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Abstract: Depth sensing is an important issue in many applications, such as Augmented Reality (AR),
eXtended Reality (XR), and Metaverse. For 3D reconstruction, a depth map can be acquired by a
stereo camera and a Time-of-Flight (ToF) sensor. We used both sensors complementarily to improve
the accuracy of 3D information of the data. First, we applied a generalized multi-camera calibration
method that uses both color and depth information. Next, depth maps of two sensors were fused by
3D registration and reprojection approach. Then, hole-filling was applied to refine the new depth map
from the ToF-stereo fused data. Finally, the surface reconstruction technique was used to generate
mesh data from the ToF-stereo fused pointcloud data. The proposed procedure was implemented
and tested with real-world data and compared with various algorithms to validate its efficiency.

Keywords: 3D reconstruction; ToF camera; stereo camera; sensor fusion

1. Introduction

Sensors using computer vision systems usually provide both color and depth information.
To achieve accurate depth information, the fusion of multiple sensors or expensive sensors
is needed. The depth information can be applied to various computer vision solutions, e.g.,
Virtual Reality (VR), Extended Reality (XR), Metaverse, and 3D map reconstruction.

There are many devices and algorithms for real-time depth map acquisition, including
active and passive camera systems. Active sensors include structured light cameras and
well-known Time-of-Flight (ToF) sensors, while passive cameras include stereo cameras.
ToF cameras compute the depth by sending an electromagnetic wave signal and measuring
the phase shift of the reflected signals. Even if the ToF sensor robustly estimates the 3D
information and has compact configuration, it has a high level of noise and low performance
on irreflective surfaces. Additionally, the ToF camera cannot extract the color information
of the scene. On the other hand, the stereo camera computes the depth by finding the
two corresponding pixels in the two images acquired by the two calibrated cameras. The
stereo vision system only uses a simple camera setup, and it is widely used for the high-
resolution-range image. However, the stereo vision system is highly affected by the texture
of the scene, and it has low accuracy relative to the active sensors.

An acquisition system composed of a ToF camera and a stereo pair is proposed in
some research studies [1]. Jung et al. [2] combined two sensors by using epipolar geometry
to reduce the error caused by a moving object. They also used IMU to compensate for
the movement of the camera module [3]. Some studies used confidence measurements
for calculating reliability of the two depth data [4–6]. Gandhi et al. [7] combined two
systems by converting the ToF depth measurement into disparity maps to use it as initial
correspondences for a stereo matching algorithm. Furthermore, a neural network was
used for the disparity map fusion of a ToF sensor and a stereo camera [8]. However, these
algorithms only used 2D images obtained from each sensor for fusion and have limitations
using 3D information.

This paper proposes a method to obtain accurate depth maps using both 3D informa-
tion and 2D images acquired by a ToF sensor and a stereo camera.
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2. Approach to The Proposed ToF-Stereo Fusion Method

Even if the 3D pointcloud registration has high computational cost, it can obtain
more detailed transformation using information such as surface, normal, curvature, and
sub-pixel scale vertex. As the depth image contains 3D information, we established the
idea to use 3D pointcloud data for the fusion of ToF-stereo depth maps.

The depth map produced by a stereo camera has a high resolution and inaccurate
3D data compared to the ToF depth map. To reduce the error of the raw data, we fused
the two data with a 3D registration procedure. As the 3D registration process uses the 3D
information of the pointcloud, the alignment error becomes smaller. The overall procedure
of the proposed ToF-stereo fusion method is shown in Figure 1.

Sensors 2022, 22, x FOR PEER REVIEW 2 of 10 
 

 

the disparity map fusion of a ToF sensor and a stereo camera [8]. However, these algo-
rithms only used 2D images obtained from each sensor for fusion and have limitations 
using 3D information. 

This paper proposes a method to obtain accurate depth maps using both 3D infor-
mation and 2D images acquired by a ToF sensor and a stereo camera. 

2. Approach to The Proposed ToF-Stereo Fusion Method 
Even if the 3D pointcloud registration has high computational cost, it can obtain more 

detailed transformation using information such as surface, normal, curvature, and sub-
pixel scale vertex. As the depth image contains 3D information, we established the idea to 
use 3D pointcloud data for the fusion of ToF-stereo depth maps. 

