parked

Vehicles No -

Asymmetric and
symmetric
key-based

encryption and
digital signatures

Yes Yes - Yes No No -
Parked vehicles act as

Edge Computing
nodes

[6] Mobile Edge
Computing - No Wi-Fi/GSM - Yes Yes No No No Yes Android

device

Minimize latency,
lower dependencies on

Internet connectivity,
and reduce the cost of
using cloud services

[7] Blockchain - Yes Ethernet SHA-256 No No No Yes No No
Raspberry
Pi 3, Dell

5100

The obtained latency
and resource use

metrics are similar to
the ones for traditional

centralized edge
approaches

[8]
(Theoretical

Article)
Fog Computing - Yes - Server

Virtualization Yes Yes Yes No No No -

High number of
potentially connected
neighbors and small

number of hops

[16] Fog Computing UAVs No WiFi - Yes Yes No No Yes Yes Adafruit
CC3000

Low latency services,
location aware services,

better mobility and
access control, better

Quality of Service
(QoS), more efficient

communications

[12] Fog Computing - Yes - SHA-256 Yes No Yes No No No
Raspberry
Pi 4 Model

B

Fault-tolerant, secure
and auditable

[14]
(Theoretical

Article)
Edge-Fog-Cloud Agriculture No NB-IoT, WiFi,

Zigbee, 5G - Yes Yes Yes No No No -

Reduction of energy
consumption, CO2

emissions and
network traffic

[17] Blockchain Cloud - No -
FS-OpenSecurity
(proprietary de-
velopment [18])

Yes Yes No No Yes No

Intel i5
16 GB
DDR3-
RAM

Laptop

High availability,
real-time data delivery,

high scalability,
security, resiliency,

and low latency
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Table 1. Cont.

System Architecture
Type

Application
Field Decentralized Communication

Technologies
Security

Mechanisms Distributed Scalable Modular Resource
Sharing

Data
Routing

Node
Discovery Hardware Other Features

[9]

Traditional
LPWAN

(Low-Power Wide
Area Network)

Architecture

Wildlife
monitoring No LoRa - Yes Yes No No Yes Yes

Adafruit
Feather

32u4
RFM95 -
868 MHz

High delivery ratio,
low latency, low

energy

Solution
Described

in this
Article

Mobile Fog
Computing - Yes Bluetooth 5,

WIFI, 4G TLS 1.3 Yes Yes Yes Yes Yes Yes

Raspberry
Pi 3 Model

B,
Raspberry
Pi 3 Model

B+,
Raspberry

Pi Zero

Low cost solution, low
latency, SBC-based

gateways,
for resource-constraint

IoT nodes
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Other articles implement only one of the two previously mentioned features: a data
routing solution is implemented in [17], while a node discovery mechanism is described
in [6]. In the case of [17], the authors propose a distributed cloud architecture. Such an
architecture is based on three technologies (Fog Computing, Software-Defined Networks
(SDNs), and Blockchain) and was designed to provide high availability, real-time data de-
livery, high scalability, security and low latency. The results presented in the article indicate
that, in comparison to traditional cloud computing infrastructure, the proposed model is
more efficient for downloading data. A similar development is described in [6], where the
authors evaluate and compare the performance of mobile devices when running activity
detection applications that involve mobile devices, edge servers and Cloud Computing
servers. For such a purpose, a mobile application was developed using Android devices
and, for mobile edge servers, the AllJoyn framework [19] was used for device discovery,
Peer-to-Peer (P2P) network formation, and data download.

The protocols used by the previously mentioned publications can be compared accord-
ing to their ability to create opportunistic solutions. For such a purpose, Table 2 indicates
the protocols employed by the analyzed state-of-the-art solutions, while Table 3 compares
them based on the most relevant opportunistic features, which include:

• Reliability: it is the capacity to notify the sender if the delivery of data to recipients
was successful or not.

• Packet loss recovery: it is defined as the ability to receive a packet after there are
problems during its sending.

• Routed destination: this feature enables routing the transmitted data packets to the
intended receiver.

• Forward: it is the ability to send packets to another node if the receiving node is not
the end receiver.

• Encryption: it is the process of encrypting data so that it cannot be read by third parties.

Table 2. Protocols used in theoretical and practical OEC solutions of the state of the art.

Referenced System Physical Layer Transport Layer Network Layer Application Layer

[5] (Theoretical Article) - - - Vehicular-edge computing proprietary protocol

[6] 802.11/GSM - - -

[7] - TCP/IP Blockchain-based proprietary protocols -

[8] (Theoretical Article) - UDP 6LowPAN & RPL -

[9] - LoRaWAN - -

[12] - TCP/IP Ethereum -

[14] (Theoretical Article) - - - -

[16] 802.11 TCP/IP UPnP -

[17] - TCP/IP Blockchain-based proprietary protocols -

System described in this article - TCP/IP LibP2P -

As it can be observed in Table 3, physical layer protocols such as IEEE 802.11 (WiFi)
and GSM do not fulfill any of the previously mentioned opportunistic features. Regarding
UDP and TCP, which are transport layer protocols, only the latter provides reliability thanks
to its error control functionality. LoRaWAN is another transport protocol shown in Table 2,
which uses AES-128 to secure connections and has a mechanism of Quality of Service that
is inbuilt into the MAC layer and that allows for using reception confirmation messages.

With respect to UPnP, it is used for network discovery but it cannot route packets
opportunistically to the proper destination. In contrast, RPL, together with 6LoWPAN,
allows for routing packets. Regarding the protocols based on blockchain, they are able
to recover data from the distributed ledger, in which transactions, once recorded, cannot
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be modified or deleted, as well as encrypted through the use of hash algorithms such
as SHA-256.

Table 3. Relevant opportunistic features of the protocols of the analyzed state-of-the-art solutions.

