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Abstract: It is challenging for a mobile robot to follow a specific target person in a dynamic environ-
ment, comprising people wearing similar-colored clothes and having the same or similar height. This
study describes a novel framework for a person identification model that identifies a target person by
merging multiple features into a single joint feature online. The proposed framework exploits the
deep learning output to extract four features for tracking the target person without prior knowledge
making it generalizable and more robust. A modified intersection over union between the current
frame and the last frame is proposed as a feature to distinguish people, in addition to color, height,
and location. To improve the performance of target identification in a dynamic environment, an
online boosting method was adapted by continuously updating the features in every frame. Through
extensive real-life experiments, the effectiveness of the proposed method was demonstrated by
showing experimental results that it outperformed the previous methods.

Keywords: person identification; multiple features; online boosting; mobile robot; person following

1. Introduction

Robots have the potential to be used in several practical applications, and they will be
employed to assist people in performing their daily activities in the next decade [1–3], such
as carrying heavy objects, assisting the elderly, assisting medical staffs in rehabilitation,
guarding, and guiding. With the growing number of human detection techniques [4,5] and
control systems [6–9] in various working environments, the abilities of such systems to
recognize, track, and identify objects have become increasingly important. In particular, the
environment in that humans works side by side with robots. Recent rapid advancements
in artificial intelligence techniques and the capability of robotics technologies have resulted
in enhanced comprehension of artificial systems comparable to human-like performance in
specific applications.

Robust person-following in realistic environments is one of the most critical functions
of a mobile robot. Here, the main challenge is to follow a specific target person in a dynamic
environment, comprising people wearing similar-colored clothes and having the same or
similar height. However, the system must address such a challenge within the available
sensors’ possibilities and mounted on the robots.

Person identification based on tracking is often used by robots to follow a target person;
this refers to identifying a target person over time using the person’s characteristics and
localization. Many studies on person-following techniques have been published. One of the
earliest approaches for person-following robots used computer vision to track people based
on appearance [10]. Some of these studies employed sensors, such as stereo cameras [11]
and laser scanners [12]. Compared to cameras, laser scanners provide poor information
about human features. However, affordable sensors can identify people based on their
height and appearance. Researchers have employed red, green, blue, and depth (RGB-D)
cameras in recent applications, such as the Orbbec Astra [13] and Kinect [14]. These cameras
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provide synchronized color and depth data and are highly suitable for indoor environments.
Moreover, they have acceptable measurement characteristics and are affordable and readily
available. Therefore, building such robotic systems is easy.

This study introduces a new person identification framework for mobile robots that
classifies people based on online boosting by merging many features into a single feature.
In this framework, the robot first detects and tracks people using a deep neural network
technique that receives two-dimensional (2D) image sequences from an RGB-D camera
mounted on it. This approach allows us to exploit the deep learning technique to extract
features of people and then input these features into the online boosting model to classify
people as target or non-target persons. Using an online boosting model, the proposed
framework re-identifies the target person if the robot loses tracking owing to occlusion or
some other event, which is based on information learned before losing track.

The main contributions of this study are summarized as follows: First, we present
a novel vision-based person-identifying approach using four features. This approach
extracts a clothing color feature from the upper body, estimates the height relative to
the ground plane level and location relative to the center of the images, and calculates
the IoU (intersection over union) between the current and last frames using an RGB-D
camera. The novelty of our approach is that it obtains more features of the target person
in terms of the height difference, localization difference, and IoU data between the target
person and other people in the current frame and the last tracked frame to increase the
robustness of classification. Second, we comprehensively evaluate several online boosting
algorithms and weak learners in terms of accuracy and speed to integrate these features
into a single feature based on the best online boosting model and weak learners. Third, we
designed a system that can be generalized and applied to any target person without prior
knowledge. This is performed by using the mouse to extract features when choosing the
target person and transferring each feature into a normalization case. Fourth, the person
identification framework was implemented on an actual robot and verified in a realistic
indoor scenario through intensive experiments using the four proposed features. Other
experiments were conducted using only the two features adopted in [3] for comparison
based on the features used.

The remainder of this paper is organized as follows. Section 2 provides an overview
of the related work. The proposed human-following robot methodology is described in
Section 3. The empirical results and discussion are presented in Section 4, which is followed
by conclusions and future work in Section 5.

2. Related Work

Several systems have been proposed for autonomous human-following tasks. Re-
searchers have contributed to the development of a broad range of studies by addressing
various aspects of human-following problems [15].

The face information of people with other features was utilized in visual-based meth-
ods. In [16], human recognition was performed by fusing face recognition with skeletal
estimates generated by human-following robots. In [17], a mobile robot was equipped with
a radio-frequency identification (RFID) reader that could track a target person or another
through a passive RFID tag attached to the person or robot. However, the face and tag
recognition methods have a limitation in that the distance between the robot and the person
must be small for identifying the user’s face or reading the tag. Moreover, a user’s face or
tag orientation is not always available in the person-following scenarios.

Linxi and Yunfei [18] utilized AdaBoost to train a binary classifier in outdoor environ-
ments based on a sparse point cloud obtained from LiDAR. Cha and Chung [19] applied
a one-class classification algorithm called a support vector data description (SVDD) to
classify people based on the leg shape by generating feature vectors of the leg segments in
a three-dimensional (3D) space from the LiDAR sensor. However, these algorithms do not
address cases in which a target is partially occluded by another person.
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Chi et al. [14] proposed a gait recognition method using a dataset that records the
skeletal joints of people in 3D coordinates using an RGB-D camera to conduct human-
following tasks. Stein et al. [20] implemented 24 features to take advantage of the motion
of people and improve navigation capabilities.

Many re-identification methods based on target appearance, such as scale-invariant
feature transformation (SIFT) [21], color [13,22], and template matching [23] have been
proposed. Gupta et al. [23] developed a novel driving algorithm based on a template-
matching clothes method using a k-dimensional tree-based classifier with a SURF-based
tracker to detect the target appearance and a Kalman filter motion predictor to follow
the target person. However, the drawback of this algorithm is that the frame rate is low,
approximately six frames per second (fps), and consequently, it has an adverse effect on
the computational cost. The method proposed in [21] relies on keypoint-based feature
matching to perform data association. However, SIFT-based methods are often not robust
against common sources of variation. Furthermore, they have a low frame rate, which
drops suddenly with an increase in the number of people in the scene, and keypoints have
to face the camera continuously.

A re-identification method for a robot was presented in [24] using thermal image
entropy-based sampling to obtain a thermal dictionary for training a support vector ma-
chine (SVM) classifier after the head region was segmented for each person. In [25], a
person tracking and identification method for a mobile robot was presented by combining
three features from two laser range finders (LRFs) and a camera. A person was recognized
using illumination-independent features (i.e., gait and height) and color features.

