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Abstract: With the development of the Internet of things (IoT), federated learning (FL) has received
increasing attention as a distributed machine learning (ML) framework that does not require data
exchange. However, current FL frameworks follow an idealized setup in which the task size is fixed
and the storage space is unlimited, which is impossible in the real world. In fact, new classes of these
participating clients always emerge over time, and some samples are overwritten or discarded due to
storage limitations. We urgently need a new framework to adapt to the dynamic task sequences and
strict storage constraints in the real world. Continuous learning or incremental learning is the ultimate
goal of deep learning, and we introduce incremental learning into FL to describe a new federated
learning framework. New generation federated learning (NGFL) is probably the most desirable
framework for FL, in which, in addition to the basic task of training the server, each client needs to
learn its private tasks, which arrive continuously independent of communication with the server.
We give a rigorous mathematical representation of this framework, detail several major challenges
faced under this framework, and address the main challenges of combining incremental learning
with federated learning (aggregation of heterogeneous output layers and the task transformation
mutual knowledge problem), and show the lower and upper baselines of the framework.

Keywords: federated learning; incremental learning; federated class-incremental learning; scalable
network

1. Introduction

Federated learning (FL) has received extensive attention since it was first proposed [1].
It breaks the shackles of the original machine learning, does not require centralized training
of data, and achieves the effect of protecting privacy and breaking data silos. The privacy
protection provided by it provides a great guarantee for the participating clients of joint
modeling. It has made good achievements in several fields, such as finance, medical care [2],
unmanned driving, etc.

The current bottlenecks of FL include communication bottlenecks [3] and heterogeneity
bottlenecks. The communication bottleneck generally refers to the problem of limited
communication bandwidth when a large number of IoT devices participate. Two methods
are usually adopted. One is to quantify the model to compress, and the other is to randomly
select clients to reduce participation. Another bottleneck is the non-IID data because the
distribution of data in different fields is usually different, and the heterogeneity of the
data will lead to the drift of the aggregation model. In addition, there is another biggest
limitation of FL at this stage—that is, the task scale is fixed. Typically, due to the limitations
of the tasks presented by the server, the model may be limited to an initialized size that
lacks generalization capabilities, and there is also an idealized setting for client-side storage,
which is no upper limit for client-side image storage. In fact, real-world interactive clients
are not subject to these constraints, and more of these clients will learn more tasks online.
These participating clients come from different devices, and it is impossible to have the
same computing power and storage capacity as high-performance servers. In the case of
continuous learning, these terminals may discard some outdated data to ensure the novelty
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of the model. However, because the arrival of tasks is unknown, it may cause a sharp
drop in performance on old tasks. Such dynamic task-driven clients account for the vast
majority of the real world, and they provide distinctive private data. We prefer that they
can participate in the FL process without the interference of intermediaries or agents.

To solve this problem, we propose a new federated learning paradigm, called the
new generation federated learning (NGFL). NGFL will have an important reference value
in future federated learning work. We introduce incremental learning into federated
learning and describe a real-world scenario in which it might happen. In the NGFL, each
participating terminal will no longer be constrained by the task of the server and can
incorporate its own private tasks into the model, making the server-aggregated model more
powerful. More specifically, these clients will dynamically participate in federated learning
and receive tasks dynamically. The tasks received online by themselves are not independent
and identically distributed (non-iid), as are the tasks received between each client. We
consider the scenarios under the data collaboration of different hospitals in Figure 1. Among
different specialized hospitals, data collaboration cannot be achieved due to different fields;
the amount of medical data is huge, and one-time training is time consuming and labor
intensive. For example, the rapid mutation of COVID-19 is a headache for many researchers.
Some studies have linked neural networks to drug development and have achieved good
results [4], but we found that the need for the amount of training data is huge, which may
be as high as tens of trillions of bytes. As COVID-19 mutates, more and more features
need to be added to the network and trained, and de novo training is almost impossible
because it is time-consuming [5]. Due to the gap between research institutions, some key
results may not be shared immediately. For another example, with the rapid development
of the monkeypox virus, traditional machine learning cannot achieve rapid knowledge
conversion. All reasons lead to the inefficiency of the existing federated learning.