Layer Protocol Reliability Packet Loss
Recovery

Routed
Destination Forwarding Encryption

Physical 802.11/GSM × × × × ×

Transport TCP X × × × ×

Transport UDP × × × × ×

Transport LoRaWAN X × X × X

Network
Blockchain-based

proprietary
protocols

× X X × X

Network 6LowPAN/RPL × × X X ×

Network UPnP × × × × ×

Network Ethereum × X X × X

Network LibP2P × X X X X

Application

Vehicle Edge
Computing
Proprietary

protocol

× × × × X

- TCP + LibP2P X X X X X

With respect to libp2p, the networking protocol stack chosen for the system presented
in this article, it fulfills almost all of the requirements: peer routing uses a distributed
hash table via the Kademlia routing algorithm, so data forwarding is possible; information
is replicated between all peers, and when a peer disconnects, libp2p provides a content
routing interface where it does not matter who has it stored because it can be verified its
integrity by using public key cryptography. Moreover, libp2p makes use of TLS 1.3 to
encrypt communications.

Finally, the article [5] describes a proprietary application layer protocol for edge
computing vehicles as an interactive protocol with basic request and response operations
for the provision of services. The authors mention that standard cryptographic primitives,
such as asymmetric/symmetric key-based encryption and digital signatures, are used,
but without clearly detailing the specifically used mechanisms.

As a result of the analysis of the protocols compared in Table 3, the proposed solution
makes use of TCP together with libp2p, thus fulfilling all the desired opportunistic features.

2.2. Bluetooth 5 Features for OEC Networks

In recent years, Bluetooth has become a widespread technology and has been used
in many IoT systems [20]. Specifically, BLE is currently positioned as one of the most
energy-efficient technologies for wireless communications [21]. In addition, BLE can be
fully decentralized, providing communications between nodes via advertisements through
BLE Mesh, which makes it especially attractive for opportunistic communications.

With the introduction of Bluetooth 5 [22], the features of the previous versions have
been significantly improved, increasing bandwidth, range and improving coexistence
considerably, but BLE Mesh is only compatible with the previous version of Bluetooth
(i.e., with Bluetooth 4.x).

The use of Bluetooth 5 with Bluetooth Mesh would allow for improving certain aspects
and for supporting new applications. For example, one of the limitations of current BLE
Mesh is its throughput, which is limited by aspects like the fact of being implemented as a
broadcasting communication (controlled flooding), which makes it necessary to establish an
advertisement time (this does not occur in direct communications, which, after establishing
the connection, a constant data flow is exchanged). Since only 3 channels are available for
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broadcasting advertisements, an interval has to be defined to avoid flooding, which reduces
throughput considerably. Moreover, the effective payload of an advertisement packet has
to be small, so, if a significant amount of data needs to be sent in an advertisement, it is
necessary to use segmentation, which further reduces the effective payload.

Fortunately, Bluetooth 5 provides a higher bandwidth to be used with extended
advertisements, which are not restricted to the three advertisement channels: they can
be transmitted on all the other channels used for data transmission. This enables that a
standard that is intended for small data transmissions (e.g., for sending commands or
sensor data) can be used for transmitting larger payloads (e.g., for transmitting audio or
pictures). Pérez-Díaz-de-Cerio et al. [23] analyzed such a case, concluding that the effective
throughput of a single-hop under ideal conditions can be increased from 3.79 kbps to near
500 kbps.

Another improvement provided by Bluetooth 5 is its range. BLE is usually intended
for short-range communications, but Bluetooth 5 includes a long-range mode that allows
for increasing the sensitivity (and therefore the communications range), which allows for
reaching the same theoretical sensitivity as technologies based on IEEE 802.15.4 (e.g., ZigBee,
Thread, Ant+) [24]. Such a feature is especially interesting for opportunistic systems that
need to provide services over long distances or that work in environments that are ’noisy’ in
terms of electro-magnetic interference (e.g., in industrial scenarios [25]. However, it must be
noted that Bluetooth 5 long-range mode requires increasing the frame size to include error
correction codes (thus reducing the actual bit rate). This implies that frame processing will
take longer, which derives into higher power consumption (when comparing transmissions
at the same transmit power level) and longer advertisement events, which may end up
into a higher saturation of the communication channel. Nonetheless, since advertisement
broadcasting has to be performed at a certain time interval, and since payload size is really
small when using Bluetooth Mesh, it is possible to adjust the time interval so that the
total time for sending a message remains the same. Therefore, better link quality can be
achieved by simply compromising on consumption and channel occupancy, with no losses
in total response time. This allows the Mesh protocol to be used in relatively long-distance
scenarios, thus reducing the number of necessary intermediate devices (i.e., relays) and
overcoming the communication distance limitations of BLE.

BLE also has another two limitations:

• The BLE protocol offers a feature for configuring nodes as cache devices in order to act
as opportunistic nodes (these are called friend nodes). However, this cache mechanism
is not distributed: if a friend node loses connectivity with an IoT node, the cache of
this latter node is lost.

• The BLE protocol is part of the Bluetooth 4.x set of standards, so none of the different
modulations provided by Bluetooth 5 version are officially supported, thus impeding
the use of the long-range mode, which are useful for many OEC systems.

To overcome the previous limitations, two measures have been taken in the develop-
ment presented in this article:

• The friend node feature of BLE is replaced by a P2P implementation of the cache storage.
• To compensate the lack of support for long-range communications, the BLE Mesh

protocol was modified to operate using Bluetooth 5 modulations. However, it is
important to consider that the Long Range modulation is not applicable to any OEC
application, since it achieves a greater propagation distance at the cost of increasing
its time on air, which implies a higher energy consumption and the saturation of the
wireless media.

It is worth pointing out that only a few previous works have tried to make use of
Bluetooth for OEC systems. For instance, in [9] the authors detail an opportunistic network
architecture for wildlife monitoring that is made up of IoT devices carried by animals.
The proposed architecture takes advantage of the use of opportunistic mobile networks
over Low-Power Wide Area Network (LPWAN) infrastructure. As part of the infrastructure,
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a LoRa-based network is deployed, which provides a wide communications range and
low-power consumption. Making use of such an architecture, the authors investigate the
use of existing BLE-based opportunistic data collection protocols.