Recently, to achieve accurate and robust object detection and tracking, researchers
have employed deep learning [9,13,26–28]. Chen et al. [28] used a stereo camera with an
Ada-boosting algorithm based on convolutional neural networks (CNNs) for the person
tracking using a mobile robot. However, the limitation of this algorithm is that once the
selected person walks out of the robot’s field of view (FOV) for an extended period, the
neural networks are updated with background data in the scenery because the online CNN
model only acts as a feature extractor. Lee et al. [26] applied you only look once (YOLO) as
a deep learning technique to detect and track people and a matching method to identify the
target person. However, the computational cost of this method was high, approximately
around 0.3 s, despite using a graphics processing unit (GPU). Tracking information was
also used in [9,13], where identification was based on a Hue, Saturation, and Value (HSV)
space to extract color features from clothes and estimate the target person’s position in real
time over all frames. In these systems, person identification worked well under moderate
illumination changes; however, this approach failed under severe illumination changes.
This limitation was resolved by continuously updating the model to accommodate changes
over time [22]. However, the updated system depends entirely on color features, which
is the main limitation; it leads to failures when more people wear similar clothing. Pang
et al. [27] applied an integration method of supervised learning and deep reinforcement
learning with a deep Q-network to train an agent and develop a robot that could follow
a target person. However, these appearance features become meaningless when other
people wear similar clothes to the target person. Thus, this approach is difficult to apply
practically, even with a deep neural network, especially in facilities where people wear the
same clothes.

3. Human Identifier Methodology

Person identification is challenging for mobile robots because of inaccurate bounding
box generation, background clutter, occlusions, illumination changes, and unconstrained
walking. This results in variations and uncertainties [29]. Figure 1 shows the flowchart
of the proposed methodology. Person identification consists of two steps: (1) features
extraction and (2) an online boosting algorithm. Online boosting operates by arranging
weak learners in a sequence (blue arrows in Figure 1) to build a strong classifier. As the
starting point to extract the features used, human detection is required. It is necessary to
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manually select the desired target person from a live video using a mouse. CNNs have
achieved state-of-the-art performance on various visual recognition tasks [30], such as
image classification [31], object detection [32], and semantic segmentation [33]. However,
some of the deep learning techniques have improved dramatically the performance of
object detection in real-time videos, such as single-shot detector (SSD) [34], YOLO [35], and
mask R-CNN [36]. The proposed system uses an SSD with MobileNets [37]. The details of
SSD and MobileNet are beyond the scope of this study. In this section, we briefly explain
the features and online boosting-based person classifier used in this context.

Model 
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Model 
2

Model 
N

Model 
...

Weight 
1

Weight 
2

Weight 
N

Weight 
...

Ensemble weak learners

Initial training

Target /non−target  
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features

  Features
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Yes

No

Online boosting-based human classifier
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Figure 1. Flowchart of the proposed system.

3.1. Feature Definitions

The primary purpose of the identification model is to establish whether the observed
person is the target over successive frames; this involves labeling the observed people
as either target or non-target persons. Labeling people without prior knowledge is a
fundamental problem in human-following robot systems. Person identification poses an
additional challenge when many people wear similar clothing. For instance, it is difficult to
distinguish people wearing similar t-shirts without considering other features, in addition
to their appearance features. Our model addresses this challenge through online learning
that merges many features into a single feature with continuous updating of the features
used. The four major features (color, height, location and IoU) are updated online and used
as inputs for the online boosting algorithm after applying the normalization technique. The
min–max normalization was applied to all features to ensure that the result falls within
the range of 0 and 1 [38]. The features used were extracted in this work based on a feature
perspective [15]. These features are described in detail in the following sections:

3.1.1. Color Feature

The target person is recognized using an appearance model. Appearances are com-
monly used to identify the target person in person-following robot systems. We used
an HSV color space, which is one of the most popular methods owing to its simplicity
and robustness for extracting color features, with the proposed method and an online
color-based identification update [22]. The boxes in Figure 2 represent human detection
of the deep learning-based model. The yellow and green boundary boxes represent the
target person in the previous and current frames, respectively, whereas the red boundary
boxes represent other people in the current frame. To extract the color features only from
the clothes of the upper body and ignore the rest of the scene, a region of interest (ROI)
was applied. Segmentation is a powerful technique in computer vision technology for
lowering computing costs [39]. The importance of segmentation increases when a task is
performed in real time. The blue boxes indicate the ROIs on the upper bodies of people,
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while the white contour indicates the color extraction from people’s clothing within ROIs.
To normalize the color feature, we used the area ratio given by:

area ratio =
Ac

AROI
(1)

where Ac is the area of the contour (white contour) calculated using the method in the
OpenCV library created for this purpose, and AROI is the area of the ROI (blue box). More
details on how to extract the color feature can be found in [22], which is beyond the scope
of this work.

u

v

Figure 2. Human detection and color extraction within the region of interest.

The vertices of the bounding boxes relative to the entire image resolution are provided
in the following formats: (umax, umin, vmax, vmin). The centers of these boxes on the u and
v axes in the image space are as follows:

cui = (umaxi − umini )/2
cvi = (vmaxi − vmini )/2

(2)

where i = 1, 2, . . . , n denotes the number of people within the FOV of the camera.

3.1.2. Height Feature

A person’s height can be used as another feature for identifying people. Particularly,
when many people have similar appearances, height helps to reduce the number of candi-
dates considered for identifying the target person. Some early methods used to estimate
people’s heights include those by De et al. [40], who estimated the height of subjects in
video surveillance systems based on significant points in a scene as a reference for the
system. Hoogeboom et al. [41] estimated a person’s height using a reference height and
other criteria, such as the target individual being at the center of the image. However, it
is impossible to use a reference height in human-following robot applications; therefore,
these methods have limited practical applications. Recently, with the rapid development
of applications that utilize depth cameras and computer vision technology, methods have
been proposed to estimate the distance and height of people without requiring reference
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measurements. One of the most popular sensors is an RGB-D camera. To estimate people’s
heights, we first need to calculate and determine the following three parameters: (1) mea-
sure the distances between people and the camera, (2) calculate the vertical angles at the
top of the head region relative to the camera level, and (3) determine the camera height
relative to the ground plane. In robotic applications, estimating accurate distances in 2D
image space is insufficient. Therefore, distance estimation in 3D space is indispensable. The
distances are measured directly using an RGB-D sensor after determining the center points
of the objects relative to the camera position using a point cloud [42]. The distances di from
the camera pose to personi (in meters) are defined as:

di =
√

x2
i + y2

i + z2
i . (3)

The mobile robot was equipped with an Orbbec Astra camera that provided synchro-
nized color and depth data at a resolution of 640× 480 over a 49.5◦ vertical FOV and 60◦

horizontal FOV, as shown in Figure 2. The height of the camera was 147 cm from the ground
plane to obtain a better view of the environment, as depicted in Figure 3. The angles of
people’s location in the image space relative to the center of the images are dependent on
the sensor specifications used, which are given on the θh-axis and −θv-axis as follows:

θhi = −0.09375× cui + 30◦

θvi = −0.1031× vmini + 24.75◦
(4)

where θhi is the horizontal angle of a person at the body center relative to the image center
and θvi is the vertical angle of a person at the topmost position (i.e., top of the head region)
relative to the camera level. cui was calculated using Equation (2).

camera monopod 

RPLiDAR

computer

Wi-Fi

Floor level

Camera level

C
am

er
a 

he
ig

ht
 =

 1
47

  c
m

=

metric tape

Orbbec Astra camera

Figure 3. Mobile robot mounted with an RGB-D camera and necessary sensors.