Figure 1. Joint modeling for different stages of disease research from different institutions.

Little research has been done on this work at the current stage, and there is no strict
definition of this problem. A very intuitive method is to directly combine class-incremental
learning and federated learning for cross-application. Only one recent study partially
explains it [6], but it still doesn’t address some of the core issues, (i.e., it does not provide
a solution for the fusion of heterogeneous output layers after incremental learning). We
found that the existing class incremental learning has made good progress [7–10], but only
solves the catastrophic forgetting of the local client. These problems will be exacerbated in
federated learning, because each communication with the server needs to fuse the model,
which will make such an over-parameterized model central to the calculation. In addition,
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some clients will be suspended from interacting due to limited communication, and these
clients will continue to receive tasks before communicating again. The best way to deal
with these continuously received tasks still needs careful consideration.

As a fundamental framework for the new generation federated learning, we address
for the first time the core problems of incremental and federated learning, making it possible
for applications. In order to enable better research in future work, we describe the various
problems faced in detail in the text and give the performance lower and upper bounds of
the algorithm under this framework.

The main contributions of our work are as follows:

• We combine incremental learning with federated learning and propose a new gen-
eration federated learning, which is dedicated to solving cross-client knowledge
increments. It will have the possibility to expand the knowledge with the interaction
of different clients.

• We summarize and define some of the most important challenges facing the NGFL
framework and present our proposed basic solutions. Various baseline schemes are
designed according to the solution to these challenges, and the optimal upper bound
of the algorithm is given for research.

• For the first time, we address the problem of model aggregation at the incremental
fusion stage.

This paper will be described in the following sections. Related works are surveyed in
Section 2. Section 3 defines the problem. Section 4 presents and addresses the challenges
respectively. Numerical experiments are presented in Section 5. Finally, Section 6 concludes
and discusses the paper, and Section 7 points out some of the limitations of this paper and
the outlook for the future.

2. Related Works
2.1. Class-Incremental Learning

Incremental learning refers to retaining the previously learned knowledge after learning
new knowledge that comes continuously [11,12]. This learning method is closer to the
human model. As a challenge of deep learning, it only accesses the data of the current task
each time, which may bring catastrophic forgetting. Many studies address this challenge
from multiple perspectives, such as [7–10,13–21]. Some research [11,22–27] uses saving or
generating a small number of samples to prevent the network from forgetting previous tasks,
and iCaRL [11] is the cornerstone of this approach, and has been used in many studies.

2.2. Federated Learning

FL [1] offers the possibility of joint modeling across data. Data heterogeneity as a
key issue has attracted much attention, and many studies have attempted to address
this issue [28–34]. FedProx [35], attempts to exploit the constraints of the two-norm to
correct for local training objectives. Paper [36,37] uses a small amount of shared data and
Bayesian estimation to revise the local model and the global model. In communication,
ASO-fed [38] mitigates the straggler problem caused by device heterogeneity. Paper [39]
proposed an asynchronous algorithm that keeps its convergence speed consistent with the
synchronous algorithm in all client communication situations. DC-ASGD [40] proposes a
novel technology to compensate delay caused by asynchronous learning.

Obviously, none of these works can be adapted to client-side streaming tasks.

2.3. Federated Class-Incremental Learning

To the best of our knowledge, there is little research in this area. Literature [6] is the
only one that defines the problem of class incremental learning in federated learning. It
proposed the method of global–local compensation for the forgetting problem, but there are
some idealistic assumptions, and the definition is not comprehensive enough, overlooking
some key issues.
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3. Problem Definition

Table 1 describes some subscripts used in this paper.

Table 1. Some Subscript Descriptions.