Only a few academic OEC solutions use Bluetooth 5. For example, in [26] the authors
simulate an architecture for healthcare applications that is able to collect data opportunisti-
cally from patients through Bluetooth 5. The presented simulation results show that the
proposed model is feasible and can provide timely and reliable communication.

2.3. Conclusions on the Analysis of the State of the Art

After analyzing the state of the art, it can be concluded that most developments do
not implement decentralized systems that are independent from a remote central cloud.
Moreover, there is barely any solution in the literature that makes use of Bluetooth 5
for opportunistic communications (WiFi and cellular networks are the most common
communications technologies). Furthermore, most of the features that are necessary for
implementing opportunistic communications are currently not provided together by any
of the analyzed developments. As a consequence, and to tackle these issues, this article
proposes a system that brings together all the characteristics indicated in Table 1 and
proposes their implementation with simple and low-cost infrastructure.

Specifically, the architecture proposed in this article provides enhanced features with
respect to the other solutions analyzed in Table 1:

• The use of mobile Fog Computing allows for providing Edge Computing functionality,
thus decreasing the time response to the IoT nodes through low-cost gateways that can
be scattered throughout large environments to provide opportunistic communications.

• The use of a recent communications technology like Bluetooth 5 enables carrying out
mobile data exchanges with a longer range and less energy consumption with respect
to other technologies such as WiFi, GSM, 4G, or 5G. In addition, the use of Bluetooth 5
does not involve mobility restrictions (like it happens with Ethernet) or transmission
restrictions (as it occurs with LoRa, which is limited in terms of transmission speed
and packets per time unit).

• As it will be detailed later in Section 3, the proposed architecture has been designed
to be jointly decentralized, distributed, scalable and modular. Such features have not
been found together in any of the analyzed state-of-the-art systems.

• The devised architecture also includes additional features such as Resource Shar-
ing, Data Routing and Node Discovery, have not been implemented together in the
analyzed state-of-the-art systems.

3. Design and Implementation of the Proposed OEC System
3.1. Communications Architecture

Figure 2 shows the proposed OEC IoT architecture, which is composed of three layers:

• IoT Network layer. This layer is at the bottom of the architecture and includes the
OEC end nodes. As an example, Figure 2 depicts three different IoT networks (A, B
and C) that are capable of exchanging data with the upper layer and of sending them
to other nodes that belong to the same network (as it is illustrated with the relay node
of IoT network B). The IoT OEC devices of this layer make use of sensors to collect
information from diverse scattered scenarios and then they send them for processing
to the upper layer when it is detected that opportunistic services are available.

• OEC Smart Gateway Layer. This layer consists of OEC gateways that have the ability
to provide opportunistic services to the deployed IoT nodes with reduced latency
thanks to the proximity to them. Moreover, smart gateways can collaborate among
them in order to perform more complex tasks or to exchange data from different IoT
networks without making use of the Cloud Layer.

• Cloud layer. This layer is responsible for providing services that cannot be provided
by the OEC Smart gateway Layer, like the ones involving heavy processing tasks or
large data storage.
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Figure 2. Proposed OEC communications architecture.

3.2. Bluetooth 5-Based Implemented Architecture

The implementation of the communications architecture previously depicted in Figure 2
is shown in Figure 3. As it can be observed, communications among nodes and between
nodes and gateways is carried out through Bluetooth 5. Bluetooth 5 is still being adopted
worldwide, but it provides multiple benefits respect to the previous Bluetooth versions
in terms of low power consumption and long communications range [27]. Regarding the
communications among the OEC smart gateways, they are performed through WiFi/4G
networks due to their ease of implementation and deployment.

Figure 3. Implemented OEC communications architecture.

The two upper layers of the architecture provide different essential services. In the case
of the OEC Smart Gateway Layer, it provides peer discovery, peer routing, data routing and
resource sharing services. Regarding the Cloud Layer, it provides the routing service that
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enables communicating between different IoT networks whose gateways are not connected
with each other (either directly or through other gateways).

The following subsections describe in detail how the different components are intercon-
nected and how they have been implemented with the objective of easing the development
of OEC applications.

3.3. End-to-End Latency Model

Taking into consideration the proposed Bluetooth 5-based implemented architecture,
the total latency of the devised system (i.e., its end-to-end latency) can be modeled as
indicated in Equation (1) and includes the time needed to connect to the bootstrap node
(tbootstrap_conection), the time it takes to discover all the nodes connected to the same network
(tconnect_time) and the time required to transmit data between nodes (tdata_transmission):

ttotal = tbootstrap_conection + tconnect_time + tdata_transmission (1)

The last term of Equation (1) (tdata_transmission) can be divided into the three latencies
indicated in Equation (2): the time needed to send the data to a nearby gateway (tsending);
the time it takes to upload the data to the network (tupload) and the time required by the
destination node to receive the data (treception):

tdata_transmission = tsending + tupload + treception (2)

Specifically, the measurement of tdata_transmission requires the following steps:

• The data are initially sent from the transmitting node to a smart OEC gateway in the
same network via BLE (the required time is which is called tsending).

• Then, the data are received by an OEC gateway through its serial port (to which a
Bluetooth 5 development kit was connected) and posted to the DHT network. The time
needed for sharing the data through the DHT networks is what is defined as tupload.

• Finally, the OEC gateway that is located in the same opportunistic network as the
IoT destination node, collects the sent data from the DHT network and delivers
the message to the IoT node over Bluetooth 5 (using BLE). The time required for
performing such operations is called treception.

The latencies of Equations (1) and (2) are later measured and analyzed in Section 4 for
a real environment.

3.4. Protocol Stack

The protocol stack proposed to implement the designed architecture consists of six
interconnected layers with bidirectional data exchange capacity, as is shown on the left
of Figure 4:

• The Physical (PHY) Layer is responsible for managing the hardware to transmit and
receive information via radio waves. For example, in the case of using BLE, data are
transmitted using a scheme called Gaussian Frequency-Shift Keying (GFSK).