The depth map produced by a stereo camera has a high resolution and inaccurate 3D 
data compared to the ToF depth map. To reduce the error of the raw data, we fused the 
two data with a 3D registration procedure. As the 3D registration process uses the 3D 
information of the pointcloud, the alignment error becomes smaller. The overall proce-
dure of the proposed ToF-stereo fusion method is shown in Figure 1. 

 
Figure 1. Overall procedure of the proposed method. 

The initial transformation matrix for the two 3D pointcloud data extracted from each 
sensor is calculated from the extrinsic camera parameters of the two sensors. Then, the 3D 
registration is applied for the fine tuning. The aligned 3D data are then projected to the 
stereo camera image plane to extract depth map from the fusion data. As the 3D data from 
the two sensors have different viewpoints, the depth map has a sparse data region that 
can be considered as a hole. We used simple hole-filling algorithm to recover the full depth 
map of the fusion data. After the high-resolution depth map is generated, the color image 
is used for the texture mapping on the depth information. Finally, the ToF-stereo fused 
depth map and 3D pointcloud are obtained using the proposed method. 

The next sections of this paper are organized as follows. Section 3 explains the details 
of the proposed method, and Section 4 shows the experimental results of the proposed 
method. Finally, the concluding remarks are given in Section 5. 

3. Proposed Method 
3.1. Camera Calibration 

Camera calibration is performed by capturing images of calibration object (e.g., cam-
era calibration board) from various viewpoints. If images are taken by the same camera 
with fixed internal parameters, correspondences between images are used to calculate the 
internal and external parameters of cameras and images [9]. As the correct corresponding 
pixels are hard to detect, the calibration result is not always reliable [10]. In many cases, 
the overall performance of the depth-sensing system is affected by the accuracy of the 
camera calibration result. Therefore, the stereo camera and the ToF camera must be 

Figure 1. Overall procedure of the proposed method.

The initial transformation matrix for the two 3D pointcloud data extracted from each
sensor is calculated from the extrinsic camera parameters of the two sensors. Then, the 3D
registration is applied for the fine tuning. The aligned 3D data are then projected to the
stereo camera image plane to extract depth map from the fusion data. As the 3D data from
the two sensors have different viewpoints, the depth map has a sparse data region that can
be considered as a hole. We used simple hole-filling algorithm to recover the full depth
map of the fusion data. After the high-resolution depth map is generated, the color image
is used for the texture mapping on the depth information. Finally, the ToF-stereo fused
depth map and 3D pointcloud are obtained using the proposed method.

The next sections of this paper are organized as follows. Section 3 explains the details
of the proposed method, and Section 4 shows the experimental results of the proposed
method. Finally, the concluding remarks are given in Section 5.

3. Proposed Method
3.1. Camera Calibration

Camera calibration is performed by capturing images of calibration object (e.g., camera
calibration board) from various viewpoints. If images are taken by the same camera with
fixed internal parameters, correspondences between images are used to calculate the
internal and external parameters of cameras and images [9]. As the correct corresponding
pixels are hard to detect, the calibration result is not always reliable [10]. In many cases, the
overall performance of the depth-sensing system is affected by the accuracy of the camera
calibration result. Therefore, the stereo camera and the ToF camera must be properly
calibrated together in order to extract 3D information and fuse each data point acquired
from the two sensors.

The ToF camera obtains an amplitude image IT and a depth image DT , while the stereo
camera obtains RGB images IL and IR. The depth map calculated by the stereo camera is
represented by DS. Concerning the camera projection properties, the classical Heikkila
model [11] is considered for all 3 cameras. The intrinsic parameters can be estimated
by standard calibration algorithms. The extrinsic parameters can be calculated by the
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estimation of the camera pose [12]. A camera reference frame is associated with each of
the 3 cameras. The world frame is considered to coincide with the reference frame of DT .
The calibration of the extrinsic parameters is the estimation of the relative rotations and
translations between the ToF and stereo camera reference frames {S, T}.

Given the set of points Pi
S with respect to the left RGB image reference frame, and Pi

T
with respect to the ToF intensity image reference frame, the estimation of the transformation
matrix M can be calculated by minimizing the sum of Euclidean distance errors between
all corresponding points as follows [13].

argmin
M

n

∑
i=1
‖ Pi

T −M·Pi
S ‖ 2 (1)

The calibration process is performed and tested with sensors mounted on our rigid
platform, as shown in Figure 2.