Notation Description

r = [1,. . . , R] Global communication round

t = [1,. . . , T] Client task id

e = [1,. . . , E] Client local training round

Y t/Ct Label /class * space at t-th task

Y t
i /Ct

i Label/class space for client i at t-th task

Y r,t
i /Cr,t

i Label/class space for client i at t-th task in r-th round

Y r,t̊
i /Cr,t̊

i Label/class space for client i’s all task in r-th round
* Label space carries distribution information, whereas class space is purer. (i.e., Y t = [0, 0, 1, 2, 3, 3], Ct = {0, 1, 2, 3}).
All subscripts follow this naming rule.

3.1. Class-Incremental Learning

In the traditional single-node scenario for incremental learning, we denote the task
stream as T = {T t}T

t=1, where T denotes the number of tasks. For the t-th task T t, it
contains K data samples, which can be denoted as T t = {xt

k, yt
k}

K
k=1, where xt

k ∈ X
t, yt

k ∈ Y
t,

andX t,Y t denote the sample space and label space of the t-th task respectively. Note thatY t

may contain duplicate label elements, and we use {Y t} to denote the aggregated results. For
example, assume Y t = [0, 0, 1, 2, 3, 3], and then we have {Y t} = {0, 1, 2, 3} and |{Y t}| = 4.

We define the tth task to contain |Ct| new classes, where Ct = {ct
a}
|{Y t}|
a=1 is the set of classes

of the tth task, and ct
a denotes the a-th class of the tth task T t. Moreover, we define the set

of all classes in the first t − 1 tasks as Cp = ∑t−1
u=1 Cu ⊂ Y p, where Y p = ∑t−1

v=1 Yv denotes
the previous t − 1 tasks in the overall label space. We can express it in more detail as
Cp = {cp

a}
|{Y p}|
a=1 , with cp

a denoted as the ath class in the previous t − 1 tasks. When a node
performs task t, it can only access the current task T t, and this task does not overlap with the
previous task (i.e. Ct ∩Cp = ∅, Ct ∪Cp = {cp

1 , ..cp
|{Y p}|, ct

|{Y p}|+1, , , ..ct
|{Y p}|+|{Y t}|}), and we

denote the total number of all task classes including task t as, Ht = ∑1:t |Ct| = |Ct|+ |Cp|.

3.2. Federated Learning

We describe a traditional FL process. We assume a total of N clients, and each client
owns a private dataset Di = {xk, yk}K

k=1. We aimed to get the global optimal Θ∗ over the
global dataset D = ∪i∈[N]Di contains |C| classes by

Θ∗ = arg min
Θ

`(Θ) =
N

∑
i=1

|Di|
|D|K

K

∑
k=1

`i(o(xi,k; Θi), yi,k), (1)

where Θi is the machine learning model to be optimized and `i : RD → R is the local loss
function on client i’s dataset Di, o ∈ R|C|, which denotes the probability predicted via Θ,
and ` is the empirical loss on the global dataset D.

3.3. Model Decoupling

To better describe incremental learning, we decouple the model classification layer
from the feature extraction layer. First, we define a machine learning model whose output
is represented as o(x) = o(x; Θ) ∈ R|C|, where x is represented as the input data, Θ as
the model parameters and R|C| as the output vector space. Furthermore, we decompose
the model into two parts. The first part of the model is the feature extractor, which is
represented as Φ(x) = Φ(x; Υ) = z : RD → Rd, Υ denotes the parameters of the feature
extractor, z is the input information transformed by the feature extraction, RD/Rd denotes
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the vector space before and after the transformation, respectively. The second part of
the model is the classifier, which is represented as Γ(z; Ω) : Rd → R|C| (Ω denotes the
parameters of the classifier, |C| denotes the number of categories the classifier can carry,
and the classifier input is the output of the feature extractor z). We can therefore rewrite this
model as o(x) = o(x; Θ) = Γ(Φ(x; Υ), Ω). Finally, the label ŷ is predicted by σ(o(x)) and
σ denotes the softmax function. It should be noted that due to the nature of incremental
learning, the output layer dimension varies as the task continues to arrive.