• The Medium-Access Control (MAC) Layer has the purpose of managing medium
access through OEC devices that implement different PHY layers. Thus, this layer is
responsible for identifying the communicating nodes within the coverage area, which
can be enhanced by using cost-effective algorithms in deployments with mobile and
static nodes [28].

• The Transport Layer isolates the upper layers from any changes that may occur
in terms of hardware in the lower layers (since PHY and MAC layers are usually
implemented directly by specific hardware). There are multiple protocols that can be
used to support this layer [29,30], such as TCP (Transport Control Protocol), QUIC
(Quick UDP Internet Connections) [31], CJDNS [32], UDT (UDP-based Data Transfer
Protocol) [33], WEBRTC (Web Real-Time Communications) [34] and UTP (Micro
Transport Protocol) [35].
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• The OEC Network Layer provides four services that enable P2P communications:

– Peer discovery and peer routing. When a peer needs to send a message to another
peer it first has to know the destination PeerId and its network address. Thus,
peer discovery allows for discovering peer addresses thanks to the knowledge
provided by the other peers: every contact with a new peer increases the chances
of finding the peer that is looked for, while completing the composition of the
OEC network, which is reflected in the peer routing tables. The peer routing
subsystem exposes an interface to identify the peers to which the message should
be routed to. Specifically, the routing subsystem receives a key and returns a list
of peers with their information. To perform this task, it is possible to use several
technologies, among which Kademlia DHT [36] and multicast DNS (mDNS) [37]
are common choices. Nonetheless, other routing mechanisms could be used, such
as Domain Name System (DNS) [38], Koorde [39,40] or Chord [41,42]. Similarly,
other peer discovery can also be performed through protocols such as DNS,
bootstrapping [38] or Peer EXchange (PEX) [43].

– Data routing. Data routing uses mechanisms to forward messages to peers if
the receiving peer is not in range of the sending peer (this is really common
in opportunistic systems). There are several alternatives to implement data
routing in OEC systems, such as mDNS, ICE (Interactive Connectivity Establish-
ment) [44], Publish-Subscribe (PubSub) mechanisms and Kademlia DHT. PubSub
and Kademlia DHT are two of the most popular, being the former content-based,
while the latter is focused on key-based routing:

* PubSub allows for implementing asynchronous messaging systems. In such
systems an IoT node can publish content in the messaging system, which is
responsible for sending it to the other peers that are subscribed to it. Thus,
messages are delivered to groups of interested peers without depending on
a centralized infrastructure. Libp2p provides several PubSub P2P implemen-
tations (e.g., gossipsub, floodsub, fpisub) that enable real-time application
development. Currently, libp2p uses gossipsub by default, which is called so
because peers “talk” to each other about the messages they have detected.

* In the case of Kademlia DHT, to store a key-value pair, the closest k nodes to
the key are located and the pair is sent to them for storage. In addition, each
node forwards it to the rest of the nodes, which ensures the persistence of
the pair with a very high probability. Pairs expire 24 hours after publication
to limit the existence of outdated index information. As is described in [45],
in order to find a pair, a node starts by performing a search to find the k
nodes with the IDs that are closest to the key. The process stops immediately
when any node returns the requested value. For caching purposes, once the
lookup is successful, the requesting node stores the pair in the nearest node
that did not return the corresponding value.

– Resource sharing. It is actually an advanced service that is optional, since not
all OEC devices need to make use of it. There are many ways to share re-
sources among IoT devices (e.g., shared bus memories, databases, file sharing
protocols...), but, in terms of decentralization, blockchain is one of the most
promising [13], since it provides trustworthy and secure communications among
parties that have not meet before [46].

• The OEC Decentralized Data Store Layer is responsible for data structuring and
identification, thus providing encryption and authentication.

• Finally, the Application Layer allows IoT devices to access the exchanged data for
their processing and thus implement OEC applications.
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Figure 4. Proposed OEC protocol stack.

3.5. Implemented Functionality

The implemented functionality is based on the developed protocol stack, which relies
on decentralized technologies such as the ones indicated on the right of Figure 4. Among
such technologies, the most critical for implementing OEC systems are arguably the ones
related to the OEC Network Layer. For such a purpose, libp2p [47] was chosen, which,
thanks to its modularity, can be easily adapted to diverse OEC architectures.

Specifically, libp2p provides a set of protocols for the development of P2P applications.
Libp2p started as part of the IPFS project [48] and currently has multiple implementations
(e.g., in Go, JavaScript, Rust, Python and C++) that provide flexible solutions for packet
transport, security, P2P routing and content discovery. Since libp2p is transport agnos-
tic, it allows OEC developers to select the most appropriate transport protocol for each
application. In any case, transport is protected through secure channels that prevent com-
munications between peers to be read by third parties: each peer has a private key, which
is kept secret, and a public key that is shared with the other peers. The cryptographic hash
of the public key is called PeerId, which is used for identifying every peer unambiguously.
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To discover the rest of the peers, libp2p makes use of a distributed hash table and of the
Kademlia routing algorithm [36] to route requests to the destination PeerId.

Therefore, libp2p is the basis for the main implemented features:

• Peer discovery and peer routing. For the implementation presented in this article,
among the multiple options mentioned in the previous section, mDNS was ruled out
because with such a protocol the nodes are only capable of exchanging data within
local networks. This was essentially the reason for selecting Kademlia DHT. Such a
protocol is based on the use of Distributed Hash Tables (DHT), which can be used to
locate items in decentralized P2P networks. The entries of a Kademlia routing table
are called contacts and are organized as an unbalanced routing tree. The leaves of
such a tree are lists of k contacts, called k-buckets. Each contact consists of an ID, an IP
address and a set of ports. The routing to a specific peer is carried out iteratively: every
peer that is on the path toward the destination peer indicates the next hop toward
the sending node. This kind of routing is slower than traditional recursive routing
strategies, but it is more robust against message losses and simplifies network tracing.