Sensors 2022, 22, x FOR PEER REVIEW 3 of 10 
 

 

properly calibrated together in order to extract 3D information and fuse each data point 
acquired from the two sensors. 

The ToF camera obtains an amplitude image 𝐼  and a depth image 𝐷 , while the 
stereo camera obtains RGB images 𝐼  and 𝐼 . The depth map calculated by the stereo 
camera is represented by 𝐷 . Concerning the camera projection properties, the classical 
Heikkila model [11] is considered for all 3 cameras. The intrinsic parameters can be esti-
mated by standard calibration algorithms. The extrinsic parameters can be calculated by 
the estimation of the camera pose [12]. A camera reference frame is associated with each 
of the 3 cameras. The world frame is considered to coincide with the reference frame of 𝐷 . The calibration of the extrinsic parameters is the estimation of the relative rotations 
and translations between the ToF and stereo camera reference frames {S, T}. 

Given the set of points 𝑃  with respect to the left RGB image reference frame, and 𝑃  with respect to the ToF intensity image reference frame, the estimation of the transfor-
mation matrix M can be calculated by minimizing the sum of Euclidean distance errors 
between all corresponding points as follows [13]. 

𝑎𝑟𝑔 min 𝑃 𝑀 ∙ 𝑃  (1) 

The calibration process is performed and tested with sensors mounted on our rigid 
platform, 𝑎𝑠 shown in Figure 2. 

 
Figure 2. ToF-stereo fusion test configuration. 

3.2. 3D Registration 
The two pointcloud data can be aligned using a 3D registration technique. There were 

many studies in the 3D registration field. Men and Pochiraju [14] used image-based color 
information for the pointcloud registration. In [15], range image and color image are used 
simultaneously for the matching algorithm. Kim et al. [16,17] utilize the systematic bias 
noise to improve the accuracy of 3D registration. 

The depth data have error characteristics that consist of systematic bias and random 
noise. The depth measurement model of the sensor is as follows. 𝑝 𝑧 |𝑥  ~ 𝑁 𝑧; 𝑥 𝑏 𝑥 , 𝜎 𝑥  (2) 

where z is the depth measurement along a ray, x is the true distance along the ray, and 
b(x) is the systematic bias, which in practice mostly depend on the true distance. 

Even if we applied calibration technique to align the two data, the non-trivial error 
characteristics of the sensor will result in misalignment of the data. Therefore, we run the 
registration algorithm to perform fine alignment to reduce the error of the data. We use 
ICP with RANSAC for the fine 3D registration [15]. 

The two pointcloud data are combined to obtain a coarse model. Then, the initial 
model is defined by the method of a probabilistic multi-view fusion framework. As we 
considered the depth measurements 𝑧  and 𝑧  from each sensor as independent, we can 
merge them by joint occupancy probability as follows. 𝑙𝑜𝑔 𝑝 𝑚 |𝑧1 𝑝 𝑚 |𝑧 𝑙𝑜𝑔 𝑝 𝑚 |𝑧1 𝑝 𝑚 |𝑧   (3) 

Figure 2. ToF-stereo fusion test configuration.

3.2. 3D Registration

The two pointcloud data can be aligned using a 3D registration technique. There were
many studies in the 3D registration field. Men and Pochiraju [14] used image-based color
information for the pointcloud registration. In [15], range image and color image are used
simultaneously for the matching algorithm. Kim et al. [16,17] utilize the systematic bias
noise to improve the accuracy of 3D registration.

The depth data have error characteristics that consist of systematic bias and random
noise. The depth measurement model of the sensor is as follows.

p(z |x) ∼ N
(

z; x + b(x), σ2(x)
)

(2)

where z is the depth measurement along a ray, x is the true distance along the ray, and b(x)
is the systematic bias, which in practice mostly depend on the true distance.

Even if we applied calibration technique to align the two data, the non-trivial error
characteristics of the sensor will result in misalignment of the data. Therefore, we run the
registration algorithm to perform fine alignment to reduce the error of the data. We use
ICP with RANSAC for the fine 3D registration [15].

The two pointcloud data are combined to obtain a coarse model. Then, the initial
model is defined by the method of a probabilistic multi-view fusion framework. As we
considered the depth measurements zT and zS from each sensor as independent, we can
merge them by joint occupancy probability as follows.

log
p(mx|zT)

1− p(mx|zT)
+ log

p(mx|zS)

1− p(mx|zS)
(3)

where p(mx|z ) means a model inferring a probability of occupancy for each voxel in space,
0 represents that the voxel is completely empty, and 1 represents a fully occupied voxel.