Once these three parameters are known, the heights (hi) can be obtained (in centime-
ters) as follows:

hi = di × 100× tan(θvi) + 147. (5)

To improve the robustness of the height feature, we use the difference in height instead
of the actual height because the height feature is sensitive to the continuous displacement
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of the upper body in the up-and-down direction due to the person’s walking and the
movement of the robot when following the person. Conversely, the height difference helps
the model deal with challenging situations, such as the up-and-down displacement of the
upper body when walking, which is given by:

dhi = |htl − hi| (6)

where htl is the estimated height of the target person in the last tracked frame and hi is the
height of the people in the current frame.

To normalize the height difference, we assume that the minimum and maximum
height differences are 0 and 20 cm in absolute value, respectively, which are given by:

dhi
∗ = 1−

(
dhi −min

max−min

)
= 1−

(
dhi
20

)
. (7)

If a person with a height difference greater than 20 cm is present around the target
person, the model considers their height difference as the maximum difference.

3.1.3. Localization Feature

Another feature of person identification is the localization of people in an image. This
feature is also useful in reducing the number of candidates considered for a target person
when many people have the same height and similar appearance. In this work, localization
refers to a person’s position in the image space on the θh-axis. To calculate the position of a
person in the image space, we used the horizontal angle in Equation (4) Although the robot
attempts to maintain the orientation of the target person in the heading direction, that is,
the position of the target person at the center of the image, when the target person turns
left or right, this center-image position is not maintained. However, we use the difference
in angle instead of the angle itself, which is given by:

dθhi = |θhtl − θhi| (8)

where θhtl is the measured horizontal angle of the target person in the last tracked frame
and θhi is the horizontal angle of people in the current frame, which are obtained from
Equation (4). The horizontal FOV of the sensor used between the image center and the far
right or left is 30◦, as described in Equation (4) and Figure 2. To normalize the horizontal
angle difference, we assume that the minimum and maximum of the angle difference are
0◦ and 30◦ in absolute value, respectively, which are given by:

dθ∗hi = 1−
(

dθhi −min
max−min

)
= 1−

(
dθhi
30◦

)
. (9)

Assume that there is a person with a horizontal angle difference greater than 30◦

around the target person: for instance, the target person on the left side or other people
on the right side. In this case, the system considers the horizontal angle difference as the
maximum angle.

3.1.4. IoU Feature

IoU represents the area ratio of the intersection to the union of two shapes, for example,
boundary boxes [43]. We observed that IoU sometimes drops suddenly to less than 0.5
because the size of the boundary box is minimized or maximized in some situations, that is,
when another person partially occludes the target person or for some other event. However,
we modified the denominator to avoid this situation, which presents the same IoU result
before modification when both boundary boxes are almost identical; we define the modified
IoU in this work as follows:

mIoUi =
|Ai ∩ Btl |

min(Ai, Btl)
(10)
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where Btl is the last boundary box of the target person and Ai is the current boundary box
of people, including the target person. Figure 2 shows the boundary boxes of people in the
last and current frames.

Using height, localization, and IoU, the features of the people in the current frame are
compared with those of the target person in the previous frame to improve the identification
performance. The values of all features are between 0 and 1; these values are applied to the
online boosting model, as explained below.

3.2. Online Boosting-Based Person Classifier

Boosting is a popular and powerful ensemble learning technique [44]. Traditional
weakly supervised learning algorithms classify examples [45,46] based on a single model,
such as naive Bayes or neural networks. Ensemble classifiers build a strong classifier by
combining many weak classifier-based models, each of which is learned using a traditional
algorithm to improve the performance of the learning method [47]. Contrarily, boosting is
a more complex process that generates a series of base models h1, h2, . . . , hN . Each base
model hN is learned from a weighted training set whose weights are determined by the
classification errors of the preceding model hN−1 [48]. Many ensemble learning studies
that use offline [49] and online [50] boosting algorithms have been proposed over the years.
Online boosting algorithms are primarily used in self-learning applications [51]. Such
algorithms have advantages over typical offline algorithms in applications where data
continuously arrive. As an ensemble model, the boosting model comes with an easy-to-read
and interpret algorithm, making its prediction interpretations easy to handle. Boosting is a
resilient method that curbs over-fitting easily [52]. The boosting model quickly also adapts
to abnormal conditions and improves the performance of the applications, which receive
data in real time [53].

4. Results and Discussion
4.1. Online Boosting Algorithms Evaluation
4.1.1. Dataset Preprocessing

There are two important factors to be considered while setting up online boost-
ing. First, weak learners must be online algorithms. Second, the number of ensemble
weak learners must be specified prior to training. A weak classifier is an incremen-
tal learning algorithm that takes the current hypothesis and training example as input
and returns an updated hypothesis [48]. We compared a wide variety of weak classi-
fiers in terms of accuracy and speed. To achieve this comparison, labeled data must be
used. We evaluated the performance of four weak learners: perceptron (P), decision
stump (DS), decision tree (DT), and naive Bayes (NB) classifiers using the iris dataset
(https://archive.ics.uci.edu/ml/datasets/iris accessed on 17 September 2022) after pro-
cessing the streaming samples individually, that is, the samples fed the models one by
one. The dataset contains 150 samples divided into training and test data. The test data
size was set to 30% (45 samples), while the remaining 70% (105 samples) were randomly
selected from the original dataset for training. In offline learning, the training and test
data were input into the model all at once. In contrast, in online learning, the data were
fed into the model one by one. The first sample from the training data was input into
the model, and the model was tested for all test data samples. Subsequently, the process
was continued until the final sample was obtained. The total number of model tests was
4725 times (105 samples for training × 45 samples for testing).

4.1.2. Performance Metrics

Figures 4 and 5 show comparisons of the accuracy and computation time for all weak
learners, respectively. The x-axis indicates the number of training samples, and the y-
axis indicates the cumulative average accuracy in Figure 4 and the cumulative average
computation time in Figure 5. As observed, the accuracy of the decision stump was

https://archive.ics.uci.edu/ml/datasets/iris
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approximately one after ten training samples, while the accuracy of the remaining models
became approximately one after training 30 samples.

0 20 40 60 80 100
 N_samples

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Ac

cu
ra

cy

Accuracy comparison for weak learners

P
DT
NB
DS

Figure 4. Comparison of weak learner accuracy.
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Figure 5. Comparison of computational time for the weak learner.

The cumulative average computation times of perceptron, decision tree, naive Bayes,
and decision stump algorithms were 0.234, 0.224, 0.384, and 0.006 ms, respectively. Remark-
ably, the decision stump was approximately 39, 37, and 64 times faster than the perceptron,
decision tree, and naive Bayes algorithms, respectively. The computation time of the de-
cision tree increased with an increase in the number of training samples. To minimize
computation time and achieve good accuracy, we ultimately selected the decision stump
model as a weak learner for our online boosting algorithms.

Many online boosting algorithms have been developed, such as online adaptive
boosting called OzaBoost (OZaB) [48], online gradientboost (OGB) [51], online smooth-
boost (OSB), online smooth-boost using online convex programming (OSB.OCP), and
online smooth-boost with prediction with expert advice (OSB.EXP) [44]. Before comparing
the accuracy of the online boosting algorithms, as in the case of weak learners, we must
first select the appropriate number of weak learners to be used. In this study, we compared
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the performance of different online algorithms by increasing the number of weak learners
(decision stumps) as follows [1, 5, 10, 20, . . . , 140, 150], as shown in Figures 6 and 7.
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Figure 6. Comparison of computational time for online boosting algorithms.
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Figure 7. Comparison of online boosting accuracy with the number of weak learners.