• Data routing. Both PubSub and Kademlia DHT can be used for implementing OEC
systems and it is not straightforward to select one over the other, since there are not
detailed analyses on the literature that compare their performance (such a study is out
of the scope of this article). In the absence of such a performance comparison, for the
work presented in this paper, Kademlia DHT was selected, since it is already used for
peer discovery, thus simplifying debugging and reducing development complexity.

• Security. Security transports are components of libp2p that encrypt information as
it is sent over the network. Thus, such information can only be decrypted by the
destination peer. Specifically, TLS is used to provide a secure channel between two
peers. In 2020, TLS 1.3 [49] became the default security transport in libp2p. TLS 1.3
provides more privacy than TLS 1.2 in data exchanges by making the handshake more
secure. This is due to several changes. One of them is the removal of support for many
cipher suites, now supporting only 5 [50]. To start the handshake, the client sends the
list of supported cipher suites along with the shared key. The server generates the
master key with its shared key along with the client’s and responds with an already
encrypted message to the client. Finally, the client verifies the server’s certificate
and generates the same master key, since it has the server’s shared key. At this
point, the communication between the peers can begin. Although the implementation
presented in this article makes use of TLS 1.3, it must be noted that TLS 1.3 is not
accessible in browser contexts, so not all libp2p implementations can make it the
default security transport. The most popular web browsers include support for
TLS 1.3, but there is still no way to attach the necessary identity information to
libp2p. Due to these problems, the Noise protocol framework was created [51]. Noise
allows for composing widely supported cryptographic primitives, Diffie-Hellman
key exchange functions, symmetric ciphers and hash functions, which support the
different implementations of libp2p [52].

3.6. OEC Smart Gateway Firmware

The OEC smart gateway firmware was developed in Go using the libp2p library [53].
The tasks performed by such software are:

1. The creation of a libp2p host. Such a host will create a DHT.
2. Next, the host connects to the bootstrap node, located in the cloud. Such a node is

responsible for providing the initial configuration to the joining nodes so that they
can join the opportunistic network.

3. The host then performs network discovery and finds all peers that share the same
symmetric key. The key (also called rendezvous-point) is a string that is used by the
peers to announce their presence.

4. Then, the host iterates over the list of available peers and tries to open a connec-
tion with each of them. If a direct connection with a specific peer is not possible,
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the Cloud will be used as a relay, thus acting as an intermediary between the two
communicating nodes.

5. As it will described later in Section 4.1, the firmware needs to open a connection
through the serial port, which will be in charge of receiving the data coming from the
IoT communication module through the attached Bluetooth module. These data are
stored in the DHT and, therefore, will be accessible to the rest of the peers.

4. Experiments

This section describes the experiments performed with the developed system. The ex-
perimental OEC testbed is first described and then the different tests are detailed. Such
tests are focused on measuring the latency of the system, since it is key for an opportunistic
system when implementing practical OEC applications (in real scenarios, high latencies
impede to implement many IoT applications, especially the ones that require real-time or
near real-time data exchanges). All the source code necessary for replicating the presented
experiments is available online [54], thus allowing any researcher to use and to extend the
developed OEC system.

4.1. Experimental Testbed

To evaluate the performance of the proposed OEC system, an experimental testbed
was built. The components of such a testbed are depicted in Figure 5 and include two
IoT nodes based on a SBC (Raspberry Pi 3B) that has a Nordic nRF52840 development kit
connected through the serial port to add Bluetooth Mesh support. One of such IoT nodes is
shown in Figure 6. Nodes were flashed with the developed software and then provisioned
with the Nordic nRF Mesh app for Android.

Figure 5. Experimental testbed.
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Figure 6. Components of one of the testbed IoT nodes.

Figure 5 also shows the hardware of the deployed OEC gateways, which made use
of two different SBCs with the purpose of comparing their performance during the tests.
Specifically, a Raspberry Pi 3B+ and a Raspberry Pi Zero were used, whose main characteris-
tics are shown in Table 4. Like for the OEC IoT nodes, the gateways make use of two Nordic
nRF52840 development kits for providing Bluetooth Mesh (all Bluetooth development kits
were provisioned on the same network to enable their intercommunication).

Table 4. Main characteristics of the tested smart gateway hardware.

Raspberry Pi 3 B Raspberry Pi 3 B+ Raspberry Pi Zero W

SoC 64-bit ARM Cortex-A53
Quad-Core

64-bit ARM Cortex-A53
Quad-Core

32-bit ARM1176JZF-S
Single-Core

Core Broadcom BCM2837 Broadcom BCM2837 Broadcom BCM2835

GPU Broadcom VideoCore IV Broadcom Videocore-IV Broadcom VideoCore IV

CPU Clock 1.2 GHz 1.4 GHz 1 GHz

Memory 1 GB 1 GB 512 MB

SPI/12C Yes Yes Yes

Supported OS Linux, Android Things,
Windows 10 IoT Core

Linux, Android Things,
Windows 10 IoT Core Linux

Ethernet 10/100 Mbit/s 10/100/1000 Mbit/s None

Wi-Fi/
Bluetooth

2.4 GHz 802.11n/
Bluetooth 4.1

2.4/5 GHz 802.11ac/
Bluetooth 4.2

2.4 GHz 802.11n/
Bluetooth 4.1

Current
Consumption 350 mA 400 mA 160 mA

Cost USD38 USD45 USD10

The scenario where the tests took place was located indoors, in an office. There, the two
gateways and the two IoT nodes were placed in areas where they cannot detect each other.
Each IoT node was static at roughly one meter from its respective gateway. One of the
gateways was connected through WiFi to an optic fiber router, while the other one was
also connected through WiFi to the Internet, but through a 4G smartphone that acted as a
WiFi access point. Regarding the Cloud, it was located in a remote server whose ping was
approximately 50 ms when using the optic fiber router and 120 ms for the 4G smartphone.
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In order to illustrate how the testbed works, Figure 7 depicts the steps involved in the
transmission of data between two opportunistic IoT nodes that are managed by two distant
OEC gateways. Thus, the figure indicates which tasks are executed by every different part
of the system and which relationships exist among them.