3.4. New Generation Federated Learning

We illustrate the NGFL workflow in Figure 2, which contains a total of four randomly
selected clients, and there are a total of three communication rounds. Unlike the current
federated learning, this definition is more in line with the real world, which will have
dynamic task flow and space storage constraints.

Figure 2. New generation federated learning workflow.

We extend incremental learning to a federated learning environment and characterize
a new generation of federated learning. We first describe the dynamic participation of
clients, which has N ±N clients and is denoted as {Si}N±N

i=1 , with ±N denoting the ran-
dom withdrawal or addition of some clients as communication proceeds. We now formally
describe its unique dynamic tasking feature, wherein a server SG exists to coordinate and
communicate with the clients, with a total of r = {1,. . . , R} rounds for global communica-
tion. For each client, Si, it has a private task stream Ti = {T t

i }T
t=1. Each client will receive

the global model Θr from the server SG in the first r communication round, update it with
its own task Ti and obtain Θr

i . Each client then transfers the local model Θr
i to the server for

aggregation and downloads the model again.
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In particular, the server is also an incremental learning process at the macro level. As it
communicates with clients, it gains more knowledge from model aggregation and gradually
expands the network. We denote the server-specific task flow as TSG = {T t

SG
}T

t∝{r,Ti}
, with

T t
SG

denoting the server’s tth task. Note that although we define a server-side task flow,
this task flow is virtual and it increases as it interacts with the client. Specifically, t ∝ {r, Ti}
means that its incremental tasks are coupled with communication rounds r and client-side
tasks Ti. If no increment exists on the client side, then the server model will remain constant
as communication proceeds. If there are client-side increments and no communication,
then the server model does not change either. That is, T r,t

SG
= ∑ T r,t

i , in the rth round in
which the server incremental tasks come from the sum of all client incremental tasks that
participated in the communication in this round, and vary with the communication. In
contrast, the client’s task flow Ti is completely independent and autonomous, and it is not
influenced by any factor. Precisely because we do not have any a priori knowledge about
client tasks, a client may face (0. . . n) tasks in the rth round, which we denote as

T r,t̊
i = {

each round r︷ ︸︸ ︷
∅, T r,t

i , T r,t+1
i + · · · , T r,t+n

i }. (2)

T r,t̊
i denotes the set of all tasks encountered by client i in the rth round. Unlike the

independent task ID t, we use t̊ to denote the macro representation of all tasks in this
communication. That is, each client task in round r satisfies T r,t

i ⊂ T r,t̊
i , and the server

tasks can be further written as T r,t
SG

= ∑i∈S T r,t̊
i (the sum of all tasks of the authorised client

i in the rth round).
Specifically, for client i’s tth task T r,t

i in round r of communication, its label space

Y r,t
i ⊂ Y

r,t̊
i . Consistent with the single-node scenario, the client i’s tth task in the r-th round

T r,t
i contains |Cr,t

i | new classes and differs from its previous t− 1 tasks Cp
i = ∑t−1

u=1 Cu
i ⊂

∑t−1
v=1 Yv

i . After loading the global model Θr, each client Si performs the incremental task

set T t̊
i and obtains Θr,t̊

i . Then, all clients {Si} upload their Θr,t̊
i to the server SG to aggregate

into the global model Θr+1. The server will distribute Θr+1 to the client in the next
round of communication. Note that, unlike individual nodes, we define the total number of
categories for which client Si contains task t as Ht

i = |Ct
i |+ |C

p
i |+ |C

r,p
SG
| − |(Ct

i ∪Cp
i )∩Cr,p

SG
|

(Cr,p
SG

means class that the server SG learns from all clients in the previous r− 1 rounds),
i.e., as communication proceeds, the tasks viewed by client i come not only from itself, but
also from the tasks of other clients involved in the communication; the reasons are given in
Section 4.2.