Figure 6 shows the relationship between the number of weak learners and compu-
tation time for all online boosting algorithms. The number of weak learners is directly
proportional to the computation time. The OzaBoost algorithm was the fastest in all cases,
whereas gradientboost was the slowest algorithm, especially when the number of weak
learners was greater than 70. In the gradientboost algorithm, the number of selectors (K)
must be chosen beforehand, which is primarily used for feature selection [54]. This study
considers K = 1 for a fair comparison.

As shown in Figure 7, all algorithms achieved accuracies between 0.975% and 1.0%,
except for the OSB.OCP algorithm. Therefore, we set up 40 weak learners with which we
obtained the best performance for all algorithms to evaluate the accuracy of the five online
boosting algorithms with increasing training samples.

Figure 8 shows an accuracy comparison with an increasing number of training samples.
All the algorithms achieved high accuracy after training for almost 30 samples. The x-axis
represents the number of training samples, while the y-axis represents the cumulative aver-
age accuracy of the online boosting algorithms. The performance of all boosting algorithms
consistently improved with the continued feeding of the model by the training samples.



Sensors 2022, 22, 8422 11 of 26

0 20 40 60 80 100
N_samples

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Accuracy comparison for online boosting

OSB.EXP
OZaB
OSB
OGB
OSB.OCP

Figure 8. Comparison of online boosting accuracy with an increase in the number of the training
samples.

The aforementioned discussion is a simplified analysis of various online boosting
algorithms. There are other weak learners, datasets, and boosting algorithms that are not
included here owing to space constraints. Among the algorithms with high accuracy, we
selected the OzaBoost algorithm, which was the fastest for our proposed system. Then, the
quality of the model is further defined by performance metrics, including precision, recall,
and F1 score [55]. All of them were equal to 0.978. Precision is given by:

Precision =
TP

TP + FP
. (11)

Recall is given by:

Recall =
TP

TP + FN
. (12)

F-measure is given by:

F-measure =
2× precision × recall

precision + recall
. (13)

where TP, FN and FP are the number of true positives, false negatives and false positives,
respectively.

Applying an online boosting algorithm to the proposed system requires initial training
to label people as target or non-target people. We employ the aforementioned four features
to recognize the target person: color ( f1), height difference ( f2), localization difference ( f3),
and IoU ( f4). Features f = [ f1, f2, f3, f4] have values between 0 and 1. In the ideal case,
the values of the features are f = [1, 1, 1, 1] for the target person (y = 1) and f = [0, 0, 0, 0]
for the non-target person (y = −1); however, practically, it was not easy to differentiate
them. We assumed that if the color feature value is greater than 0.3 and if the height and
localization differences are greater than 0.7 and 0.85, respectively, and if the IoU is greater
than 0.5, they should be the target person, that is, f ≥ [0.3, 0.7, 0.85, 0.5]. Otherwise, they
should be a non-target person. Those values were empirically set as the thresholds in our
study. However, if the illumination is more uniform in the working environment, it is
better to increase the color threshold to 0.5 or more, and if the height differences between
the target and other people are large, it is better to increase the threshold of the height
differences to 0.8 or more. In addition, if the robot follows the target in a straight line,
it is better to increase the threshold of the localization differences to 0.95 or more, and if
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there are no occlusion situations for the target, it is better to increase the IoU threshold to
0.75 or more. Otherwise, it is better to decrease them based on the environment and path
conditions. These assumptions label people around the robot and generalize the proposed
model. Therefore, our system does not require any prior information regarding the target
person, regardless of the color of their clothes or their height. The target person to be
followed was manually selected using the mouse, as mentioned earlier.

In the initialization, the system randomly generates 100 labeled samples for the target
person and 100 others for non-target people according to our assumptions before selecting
the target person to guarantee that the model is ready. The system continued learning
based on people’s information after selecting the target, as long as the system was running.

4.2. Infrastructure Setting
4.2.1. Platform

In this study, we used a differential mobile robot called Rabbot manufactured by
Gaitech, as shown in Figure 3. Rabbot weighed 20 kg and was designed to carry a load
of up to 50 kg. Consequently, a high frame rate was required for smooth movement. The
robot was equipped with a SLAMTEC RPLiDAR A2M8 to protect itself from collisions, an
Orbbec Astra Camera for tracking people, and an onboard computer (hex-core, 2.8 GHz,
4 GHz turbo frequency i5 processor, 8 GB RAM, and 120 GB SSD) in addition to a computer
at a workstation (Intel Core i7-6700 CPU (Central Processing Unit) @ 3.40 GHz). Both
computers ran under robot operating system (ROS) Kinetic+Ubuntu 16.04 64-bit.

4.2.2. Environment

A realistic scenario of the testing environment is illustrated in Figure 9. The black
dashed line indicates the path of the robot and target person in the testing environment.
The path starts from the Helper’s laboratory to the end of the corridor. The black, green,
and red circles represent the robot, the target person, and other people, respectively. Other
people wore t-shirts that are the same color as the target’s t-shirt. Three people wore the
same t-shirt including the target person. The heights of the people were 175, 185, and
173 cm, correspondingly referred to persons A, B, and C.
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Figure 9. Realistic scenario of the robot and people in the environment.

However, the operating environment was narrow. Many researchers in other laborato-
ries walked into the area during the experiments wearing normal clothes. The blue letters
denote the glass walls and windows at the corridor ends.

4.3. Human-Following Experiments

We conducted extensive experiments using three different colors (black, white, and
blue) to evaluate and compare the performance of the proposed person-identification
framework. This framework was proposed to identify the target person based on four
features. These features were combined into a joint feature and learned using the online
OzaBoost model. We divided our experiments into two categories in the case of black. The
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first category of experiments adopted all features as the remaining colors. Contrastingly,
the second category adopted only two features, color and height, to compare our system
with the previous significant system, as shown in Table 1.

Table 1. Quantification of Experimental Results.

No. of Features Four Two

Feature name Color, height, localization and IoU Color and height

T-shirt color Blue White Black Black

Successful experiments 13/13 12/13 11/13 8/13

In our experiments, the target person and others had the same appearance. A video of
the mobile robot following the target can be found at the following link: (https://www.
youtube.com/watch?v=jJaM1D6-EdM accessed on 17 September 2022).

In the following subsections, we describe these experiments in more detail.