Figure 7. Step-by-step process for exchanging data between two opportunistic IoT nodes.

4.2. Latency When Running the Bootstrap Node on the Edge and on the Cloud

The first set of experiments was aimed at analyzing the impact on the latency of a
critical component of the developed OEC system: the bootstrap node. In particular, it is
interesting to analyze how performance varies depending on the location of bootstrap node.
Such a node is really important for DHT networks, since IoT nodes can discover the rest of
the network by simply connecting to it.

To measure the impact of the location of the bootstrap node, the time it takes for a node
to connect to the rest of the nodes of the same network was measured and then some data
was saved in a decentralized way in the DHT. The measured time was divided into three
different parts: the time it takes for the peer to connect to the bootstrap node (bootstrap time),
the time to try to connect to the other nodes (connect time), and the time it takes to save the
collected value (put time). Moreover, two situations were distinguished: when the bootstrap
node was run locally (as an Edge Computing server) and when it was executed on the
Cloud. In both scenarios, the IoT node was connected through Ethernet (to avoid latency
oscillations associated with the use of wireless communications) and using a Raspberry Pi
3B. For each test, 50 iterations were performed and five different situations were measured:
when 50, 100, 200, 300, and 600 peers were already connected to the network.

The obtained results are shown in Figures 8–12. As it can be observed, for the case
when the bootstrap node was running on the edge, latency was significantly lower than
when running it on the Cloud. Moreover, the results indicate that the number of peers
connected to a bootstrap node impact latency: the higher the number of connected peers,
the higher the latency. Furthermore, when mixing the bootstrap node location and the
number of connected peers, latency changes significantly. For instance, when running
the bootstrap node on the Cloud, the average total time (i.e., the end-to-end latency) for
600 connected peers is roughly 40 s slower than for 50 connected peers, while, when
deploying the bootstrap node on the edge, such a time difference is only of 3 s.
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Figure 8. Latency when running the bootstrap node in the edge/Cloud for 50 connected peers.

Figure 9. Latency when running the bootstrap node in the edge/Cloud for 100 connected peers.

Figure 10. Latency when running the bootstrap node in the edge/Cloud for 200 connected peers.
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Figure 11. Latency when running the bootstrap node in the edge/Cloud for 300 connected peers.

Figure 12. Latency when running the bootstrap node in the edge/cloud for 600 connected peers.

Latency differences between running the bootstrap node on the Edge and on the
Cloud can be easily spotted through Figure 13, which represents together the mean total
times (already depicted in Figures 8–12) against the number of connected peers. As can be
observed, the mean increases with the number of connected peers, being it clearly higher
when executing the bootstrap node on the Cloud.

Figure 13. Mean total time when running the bootstrap node in the edge/Cloud.
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Finally, put and connection times can also be isolated from the rest of the measurements
to observe how the number of peers impact them. Thus, Figure 14 shows that put times for
the edge bootstrap node remain constant (between 100 and 150 ms) despite the increase in
the number of connected peers. Put time oscillates clearly more (between 200 and 1000 ms)
when using the bootstrap node on the Cloud, but it can be stated that the number of peers
does not impact it.

In contrast, connection times are clearly affected by the number of connected peers: as
is shown in Figure 15, the higher the number of peers connected to the network, the longer
it takes to communicate with all of them. Moreover, noticeable differences can be observed
when comparing edge and Cloud bootstrap node execution. For example, for the edge
bootstrap node, connection time was approximately 0.4 s for 100 peers, while it was roughly
6 s when using the bootstrap node deployed on the Cloud.

Figure 14. Put time when running the bootstrap node in the edge/cloud.

Figure 15. Peer connection time when running the bootstrap node in the edge/cloud.

4.3. IoT OEC Device Performance with Different Hardware

The next set of experiments was carried out to determine how the used hardware
impacts the performance of the proposed OEC system. Thus, the tests described in the
previous subsection were repeated to compare Raspberry Pi Zero and Raspberry Pi 3B+
performance but when making use of WiFi connectivity (this is for the sake of fairness, since
the Raspberry Pi Zero does not have an Ethernet port) and when using an edge bootstrap



Sensors 2022, 22, 8360 22 of 33

node. For each test, 50 iterations were performed for a number of peers that oscillated
between 50 and 600.

The obtained results are shown in Figures 16–20. As it can be observed, the hardware
for the IoT OEC devices clearly impacts performance: for every scenario, the times obtained
when using the Raspberry Pi Zero are higher. Such a difference becomes clear as the
number of connected peers increases. For instance, there is a difference of roughly 2 s in
total time (i.e., end-to-end latency) between both tested devices for 50 connected peers,
which increases to slightly more than 7 s for 600 peers. Therefore, if latency is critical for
an OEC application, hardware needs to be selected carefully. Nonetheless, it is recom-
mended to perform empirical tests with the selected hardware, since, if the devices reach
a sufficiently low latency, the use of devices like Raspberry Pi Zero may be good enough
and are significantly cheaper than other alternatives (specifically, Raspberry Pi Zero costs
approximately a fourth of Raspberry Pi 3 B+).

Figure 16. Latency when using Raspberry Pi Zero/3B+ gateways for 50 peers connected to the
bootstrap node.

Figure 17. Latency when using Raspberry Pi Zero/3B+ gateways for 100 peers connected to the
bootstrap node.
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Figure 18. Latency when using Raspberry Pi Zero/3B+ gateways for 200 peers connected to the
bootstrap node.

Figure 19. Latency when using Raspberry Pi Zero/3B+ gateways for 300 peers connected to the
bootstrap node.

Figure 20. Latency when using Raspberry Pi Zero/3B+ gateways for 600 peers connected to the
bootstrap node.
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4.4. End-to-End Latency between Nodes in Different Opportunistic Networks

The following set of tests measured the time it takes to send data from an IoT node
that belonged to a network, to another node located in a remote and different IoT network.
Specifically, the following steps were involved:

• The data were first sent by using BLE from the sending node to a smart OEC gateway
located in the same network.