For example, we will elaborate the "Main Process(1)" which in the upper part of
Figure 3. Like traditional federated learning, the server will initialize the global model
for delivery. This initialization model has the initial basic task (B) shown in the leftmost
part of Figure 3. Because they are limited by the server’s field of view, more tasks will be
learned from different clients Si. These clients will receive the initialization task model Θr

from the server and perform local updates. According to standard incremental learning,
during each communication between the server and clients, the client may face a different
private incremental task, (e.g., C3, C4, Si{·} represents private data belonging to class C of
client i), or there may be no additional classification task. Each client will form a model
that is incrementally updated locally, and then upload it to the server. These models will be
automatically merged by the server to generate a new global model Θr+1.
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Figure 3. Description of the workflow.

So we have the objective mean loss function that needs to be optimized at any point time:

Lt =
1
|S| ∑i∈S

1
Ht

i

Ht
i

∑
j=1

1
K

K

∑
k=1

`i(o(xi,j,k), yi,j,k), (3)

where i represents the client and j represents the classes learned from the local and server.
The new generation of federated learning should achieve the following effects.

• The server only needs to be given a basic task. More tasks should be learned from
participating clients.

• The server should aggregate the models of different private tasks in the client, and
achieve good performance.

• Every client should not have catastrophic forgetting.
• Clients should have good knowledge of other tasks from the global model.
• This framework should apply to all algorithms in this field.

4. Important Issues

We will address some important issues facing the new generation federated learning.

4.1. Client & Server Forget

Catastrophic forgetting on the part of the client as tasks continue to arrive is a common
problem in incremental learning. That is, in cases where the old and new tasks do not
overlap, the learned knowledge decays rapidly if nothing is done about it. As shown in
Figure 4, we look at a test confusion matrix with two incremental tasks and clearly see that
the previous task will no longer have discriminability except for the latest task, which has a
clear diagonal correct rate.

The same is true on the server side, where some knowledge will be forgotten due to the
heterogeneity of the client-side data and aggregation. This forgetting will be exacerbated
by the forgetfulness of dynamic tasks on the client’s side.
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(a) (b)

Figure 4. Simple incremental task flow in groups of five classes. (a) Incremental task1. (b) Incremental task2.

Solution: Self-Attention and Total Attention

To solve this problem, we propose a variant of the loss function. In many studies of
incremental learning, an immediate idea is to use cross-entropy to compute the loss that
takes into account all viewed classes, but this may bring attention bias. We will naturally
think of two ways to calculate cross-entropy. The first is for all observed classes (total
attention (TA)):

`i(x, y; Θt) =
Ht

i

∑
h=1

yhlog
exp(oh)

∑
Ht

i
h′=1 exp(oh′)

. (4)

Note that in this case, back-propagation of gradients will be done on all classes exposed,
so these loss errors will be back-propagated from all outputs, including those that do not
belong to the current task.

Differently from the first method, we only consider the current task, and change the
cross-entropy calculation to the following form (self-attention (SA)):

˜̀ i(x, y; Θt) =
|Ct

i |

∑
h=1

y[Ht−1+h]log
exp(o[Ht−1+h])

∑
|Ct

i |
h′=1 exp(o[Ht−1+h′ ])

. (5)

The premise of this variant application is that we do not consider the replay of any old
tasks, and if some old tasks are added, Equation (4) must still be used.

4.2. Task Overlap

Due to the definition of incremental learning, with the progress of task stream and
communication, the tasks of each client do not overlap. That is, each node needs to perform
incremental operations on the classification layer for every task. However, compared to
the global model, there may be other clients that have completed incremental for their
own tasks’ class, so it is necessary to distinguish between true incremental tasks and
pseudo-incremental tasks to avoid unnecessary overhead.