4.3.1. Human-Following Experiments Using Four Features

In this section, the experiments conducted to evaluate the system performance based
on four features using three different colors are described. The experimental results for the
blue, white, and black are summarized in Tables 2–4, respectively. These tables represent
the summary of experimental results as part of our experiments to demonstrate the experi-
ment’s status, travel distance, travel time, number of frames, average speed of the robot,
successful and failed tracking rate of the entire system, online boosting model, fps, and so
on. The proposed system also recorded the number of frames lost. There are two types
of lost frames: The first type is a lost frame of the target person in the model, that is, the
online boosting model owing to incorrect height estimation or other reasons. In this type,
the online boosting model is fed data, and the model considers the target person to be a
non-target. We calculated the successful tracking rate for the model based on the number
of frames provided to the online boosting model. Mathematically, the successful tracking
rate is computed as follows:

Successful Tracking Rate =
n
N
× 100 (14)

where N is the total number of frames (No. of frames) and n is the number of successfully
tracked frames for the target by the tracking algorithm [23]. In the second type, the camera
detects people in RGB data, but no depth data are available to estimate the height owing to
the noise in the sensor itself. For this type, there are no inputs or outputs for some frames in
the online boosting model, i.e., there are some frames lost due to noise, which are counted
by (N − Nm), where Nm is the number of frames for model. Mathematically, the successful
tracking rate for the model is computed as follows:

Successful Tracking Rate for Model =
n

Nm
× 100. (15)

Based on all the frames of the system, we calculated the successful tracking rate for
the entire system. Consequently, the successful tracking rate for the model was greater
than or equal to the successful tracking rate for the entire system. The symbols (O, X) in the
second row of all the tables refer to the experimental status in which O refers to a successful
experiment, whereas X refers to a failed one. In our subjective assessment, we judged that
the experiment was successful if the mobile robot arrived at the destination point for the
target person known beforehand and failed otherwise, regardless of the travel distance in
the failed experiments.

https://www.youtube.com/watch?v=jJaM1D6-EdM
https://www.youtube.com/watch?v=jJaM1D6-EdM
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Table 2. Experimental results for the blue color.

Parameters Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6 Exp. 7 Exp. 8 Exp. 9 Exp.
10

Exp.
11

Exp.
12

Exp.
13 Total Average Std

Experiment status O O O O O O O O O O O O O 13 /13 - -
Target’s travel distance (m) 30.40 31.30 31.16 31.39 31.46 31.55 31.40 31.43 31.53 31.44 31.76 31.31 30.61 406.75 31.29 0.38
Robot’s travel distance (m) 29.44 29.52 29.03 29.34 29.37 29.64 29.59 29.26 29.13 29.47 29.64 29.14 26.95 379.51 29.19 0.70
Robot’s travel time (s) 39.93 40.19 40.11 39.18 39.77 39.94 41.41 40.14 38.67 39.21 39.16 38.07 38.28 514.05 39.54 0.91
Robot’s average velocity (m/s) 0.74 0.73 0.72 0.75 0.74 0.74 0.71 0.73 0.75 0.75 0.76 0.77 0.70 - 0.74 0.02
No. of frames (N) 1004 1012 1008 990 995 1003 997 1010 910 969 983 957 959 12,797 984.38 29.12
No. of frames for model (Nm) 1000 1012 1001 990 980 1000 993 1006 910 969 973 957 932 12,723 978.69 30.40
Successfully tracked (frames) (n) 998 1012 1001 990 979 1000 993 1006 909 969 973 953 859 12,642 972.46 43.76
No. of lost frames by model 2 0 0 0 1 0 0 0 1 0 0 4 73 81 6.23 20.10
Lost frames due to noise 4 0 7 0 15 3 4 4 0 0 10 0 27 74 5.69 7.85
Lost track of the target (frames) 6 0 7 0 16 3 4 4 1 0 10 4 100 155 11.92 26.85
Successfully tracked (s) 39.69 40.19 39.83 39.18 39.13 39.82 41.24 39.98 38.62 39.21 38.76 37.91 34.29 507.86 39.07 1.66
Lost track of the target (s) 0.24 0.00 0.28 0.00 0.64 0.12 0.17 0.16 0.04 0.00 0.40 0.16 3.99 6.19 0.48 1.07
successful tracking rate (%) 0.99 1.00 0.99 1.00 0.98 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.90 - 0.99 0.03
Lost tracking rate (%) 0.01 0.00 0.01 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.10 - 0.01 0.03
Successful tracking rate for
model (%) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.92 - 0.99 0.02

Lost tracking rate for model (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 - 0.01 0.02
fps 25.14 25.18 25.13 25.27 25.02 25.11 24.08 25.16 23.53 24.71 25.10 25.14 25.05 - 24.89 0.51

Table 3. Experimental results for the white color.

Parameters Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6 Exp. 7 Exp. 8 Exp. 9 Exp.
10

Exp.
11

Exp.
12

Exp.
13 Total Average Std

Experiment status O O O X O O O O O O O O O 12 /13 - -
Target’s travel distance (m) 29.54 29.63 29.57 28.26 29.60 29.89 30.16 30.04 30.06 30.12 29.41 29.80 29.35 385.43 29.65 0.54
Robot’s travel distance (m) 27.80 27.95 27.94 26.83 27.83 27.77 27.98 27.70 27.61 27.77 27.43 27.98 27.88 360.46 27.73 0.33
Robot’s travel time (s) 51.12 46.26 45.37 43.64 41.50 47.04 41.88 39.63 37.33 39.21 39.95 39.14 47.36 559.42 43.03 4.12
Robot’s average velocity (m/s) 0.54 0.60 0.62 0.61 0.67 0.59 0.67 0.70 0.74 0.71 0.69 0.71 0.59 - 0.65 0.06
No. of frames (N) 1299 1161 1018 1069 1047 1178 1066 997 943 923 1009 981 1183 13,874 1067.23 110.50
No. of frames for model (Nm) 1247 1159 1012 1058 1044 1172 1059 990 934 920 994 975 1153 13,717 1055.15 102.06
Successfully tracked (frames) (n) 1212 1159 1010 1032 1044 1172 1059 987 934 918 982 975 1130 13,614 1047.23 97.14
No. of lost frames by model 35 0 2 26 0 0 0 3 0 2 12 0 23 103.00 7.92 12.17
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Table 3. Cont.

Parameters Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6 Exp. 7 Exp. 8 Exp. 9 Exp.
10

Exp.
11

Exp.
12

Exp.
13 Total Average Std

Lost frames due to noise 52 2 6 11 3 6 7 7 9 3 15 6 30 157.00 12.08 14.11
Lost track of the target (frames) 87 2 8 37 3 6 7 10 9 5 27 6 53 260.00 20.00 25.22
Successfully tracked (s) 47.69 46.18 45.01 42.13 41.38 46.80 41.60 39.23 36.97 39.00 38.88 38.90 45.24 549.01 42.23 3.65
Lost track of the target (s) 3.42 0.08 0.36 1.51 0.12 0.24 0.27 0.40 0.36 0.21 1.07 0.24 2.12 10.40 0.80 0.99
Successful tracking rate (%) 0.93 1.00 0.99 - 1.00 0.99 0.99 0.99 0.99 0.99 0.97 0.99 0.96 - 0.98 0.02
Lost tracking rate (%) 0.07 0.00 0.01 - 0.00 0.01 0.01 0.01 0.01 0.01 0.03 0.01 0.04 - 0.02 0.02
Successful tracking rate for
model (%) 0.97 1.00 1.00 - 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.98 - 0.99 0.01

Lost tracking rate for model (%) 0.03 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.02 - 0.01 0.01
fps 25.41 25.10 22.44 24.49 25.23 25.04 25.45 25.16 25.26 23.54 25.25 25.06 24.98 - 24.80 0.95

Table 4. Experimental results for the black color.