• Then, the gateway received the data through its serial port (where a Bluetooth 5
development kit was attached to) and uploaded them to the DHT network.

• Next, the OEC gateway that operated in the same opportunistic network where
the destination node was located, collected the sent data from the DHT network.
To make this communication possible, the role of the Cloud, which acted as a relay,
was essential, since it allows for connecting gateways that belong to different IoT
networks.

• Finally, the gateway sent the message to the destination node through Bluetooth 5
(using BLE).

The measured latency for 1000 iterations is shown in Figure 21. The average end-to-
end latency was 736 ms (with a minimum of 596 ms and a maximum of 1185 ms), with a
variance of 4181 ms. Thus, the obtained results show that the proposed opportunistic
network, in the tested scenario, provides relatively low end-to-end latency, being low
enough for many potential opportunistic applications.

Figure 21. End-to-end latency for 1000 data exchanges.

4.5. Security Impact on OEC Communications Latency

The implementation of secure schemes has been traditionally a challenge for resource-
constrained IoT devices [55]. As was previously mentioned in Section 4.5, in the case of
libp2p, TLS is used by default, which can lower IoT system performance [56].

To determine the impact on latency of using high security mechanisms, it was mea-
sured the time it took for a node to connect to the rest of the nodes of the same network and
then store a value in a decentralized way in the DHT (as performed in Section 4.2) when
enabling/disabling TLS 1.3. In both cases, the used IoT OEC device was a Raspberry Pi
3B+ and used WiFi for communications. For each test, 50 iterations were carried out with
between 50 and 600 connected peers.

The obtained results are shown in Figures 22–26, which show that, in the selected
scenario, security clearly impacts IoT node performance: independently of the number
of connected peers, the latency obtained when enabling security is higher than when it is
disabled. For instance, for 50 connected peers, latency is increased by roughly 600 ms when
using TLS 1.3, while such a difference goes up to 4 s for 600 connected peers. Therefore,
although high security is always recommended, future developers will have to design their
OEC systems to reach a trade-off between security level and latency.
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Figure 22. Latency when enabling/disabling TLS 1.3 for 50 peers connected to the bootstrap node.

Figure 23. Latency when enabling/disabling TLS 1.3 for 100 peers connected to the bootstrap node.

Figure 24. Latency when enabling/disabling TLS 1.3 for 200 peers connected to the bootstrap node.
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Figure 25. Latency when enabling/disabling TLS 1.3 for 300 peers connected to the bootstrap node.

Figure 26. Latency when enabling/disabling TLS 1.3 for 600 peers connected to the bootstrap node.

To spot the previously mentioned differences easier, Figure 27 depicts the mean total
time required by the OEC system when using or not security. As it can be observed,
the mean total time is clearly higher when using security.

Figure 27. Mean latency when enabling/disabling TLS 1.3.
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Finally, Figures 28 and 29 show the put and connection times for scenarios when
50 to 600 peers are connected to the bootstrap node and when security was or was not
enabled. Specifically, Figure 28 shows that put times with security enabled are constant
and independent from the number of peers, remaining between 55 and 60 ms (the same
occurs when disabling security, oscillating between 25 and 30 ms). Therefore, the use of
security doubles put time, but such a difference is actually low in absolute terms.

Figure 28. Put time when enabling/disabling TLS 1.3.

In contrast, Figure 29 shows larger differences for connection time. This is especially
noticeable when the number of peers increases, since more time is dedicated to applying
TLS 1.3 to establish each peer communication. For instance, the connection time difference
between using or not security, for 50 connected peers, is approximately 0.6 s, while the
difference for 600 peers is around 4 s.

Figure 29. Peer connection time when enabling/disabling TLS 1.3.

Therefore, the use of the default libp2p security mechanism provides high security,
but it is harmful for the latency of the system, so time-critical OEC applications should
consider alternative security schemes or just disable security in certain circumstances.
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5. Key Findings

As it could be concluded in light of the previous section that the proposed OEC
system can be influenced by multiple factors (e.g., the location of the bootstrap node,
the OEC hardware, the use of security). The following are the most relevant findings that
can be drawn from the obtained results, which can be useful for future OEC developers
and researchers:

• The performed experiments showed that the obtained latencies allow for performing
fast data exchanges, which enable implementing many opportunistic IoT applications.
It is difficult to determine how much faster the developed system is in comparison to
the systems analyzed in Section 2, since most of them have not performed latency tests.
Specifically, among the analyzed works, only the authors of [26] show results related
to latency experiments. In such a paper, Bluetooth 5 is included as communications
technology, but the obtained latencies are not empirical (they come from simulations)
and the simulation scenario differs significantly from the one evaluated in this paper
(the scenarios proposed in [26] are related to a remote health monitoring application
for rural areas). Considering such differences, the results presented in [26] show
latencies between 4 and 17 h to achieve a message delivery rate of a minimum of 38.7%.
Therefore, such results are much higher than the end-to-end latencies obtained in this
article, which are between 0.93 s and 2.11 s, but for an indoor short-distance scenario.

• As was previously mentioned, since most of the reviewed publications did not in-
clude latency results, the measurements obtained with the proposed architecture were
compared with those of a simplified edge-cloud architecture. In order to perform the
comparison, a system was created with the same architecture as the one proposed in
Section 3, but without making use of opportunistic algorithms. Thus, in such an archi-
tecture an IoT node sends data through Bluetooth 5 to the nearest non-opportunistic
gateway, which establishes a P2P connection (using the Cloud as a relay) with a re-
mote gateway that sends the data to the destination IoT node via Bluetooth 5. It is
important to note that, in this non-opportunistic architecture, the destination node
needs to be always available for receiving data; otherwise, the sent data are lost be-
cause the distributed storage of the receiving IoT node is not available. The results
of such a comparison are shown in Figure 30. It can be observed that the latency
differences between the two compared architectures are small. Specifically, in the case
of the opportunistic architecture, the average measured latency is 736 ms, while the
non-opportunistic Cloud-based architecture communications have an average latency
of 715 ms. Such a 21 ms time difference essentially corresponds to the contribution
of tupload to Equation (2). In any case, the observed time difference is so small that
most IoT applications will not be aware of the additional latency, while being able to
provide all the benefits of using opportunistic communications.