As shown in the lower part of Figure 3, if we assume that client S3 receives model
Θr from the server in the rth round, it executes incremental task T t

S3 = C3 locally and
obtains model Θr,t

S3 = {B, C3} . After the r + 1 round of server fusion, model Θr+1 =
{B, C1, C2, C3, C4} is delivered again. At this point, client S3 executes the second incre-
mental task T t+1

S3 = C4, which is completely new from the perspective of the client S3’s
own task stream. However, from the perspective of the server, this tasks’ class has been
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incrementally completed by the client S2 in round r, as shown in Figure 3. Client S3 does
not need to increment the network; it can be trained directly.

Therefore, there are three scenarios for client-side incremental tasks:

1. Full-covered: The entire class of client Si in the latest private task T t
i in round r has

been incremented by other clients in the previous r− 1 rounds, i.e. there are no new
incremented classes. It can be expressed as

Cr,t
i ⊂ Cr,p

SG
. (6)

2. Semi-covered: Some of the classes in client Si’s latest private task T t
i in round r have

been incremented by other clients in the previous r− 1 rounds, i.e. there are some
new incremented classes. It can be expressed as

Cr,t
i ∩ Cr,p

SG
6= ∅. (7)

3. Not covered: The latest private task T t
i of client Si in round r has not been incremented

by other clients in the previous r− 1 rounds, i.e. all are new incremental classes. It
can be expressed as

Cr,t
i ∩ Cr,p

SG
= ∅. (8)

4.2.1. Solution: Double-Ended Task Table

In order to solve the problem of task intercommunication between the client and the
server, we propose a task alignment table. Similar to the routing table used to record port
numbers and destination addresses, this task alignment table exists on both the server side
and the client side. On the client side, this table records all task classes covered up to the
current task and the corresponding neural network classifier for each class. At the end
of local training, the client uploads this table along with the model to the server, which
maintains a global alignment table based on the task table submitted by the client and
aligns the network output layers. The server then fuses the model based on this table and
sends the table down with the model at the same time, and the client updates the local
alignment table for the next round of training. This task alignment table is indispensable as
the basis for cross-application of federation learning and incremental learning, and lays the
foundation for the model fusion that follows.

4.3. Model Aggregate

As shown in ”Key Process (2)” in Figure 2, because the task flow is invisible and
the arrival time is unknown for each client—that is, the classifier output dimensions are
different after updating the client’s local task—it is possible that the same dimensions
represent different outputs. Specifically, as shown in Section 3.3, the aggregation of models
in traditional federation learning satisfies

Θr+1 =
1
N ∑

i∈S
Θr

i =
1
N ∑

i∈S
(Υr

i ⊕Ωr
i ). (9)

Normally, the model does not change in federation learning, and a simple aggregation
is all that is required. However, due to the nature of incremental learning, different clients
have feature extractors Φ(·; Υ) with the same dimensionality, but have classifiers Γ(z; Ω)
with different structures. Therefore, we need a strategy to aggregate this heterogeneous
structure, and in the next subsections we will elaborate two strategies to solve this problem.

4.3.1. Solution: Pre-Alignment and Post-Alignment

In the existing research, to the best of our knowledge there is no work to illustrate it.
We elaborate on the two alignment works at the network levels because in incremental
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learning, the output layer network gradually increases as new tasks arrive. Clients will
have their own special output layer structure, and because each client is independent of
the other, they will have completely different output layers. Most studies ignore this issue,
and they assume that the server is done incrementally to the output layer when the model
is delivered, which is unreasonable. We elaborate on this; first, we define a task alignment
table in Section 4.2.1 to allow each client to articulate its own output meaning. Its work
flow is shown in Figure 5.

Figure 5. Pre-alignment and post-alignment workflow

Pre-Alignment (PreA)

We use the PreA method, aiming for the server to confirm the client has seen all
incremental tasks before each time the server authorizes communication, which to pre-
define the output layer when the model is broadcast. The advantage of this method is that
the average strategy can be used directly when the network is aggregated. However, this
also brings a big problem, that is, the predefined incremental network cannot be increased
with the arrival of tasks. Tasks gradually come in the once communication is temporarily
held or discarded until the next communication.
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Post-Alignment (PostA)

The second method is the PostA method. When the server communicates, the model is
sent to the client with the task alignment table. The client has enough freedom to arbitrarily
change the output layer until the model is uploaded with its task table during communi-
cation. At this time, the server needs to adjust and aggregate the output layer according
to the alignment table submitted by the client. The advantage of this is that the client can
perform incremental learning completely autonomously and can perform asynchronous
operations, but the server requires more cost and may perform at a lower level.