Parameters Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6 Exp. 7 Exp. 8 Exp. 9 Exp.
10

Exp.
11

Exp.
12

Exp.
13 Total Average Std

Experiment status O O O O O O X O O O O X O 11 /13 - -
Target’s travel distance (m) 29.73 29.31 29.80 28.93 28.89 28.83 20.06 29.62 29.25 29.26 29.72 20.44 28.88 362.70 27.90 3.41
Robot’s travel distance (m) 27.78 27.37 26.18 27.51 27.55 27.38 19.22 27.27 27.06 27.17 27.79 19.64 27.49 339.40 26.11 2.99
Robot’s travel time (s) 37.20 39.55 38.90 39.06 40.63 43.12 38.18 42.21 39.14 38.47 41.23 33.10 40.41 511.21 39.32 2.50
Robot’s average velocity (m/s) 0.75 0.69 0.67 0.70 0.68 0.64 0.50 0.65 0.69 0.71 0.67 0.59 0.68 - 0.66 0.06
No. of frames (N) 900 967 951 947 1013 1064 937 977 904 938 977 799 973 12,347 950 62.57
No. of frames for model (Nm) 890 898 896 898 965 994 859 909 867 901 923 763 942 11,705 900 55.60
Successfully tracked (frames) (n) 873 881 861 875 953 954 839 877 857 886 921 745 938 11,460 882 55.33
No. of lost frames by model 17 17 35 23 12 40 20 32 10 15 2 18 4 245 19 11.37
Lost frames due to noise 10 69 55 49 48 70 78 68 37 37 54 36 31 642 49 19.16
Lost track of the target (frames) 27 86 90 72 60 110 98 100 47 52 56 54 35 887 68 26.43
Successfully tracked (s) 36.08 36.04 35.22 36.09 38.22 38.66 34.19 37.89 37.10 36.34 38.87 30.86 38.96 474.53 36.50 2.25
Lost track of the target (s) 1.12 3.52 3.68 2.97 2.41 4.46 3.99 4.32 2.03 2.13 2.36 2.24 1.45 36.69 2.82 1.09
Successful tracking rate (%) 0.97 0.91 0.91 0.92 0.94 0.90 - 0.90 0.95 0.94 0.94 - 0.96 - 0.93 0.03
Lost tracking rate (%) 0.03 0.09 0.09 0.08 0.06 0.10 - 0.10 0.05 0.06 0.06 - 0.04 - 0.07 0.03
Successful tracking rate for
model (%) 0.98 0.98 0.96 0.97 0.99 0.96 - 0.96 0.99 0.98 1.00 - 1.00 - 0.98 0.01

Lost tracking rate for model (%) 0.02 0.02 0.04 0.03 0.01 0.04 - 0.04 0.01 0.02 0.00 - 0.00 - 0.02 0.01
fps 24.20 24.45 24.44 24.24 24.93 24.67 24.54 23.15 23.10 24.38 23.70 24.14 24.08 - 24.16 0.55
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Persons A, B, and C were the leaders wearing blue, white, and black t-shirts, respec-
tively, during testing. Thirteen experiments were performed for each color, as shown in the
three tables. Overall, the mobile robot arrived at its destination in all the experiments in-
volving the blue t-shirt. In contrast, it arrived at 12 and 11 experiments involving white and
black, respectively. We consider this failure to be due to the limitation of online boosting,
which is sensitive to noise and outliers, thus creating a bias in the predictions, as reported
in [56]. In all experiments, the average number of frames per second of the proposed
system was greater than 24, i.e., 41.66 ms, which is suitable for making the robot movement
smooth and compatible with the frame rate of the camera using only the CPU.

We selected one experiment from each group to show color extraction, IoU, height
estimation, height difference, localization, localization difference, and their normalization as
plots. As mentioned earlier, three participants wore the same t-shirts in all the experiments.
One was a target person and two were non-targets.

In the blue t-shirt case, person A was the target with a height of 175 cm, while persons
B and C were the targets for the white and black t-shirt experiments with heights of 185
and 173 cm, respectively. Figure 10a–c show the height estimation, height difference, and
normalization of the height difference of the target person over all frames, respectively,
while the robot follows the target person. The blue, green, and black curves represent
persons A, B, and C, respectively. In the beginning, the height estimation is almost constant
when the person does not walk in the first frames and then varies up and down owing
to the person walking and the robot’s movement. To resolve this issue, we used height
difference. The height difference method also helps the system deal with the up-and-down
displacement of the upper body while walking, which is impossible to solve using the
absolute height. The height difference between the height of the target person in the current
frame and that in the last tracked frame for the majority of the frames was less than 4 cm.
However, some values were greater than 4 cm and less than 7 cm, as shown in Figure 10b.
Therefore, the height feature was not robust when the height difference between the target
and non-target heights was less than 7 cm. This height difference range may decrease or
increase with other sensors. We only considered the height difference as an aid in reducing
the number of candidates for the target person.
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Figure 10. Height feature. (a) Height of the target person with respect to the ground plane (top plot).
(b) Height difference of the target person between the current frame and last tracked frame (middle
plot). (c) Normalization of the height difference (bottom plot).

Figure 11 shows the IoU of the target person across all the frames. For most frames,
the IoUs of persons A, B, and C were greater than 0.90, 0.93, and 0.85, respectively. People’s
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walking and clothing color with the background scenery play a role in determining the
value of IoU. However, the IoU is the most robust feature in this study because of its
high value for the target person and its low value for other people; that is, its value is
approximately zero unless partial or complete occlusion occurs.
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Figure 11. IoU feature.

Figure 12a–c depict the localization, localization difference, and normalization of the
localization difference of the target person over all the frames, respectively. As aforemen-
tioned, the horizontal FOV of the camera was 60◦.
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Figure 12. Localization feature. (a) Horizontal angle of the target person with respect to the center of
the image (top plot). (b) Angle difference of the target person between the current frame and last
tracked frame (middle plot). (c) Normalization of the angle difference (bottom plot).

Generally, the target person has located in the +θh direction of the images when he
tries to walk on the robot’s left side, while the target is located in the −θh direction when
he tries to walk on the right side, as shown in Figure 2. Initially, all the target persons were
located at the center of the images before walking. Persons A and C were located in the
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+θh direction of the images, while person B was located in the −θh direction after walking
for some frames. Although the robot tries to maintain its target in the heading direction to
an extent, the horizontal angle is not approximately zero in all frames, particularly when
the target turns left or right. This implies that the horizontal angle should be approximately
zero. The minimum angles were approximate −18.2◦, −15.2◦, and −19.9◦ for persons A,
B, and C, respectively, when the people moved out of the laboratory and turned right at
the door to continue walking in the corridor. The maximum angle was less than 10◦ for all
people, as shown in Figure 12a. However, the localization difference was less than 3◦ for all
people, which is relatively small compared with the entire horizontal FOV of the camera
used, as depicted in Figure 12b. As observed, the robot moved smoothly when person B
was a target compared to other people.