• It is also possible to compare the cost of deploying the proposed architecture with
respect to other state-of-the-art systems. Specifically, Table 5 shows the total cost of
the architectures evaluated in Section 2 when compared to the cost of the architecture
proposed in this article. For the sake of fairness, the same scenario was assumed for
all architectures for estimating the amount of necessary hardware. Such a scenario
consisted in a three-story building with 300 m2 floors. Thus, the data of the used
hardware were obtained from the experiments described in each article but considering
the devised scenario. In Table 5, it can be seen that the overall cost of the proposed
system is inexpensive when compared to the architectures described in [7,16,17].
In addition, while the overall cost for the proposed scenario is higher than the one
required by the architectures detailed in [9,12], if more floors needed to be covered,
the proposed opportunistic architecture would only need to replicate a gateway
node (because its range can cover the entire floor), while the other state-of-the-art
architectures would need to replicate almost all of their infrastructure on each floor.
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• The mathematical terms of the presented latency model (previously described in
Section 3.3), can be analyzed by considering the obtained experimental results and the
following conclusions can be extracted:

– tbootstrap_conection. In order to measure this latency, tests were carried out in sev-
eral scenarios and under different network layers (e.g., edge and cloud), differ-
ent hardware (e.g., Raspberry Pi 3B, Raspberry Pi Zero) and different security
configurations. For each test, 50 iterations were made and five situations were
measured with 50, 100, 200, 300, and 600 peers connected to the network. The per-
formed experiments showed a constant latency of roughly 50 ms, independently
of the scenario.

– tconnect_time. For this latency, tests were as for tbootstrap_conection. The performed
experiments show that latency depends directly on the number of connected
peers. For the edge scenario, latency increases about 0.4 s per 100 peers, while in
the cloud scenario such a time increases by 6 s.

– tdata_transmission. To measure this latency, tests were performed with 1000 messages
that were sent sequentially from one node in a network to another in a different
network. The average latency obtained for these experiments was 1.18 s.

– tupload. This latency was measured in the same way as for tbootstrap_conection.
The obtained results show a latency that oscillates between 100 and 150 ms
for the edge scenario and between 200 and 1000 ms for the cloud scenario. In ad-
dition, the performed experiments allowed for concluding that this latency does
not depend on the number of connected peers.

• The main detected challenges, as well as further research areas, are:

– Future developers will have to design their OEC systems to reach a trade-off
between security level and latency by disabling certain security features under
different circumstances or by devising novel security schemes.

– The most critical aspects related to the implementation of practical OEC sys-
tems are the ones associated with the OEC Network Layer, which provides
services for P2P communications (e.g., peer discovery, peer routing, data routing,
and resource sharing). Specifically, the implementation of the proposed archi-
tecture relies on libp2p, the modular and extensible P2P network stack used by
IPFS. More and more technologies are becoming available for such an imple-
mentation, but design trade-offs between the different requirements need to be
considered (e.g., Kademlia DHT is robust for routing in terms of message losses
and simplifies network tracing, but it is slower than other traditional recursive
routing strategies).

– When deploying an IoT OEC system, hardware requirements must be carefully
analyzed and then empirical tests should be performed in order to select the
most appropriate IoT nodes and OEC gateways.

– The proposed OEC communications architecture, the used protocols and tech-
nologies, as well as the experiments outlined throughout this article, were se-
lected having in mind a specific OEC scenario and set of requirements. Therefore,
the obtained latency results should not be directly generalized to every OEC
scenario. Nonetheless, the interested OEC system developers and researchers
can make use of the provided source code to replicate the experiments in differ-
ent scenarios and to adapt them to other requirements (e.g., cost, consumption,
security level, scalability, mobility).
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Figure 30. End-to-end latency comparison.

Table 5. Hardware cost comparison of the proposed solution with other relevant state-of-the-art
opportunistic architectures.

Project Hardware Cost (e) #Units Total (e)

Raspberry pi Zero W 10.44 3 31.32

Raspberry Pi 3 B+ 51.43 3 154.29

NRF52840-DK 49 6 294

PC cloud 600 1 600

Solution Described in this Article

1079.61

Adafruit Feather 32u4 RFM95 35.28 3 105.84

LARANK 8 393.25 1 393.25

Adafruit Feather nRF52832 25.95 9 233.55
[9]

732.64

Arduino board+Adafruit CC3000 Wi-Fi board 48.95 1 48.95

PC UAVFOG 600 2 1200

PC cloud 600 1 600
[16]

1848.95

Raspberry Pi 3 A+ 30.25 9 272.25

Dell EMC Edge Gateway 5200 3.412.94 1 3412.94[7]

3685.19

Raspberry pi 4 60 9 540
[12]

540

Cloud Server (64 GB RAM and

Intel i7)
640/year 6 3840

Laptop (16 GB RAM and Intel i5) 600 3 1800
[17]

5640
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6. Conclusions

This article presented a novel IoT OEC system based on Bluetooth 5 nodes. After
reviewing the most relevant state-of-the-art OEC solutions, the proposed decentralized com-
munications architecture was described in terms of components, protocol stack, and func-
tionality. To demonstrate the feasiblity of the developed system for implementing practical
applications, its latency was measured. The results show that it is possible to provide end-
to-end communications between two different IoT networks with low latency. However,
different factors should be considered: the location of the bootstrap node (the use of edge
nodes reduces communications latency), the selected OEC hardware (some SBCs are faster
but more expensive than other alternatives), and the use of security (TLS 1.3 increases
latency but provides high security). As a consequence, this article has not only presented
a novel solution, but it has also provided useful guidelines for the developers of future
OEC systems.
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