After fitting of the two scanned data, the surface hole is filled to enhance the surface
quality. The pointcloud is ready to be used for the surface reconstruction process.
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3.3. 3D Reconstruction Method

The acquired depth map can be converted to pointcloud data. Pointcloud is used to
reconstruct the 3D surface using various methods. Lee et al. [18] used as-build model to
reconstruct the map of plant pipeline. Song et al. [19] used non-uniform rational B-spline
surface reconstruction with neural network PointNet.

As the two pointcloud data are jointly calibrated in our procedure, the reconstruction
procedure is organized by four steps:

1. The depth map acquired from the ToF sensor is projected to the referenced stereo
camera viewpoint. As the ToF captures low-resolution images, it is necessary to
interpolate the depth map with the high-resolution depth map image aligned with
the stereo camera lattice;

2. The two pointclouds are extracted from the two depth maps, and they are aligned us-
ing the ICP (Iterative Closest Point) algorithm. The pointcloud from the stereo camera
is set as target, and the pointcloud from the ToF camera is set as the source pointcloud;

3. The two pointclouds are fused and reprojected to the color camera viewpoint. As
the point cloud is reprojected to the different viewpoint of the ToF camera, the depth
map includes a sparse hole-looking depth map, as shown in Figure 3. The hole in the
depth map is filled with the simple hole-filling algorithm [15];

4. The fused depth map of ToF and the stereo camera is colored with texture mapping of
the corresponding color image.
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We proposed a sensor fusion method that uses both 2D and 3D information. In the
initial surface reconstruction, we merge all depth maps (DT , Ds) into a common 3D voxel
grid of occupancy probabilities. After generating the merged pointcloud data, the surface
is reconstructed via Poisson equation [20].

In the next section, various methods are tested to analyze the performance of 3D
reconstruction procedure including the proposed method.

4. Experiments and Results
4.1. Accuracy Test by Distance

As the accuracy of the depth map depends on the distance from the scanned object [21],
we established experiments to analyze accuracy by the scanning distance. We scanned an
object of known geometry and estimated the error against the ground truth. We scanned a
Halcon 320 × 240 mm calibration plate (MVTec, Munich, Germany) as the known object
and compared the depth map of the ToF, stereo camera, and the proposed method. We
used the Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) for the
evaluation metrics.

The RMSE is used to compare the 3D reconstructed objects and it is calculated as follows.

RMSE = ∑ ‖ Pmethod
i − Pgt

j ‖
2 (4)
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where Pmethod is the pointcloud from each method and Pgt is the pointcloud from the
ground truth. The correspondence (i, j) of each point is matched with the closest point.

The MAE is used to evaluate the accuracy of the depth map and calculated as follows.

MAE = ∑
(u,v)∈d

‖ dmethod
(u,v) − dgt ‖ (5)

where dmethod is the depth map from each method and dgt is the tested distance.
We obtained data from 0.5 m to 10 m by 0.5 m intervals as in [22]. After the scanning

process, 10 depth map images are used to calculate the average MAE, and the reconstructed
3D object is used to calculate the RMSE of the tested method. The test configuration is
shown in Figures 4 and 5.
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The depth map of the calibration plate cannot be obtained from the ToF sensor if the
object distance is more than 7.5 m. The test result is shown in Figure 6.

As the ToF sensor cannot obtain the depth of the object over the 7.5 m, the proposed
method only used stereo camera 3D data for the reconstruction. Therefore, the RMSE of the
proposed method is exactly the same with the stereo camera over the 7.5 m. On the other
hand, since the 3D registration can be performed with the background data, the depth map
is generated with shifted 3D data. That is the reason why the MAE for the depth map is
affected by the ToF data. A value of 1 in MAE represents an approximately 0.04 m error at
a 10 m distance. Table 1 shows the average RMSE and MAE results of the experiments.
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Table 1. Result of accuracy test by distance.