Figure 13 illustrates the area ratio of the color feature across all the frames. People A, B,
and C wore blue, white, and black t-shirts, respectively, as targets during the experiments.
The area ratio for the color feature was close to 1 when the target was walking in the
laboratory for all colors because of relatively uniform illumination, while it dropped to
0.3 in some frames where person B was walking in the corridor (i.e., from 330 frames to
the end of the experiment) in case of white owing to non-uniform illumination. Black
maintained a high area ratio, whereas white did not because the color of the clothes tended
to be black in the corridor owing to illumination changes. The color feature is meaningless
when other people wear similar clothes, which is the main goal of this study. However, it
was helpful in reducing the number of candidates for the target person when other people
were non-volunteers in these experiments, wearing different clothes and moving around
the target person.

0 200 400 600 800 1000

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ar
ea

 ra
tio

 fo
r c

ol
or

 A
 B
 C

0.0 0.2 0.4 0.6 0.8 1.0
No. frames

0.0

0.2

0.4

0.6

0.8

1.0

Figure 13. Color feature.

The goal of normalization is to change the values of the height difference, localization
differences, and color features to a common scale without distorting the differences in the
ranges of values. Figure 14 shows the normalization features of people. The blue, green,
and black curves represent person A as the target person and persons B and C as non-target
persons, respectively, when they all wore blue t-shirts. The robot started detecting another
person as the first non-target person at frame number 466 until frame number 610, while
the target person completely occluded the second person during walking. The second
person was detected as a non-target person at frame number 666 until 759 after the target
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person turned right slightly to move next to the second one. Simultaneously, the first one
was behind the robot and the target person owing to the movement, as shown in Figure 9.
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Figure 14. Normalization features for the target person and other people: (a) Localization feature
(top plot). (b) IoU feature (top middle plot). (c) Height feature (bottom middle plot). (d) Color
feature (bottom plot).

The normalization process allows us to evaluate the importance and stability of every
feature, that is, whether its range is narrow or wide. Although the target did not walk
straight during the experiment, the localization feature had the smallest range, particularly
after 400 frames, when walking in the corridor (Figure 14a). The localization of other
people (persons B and C) in the image space was near the target localization (person A)
around the center of the images when they were far from the robot and then moved to
the top right and left when the robot was very close. The IoU feature is the most robust
because of the significant difference between the IoU of the target and that of people, which
were approximately 1 and 0, respectively, for the majority of frames (Figure 14b). Some
intersections occurred; thus, the IoU of other people was between 0 and 1 in some frames
(Figure 15i–l). The height feature had the widest range compared to the others owing to
the robot movement and the up-and-down displacement of the upper body while walking
(Figure 14c). The height feature is acceptable for person B because of the large height
difference between the target person and person B, whereas it is weak for person C in some
frames because of the small height difference between the target person and person C. The
differences were 10 cm and 2 cm for persons B and C, respectively. The color feature is
meaningless in this work based on our assumption that X ≥ [0.3, 0.7, 0.85, 0.5]. The value
of the feature was greater than 0.3 for all people (Figure 14d). However, we conducted
several experiments using only two features in Section 4.3.2 compared with four features to
evaluate the performance of the proposed framework based on the features used.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)
Figure 15. Snapshots of the experiments for three target persons with three different colors:
robot’s view.

Figure 15 displays snapshots captured by the system. At the beginning of the test,
person A, who wore a blue t-shirt, stood in front of the mobile robot, where the red box
indicates that the person was non-target (Figure 15a). The user who operated the system
selected him as the target using the mouse (see the yellow box in Figure 15b), where the
yellow box represents the last track frame until the end of the experiment. After selecting
the target person, the red box was changed to the green box, where the green box indicates
that person A has become the target that the robot should follow (Figure 15c). At this
moment, the target person carried the joystick to stop the robot by pressing a button on it
until the mobile phone camera was ready to record a video showing the robot’s behavior,
which was on the right side (Figure 15c). When the mobile phone camera was ready to
record the video, the person started walking, and the robot began following him. The
mobile robot followed the target person from the laboratory as the departure point to the
end of the corridor as the destination point, as shown in Figure 9. When walking through
the corridor, there were two volunteers; one was standing on the right side in the middle of
the corridor (Figure 9), where the robot was detected as a non-target (Figure 15d). After
a few meters, another person standing on the left side (Figure 9) was also detected as a
non-target (Figure 15e). Both volunteers wore t-shirts similar to the target person, who wore
blue t-shirts in this experiment. During the experiment, the target person was occluded
by another person when she attempted to move between the target person and the robot
to go to her laboratory from the left side (Figure 15f) to the right side (Figure 15g), and
the robot lost the target tracking in two or three frames when the occlusion was complete.
However, the robot tracked the target person when the occlusion was partial (Figure 15f)
and then correctly re-identified him with the online person identification model once he
partially reappeared in the camera view (Figure 15g). Target re-identification was fast and
robust owing to the combination of multiple features using the online boosting model.
The modified IoU remarkably improved the identification model to quickly identify and
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re-identify the target when the box was minimized or maximized suddenly, such as in
partial occlusion situations. The robot continued to succeed until it arrived at its destination
(Figure 15h).

In the white and black t-shirt experiments, the robot followed other targets in a similar
manner as in the blue t-shirt experiments, and the volunteers stood at approximately the
same spots for a fair comparison. Figure 15i,j show person B wearing the white t-shirt as
a target and two persons standing up in the middle of the corridor as non-targets. One
was on the right side of the target person and the other was on the left side, similar to
Figure 15d,e in the blue t-shirt experiment. Person C walked wearing a black t-shirt next
to people who stood up to his right Figure 15k and left Figure 15l in the middle of the
corridor, which was similar to Figure 15d,e in the blue t-shirt experiment.

The last three snapshots in Figure 15 show different experiments beyond the scope
of the three aforementioned Tables 2–4. Figure 15m shows that person B and person C
walked side-by-side in the same direction when the robot followed person B as a target,
whereas Figure 15n shows that they walked side-by-side in opposite directions when both
of them wore white t-shirts. We conducted many experiments in which the two persons
standing next to each other and the target person passed through the center (Figure 15o).
All people wore black t-shirts, including the target person. In this experiment, person
C was the target of a mobile robot. Although significant illumination changes occurred
during the experiments, the color feature was continuously updated to accommodate these
changes over time. All experiments above were conducted in the late evening.

Figure 16 shows the capability of target identification under a different lighting envi-
ronment. We perform extra experiments in the early morning when the sunlight passes into
the corridor while it does not pass into the lab at all. On the other hand, the illumination
is approximately uniform in the lab (Figure 16a), while it is non-uniform in the corridor
(Figure 16b–d). As one can see from the snapshots in the corridor, the white T-shirt tends
to be darker white because of non-uniform illumination in the corridor due to sunlight,
which passed from the glass windows. Overall, the mobile robot successfully followed its
target in most experiments, as described herein.

(a) (b) (c) (d)
Figure 16. Snapshots of the experiments for target identification under a different lighting environ-
ment.