Method RMSE (m) MAE

ToF 0.047 0.355

Stereo 0.134 1.783

Proposed 0.042 0.429

The average RMSE and MAE is calculated with the data under the 7.5 m distance. As
the average RMSE is 0.042 m for the proposed ToF-stereo fusion method which is the RMSE
result between 4 m and 4.5 m, we recommend using the ToF-stereo method for scanning
the 0.5 m–4.0 m ranged objects. The accuracy of the proposed method outperforms the
other ToF-stereo fusion method in [20] as it shows 1.294 of average MAE.

Even though the accuracy might be unstable, as the depth map range of the stereo
camera covers up to 40 m, the proposed method can acquire depth data over 10 m, which
is impossible with the ToF sensor alone.

4.2. Accuracy Test by Full Reconstruction

We used a RTC360 (Leica, Wetzlar, Germany) laser scanning device to obtain the
ground truth of the real world indoor and outdoor scene data. We also used Artec Leo
(Artec3D, Niederanven, Luxembourg) to obtain the ground truth data of the small object.
The tested data are shown in Figure 7.
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We analyzed various methods to validate the proposed algorithm. We used ZED-mini
to test the stereo camera reconstruction performance, and Azure Kinect DK (Microsoft,
Redmond, WA, USA) to test the ToF reconstruction performance. For the proposed method,
we used a commercial sensor ZED-mini (StereoLabs, San Francisco, CA, USA) and a ToF
sensor MDC100SF (Meere Company, Seoul, Korea). The configuration of the experiment
is shown in Figure 2. After collecting 10 sets of data from each sensor, the data were
transferred to a personal computer and the reconstruction process is implemented with an
i7-4790K processor with 16 GB memory and a Windows 10 operating system.

The performance of the algorithms is measured by the RMSE, which shows the
difference from the ground truth. The RMSE is calculated with the commercial software
Geomagic Wrap (Artec 3D, Luxembourg) as in Figures 8–10. The green regions of the error
analysis represent the ground truth value, the red color means the difference is in the (+)
direction, and the blue color means the difference is in the (−) direction.
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The tested indoor scene is hard to reconstruct since there is no pattern on the white
wall. The average RMSE with the ToF sensor is 0.0458 m and the standard deviation is
0.0053. The average RMSE with the stereo camera is 0.1447 m and the standard deviation is
0.0231. The average RMSE with the proposed method is 0.0702 and the standard deviation
is 0.0177.

The tested outdoor scene is also hard to reconstruct since there is no pattern on the
floor. Additionally, the range and accuracy of the ToF sensor is reduced by the sunlight. The
average RMSE with the ToF sensor is 0.0399 m and the standard deviation is 0.0250. The
average RMSE with the stereo camera is 0.0147 m and the standard deviation is 0.0042. The
average RMSE with the proposed method is 0.0063 and the standard deviation is 0.0016.

The character doll has a lot of feature points, and the stereo camera can reconstruct
the detailed textures. The average RMSE with the ToF sensor is 0.1253 m and the standard
deviation is 0.0222. The average RMSE with the stereo camera is 0.0366 m and the standard
deviation is 0.0195. The average RMSE with the proposed method is 0.0110 and the standard
deviation is 0.0051.

Table 2 presents the average RMSE of each 3D reconstruction method on each scene.
The proposed method is the best in an outdoor scene with the character doll.

Table 2. RMSE of reconstructed scene by various methods.

RMSE (m) ToF Camera Stereo Camera Proposed Method

indoor 0.0458 0.1447 0.0702

outdoor 0.0399 0.0147 0.0063

character doll 0.1253 0.0366 0.0110

5. Conclusions

In this paper, we proposed a 3D reconstruction method using both ToF and stereo
cameras. The proposed method is implemented and tested with various methods. The
performance of the proposed method is the best in reconstruction of the outdoor scene
with the character doll. Even if the ToF camera shows the best result in the indoor scene,
the proposed method shows better performance than the stereo camera and shows robust
reconstruction results.

One of the major attributes of the proposed method is that it improves the performance
of the 3D reconstruction algorithm by using both ToF and stereo sensors. The weakness of
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the ToF sensor is compensated for by the stereo camera, and the weakness of stereo camera
is compensated for by the ToF camera.

The limitation of the proposed method is the calibration error by the two cameras.
As the test configuration is not packed with a rigid frame, the abrupt motion could cause
the two cameras to vibrate separately. The result of the calibration error is the mismatch
between the depth map and color image, and this results in errors in the feature matching
process. This limitation should be considered in future research.
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