4.3.2. Comparison with Previous System: Using Two Features

This section describes the experiments performed to compare the proposed system
with the previous method, which is closely related to our study, based on the features
used. Unlike previous methods in related works, Koide et al. [3] introduced a tracking
system using OpenPose with human height estimation relative to the ground plane prior
information. The appearance features of people were extracted based on a combination of
convolutional channel features and merged with height using online boosting to identify
the target person. This method leverages a deep learning model to extract the appearance
features and an online boosting ensemble model, which ensembles many weak classifiers to
build a strong classifier. This online boosting model requires selectors for feature selection.
Naive Bayes was adopted as a weak classifier, and the total number of weak learners
was 150; however, the researchers did not explain how this number was selected as we
did. Moreover, this method mainly depends on two features: height and appearance.
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It also leads to failures when more people have similar appearances and the same or
similar heights. The mobile robot (Pioneer P3AT) followed a target in both outdoor and
indoor environments and was equipped with an NVIDIA Jetson TX2 and a monocular
camera in their work. Comparison with other related work in the human-following system
for the overall system is relatively difficult owing to several reasons, such as different
platforms, different sensors/hardware, non-identical operating conditions, and reported
results. Nevertheless, a comparison at the individual module level is possible [23].

We focused on the personal identification model in this study, which is considered
an essential model for a robot to follow a specific person when there are other people
around it. Therefore, we conducted 13 experiments based on the two features used in the
previous approach to identify the target person for comparing the results with the four
features used in our study as an indirect comparison. The results of these experiments are
summarized in Table 5. Person C and others wore the same black t-shirts, similar to the
experiments involving four features, as shown in Table 4. The symbol X of the second row
in the table refers to failed experiments. The robot failed to arrive at the destination point
in five experiments with two features, as listed in Table 5. In comparison, it failed in only
two experiments for the four features, as shown in Table 4.

Figure 17 displays snapshots captured by the system during experiences with the two
features. The robot correctly tracked the target person from the laboratory until he arrived
next to another person (Figure 17a) and tracked another person as a target person in the
few frames (Figure 17b). It then corrected its decision to track the target (Figure 17c) and
tracked another person again as the target (Figure 17d). Finally, the robot failed completely
(Figure 17e). In this experiment, the robot was confused and captured frame shots in
all directions. However, the robot arrived at the destination point in eight experiments,
although it tracked another person as a target in a few frames before returning to correct
its mistake and then continued following it, as shown in Figure 17. We did not observe
the robot tracking another person as a target and then returning to correct its decision in
the case of the four features, owing to the nature of the features used. Thus, we consider
not correcting the decision as a limitation of the proposed person identification model and
expect that using the average of the last three or four frames instead of only the last one
may solve this limitation as well as improve the outcome. This failure and tracking of the
wrong person were expected because of the difficulty of the task, which requires more
features to help the robot follow its target efficiently.

(a) (b) (c) (d) (e)
Figure 17. Snapshots of the following failure using only two features of the color and height:
robot’s view.

In summary, regardless of the type of algorithm used for human detection, color
extraction, and height estimation, many people wear the same t-shirts and have the same
or similar height. In this case, the system fails to identify the target efficiently unless an
extra feature helps distinguish between the target and non-targets. Nonetheless, we can
say that the localization and IoU features play a significant role in improving the proposed
system. Generally, the tracking performance of the proposed person identification model is
better than or similar to that of state-of-the-art models. The experimental results show that
using the proposed approach leads to promising results.
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Table 5. Experimental results using only two features for the black color.

Parameters Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6 Exp. 7 Exp. 8 Exp. 9 Exp.
10

Exp.
11

Exp.
12

Exp.
13 Total Average Std

Experiment status O X O O X O O O X X X O O 8 /13 - -
Target’s travel distance (m) 29.81 20.15 29.38 29.30 19.85 28.99 29.49 30.07 24.17 24.59 20.25 28.83 28.67 343.54 26.43 4.06
Robot’s travel distance (m) 27.77 19.20 27.39 27.54 19.03 27.26 27.74 28.00 23.41 23.69 19.25 27.95 27.82 326.03 25.08 3.70
Robot’s travel time (s) 41.06 46.16 38.77 41.12 62.76 38.14 38.17 39.44 38.26 34.74 49.97 45.45 49.79 563.83 43.37 7.50
Robot’s average velocity (m/s) 0.68 0.42 0.71 0.67 0.30 0.71 0.73 0.71 0.61 0.68 0.39 0.61 0.56 - 0.60 0.14
No. of frames (N) 983 1173 976 1040 1502 936 961 978 892 843 1262 1126 1253 13,925 1071.15 184.73
No. of frames for model (Nm) 941 818 913 997 1181 906 935 944 863 838 1044 1049 1144 12,573 967.15 111.51
Successfully tracked (frames) (n) 888 656 908 921 639 905 883 888 765 782 756 991 1059 11,041 849.31 123.09
No. of lost frames by model 53 162 5 76 542 1 52 56 98 56 288 58 85 1532 117.85 147.25
Lost frames due to noise 42 355 63 43 321 30 26 34 29 5 218 77 109 1352 104.00 117.25
Lost track of the target (frames) 95 517 68 119 863 31 78 90 127 61 506 135 194 2884 221.85 249.49
Successfully tracked (s) 37.09 25.81 36.07 36.41 26.70 36.87 35.07 35.81 32.81 32.23 29.93 40.00 42.08 446.90 34.38 4.77
Lost track of the target (s) 3.97 20.35 2.70 4.70 36.06 1.26 3.10 3.63 5.45 2.51 20.04 5.45 7.71 116.92 8.99 10.24
Successful tracking rate (%) 0.90 - 0.93 0.89 - 0.97 0.92 0.91 - - - 0.88 0.85 - 0.90 0.04
Lost tracking rate (%) 0.10 - 0.07 0.11 - 0.03 0.08 0.09 - - - 0.12 0.15 - 0.10 0.04
Successful tracking rate for
model (%) 0.94 - 0.99 0.92 - 1.00 0.94 0.94 - - - 0.94 0.93 - 0.95 0.03

Lost tracking rate for model (%) 0.06 - 0.01 0.08 - 0.00 0.06 0.06 - - - 0.06 0.07 - 0.05 0.03
fps 23.94 25.41 25.17 25.29 23.93 24.54 25.17 24.80 23.32 24.27 25.26 24.77 25.16 - 24.70 0.65
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5. Conclusions

This study presents a multi-feature framework in which we integrated four features
using an online boosting approach for a human-following robot. The proposed frame-
work leverages a deep learning technique to detect and track people in a robot space. We
presented a novel person-identifying model to identify a target person in a challenging
situation in which people around the target person wear identical or similar clothes and
have the same or similar height. The person identification model extracts color features,
estimates the height and location, and calculates the IoU. These features were combined
into a joint feature using the online OzaBoost algorithm after comprehensively evaluating
several online boosting algorithms with the OzaBoost algorithm in terms of accuracy and
speed. Furthermore, it continuously updates these features in all frames to identify the
target person efficiently. The experiment proved that the proposed model is a generalized
model that can be applied to anyone without prior knowledge, regardless of their appear-
ance and height. Through evaluations based on the features used, it was demonstrated that
the proposed identification model outperformed other state-of-the-art models.

Although the proposed model demonstrated some limitations, such as not being able
to correct the decision when tracking the wrong person, it has promising applications in
mobile robots, which follow dynamic objects to provide personal assistance and service
and assist in large storage and manufacturing industries.

In future work, we plan to incorporate a camera that can capture less noisy data and
adds more features to improve the tracking success rate, making the process more efficient.
Moreover, we also plan to improve the proposed system to follow the target person using a
multi-robot.
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