4.3.2. Solution: Partial Fusion and Total Fusion

For this heterogeneous output layer, we choose two aggregation strategies. We express
it with the following equation:

Θr+1 =
1
|S| ∑i∈S

Θr
i �Mi =

1
|S| ∑i∈S

(Υr
i ⊕ (Ωr

i �Mi)). (10)

Mi represents the fusion mask of client i’s current task (Partial-Fusion PF) or all

viewed classes (Total-Fusion TF). Specifically, Mi = 1
[Cr

SG
∈Cr,t̊

i ]
∈ Rd×|Cr

SG
|, where 1[·] is

an evaluation function used to test whether the subscript factor satisfies the condition,
1[True] = 1; otherwise, 1[False] = 0. The fusion mask is constructed by a double-ended task
table and does not require the client to submit additional information.

4.4. Communication & Storage Limit

Limited by the communication bottleneck, it is impossible for the server to select all
clients and then select a subset of them at random. Those clients which are not selected
may come to some key private tasks and have uniqueness, so this random selection leads
to fatal omissions. The client itself may not know the importance of these data and discard
it limited by storage space.

Specifically, the server will select a random subset of clients Sr for each communication
round r, and those unselected clients are recorded as Sc

r (complement of Sr). We assume
a client i ∈ Sc

r missed authorization at the rth round, but get the authorization at the
r′th round. As shown in “Key Process (3)” in Figure 2, because we don’t have any prior
knowledge about the task stream, we don’t know if the client will overwrite or drop some
tasks due to memory constraints as the stream of tasks keeps arriving in the communication
from round r to r′.

We do not examine this, as this paper centers on how to integrate incremental learning
into FL.

5. Experiments

For NGFL, we adopt a set of lower bound baselines, and a set of upper bound baselines
to demonstrate its performance. For the upper baseline, to allow for clear target boundaries
for subsequent studies we give two reasonable upper bounds for the framework to be
investigated. Some of the work takes the visible results of all tasks as an unacceptable
upper bound, and we do not require that such a framework can immediately achieve the
performance results of integrated learning. First, we argue that all clients can effectively
and unrestrictedly use their own data from all old tasks as a first upper bound, Upper-
Baseline(Self), which effectively judges the effectiveness of the client’s algorithms in the
face of incremental learning. The second is that all clients can use global participation in
modeling other clients’ old task data, Upper-Baseline(Global), which is an effective way to
judge the merits of model aggregation algorithms in the face of multi-client heterogeneity
in incremental tasks.

For the lower baseline, we use the traditional federated learning method, that is,
we use SGD locally and then perform average aggregation on the server. This baseline
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usually performs badly, so we also give a set of options in Section 4.1. This includes basic
solutions to improve client-side forgetting and server-aggregation. We do not want to
directly introduce the existing incremental learning method into the NGFL, because of the
lack of interaction between clients, these basic solutions provide the direction for the NGFL
research. Specifically, by using a variant of the loss function (Self-Attention(SA)) over the
traditional baseline and an improved scheme (Partial-Fusion(PF)) of aggregate mode.

5.1. Datasets

We used two commonly used real-world datasets.

5.1.1. CIFAR100

The CIFAR100 dataset has 100 classes. Each class has 600 color images of size 32 × 32,
of which 500 are used as the training set and 100 are used as the testing set. For each
sample, it has two labels, "fine_labels and coarse_labels", which represent the fine-grained
and coarse-grained labels of the sample, respectively.

5.1.2. Tiny-ImageNet

The Tiny-ImageNet dataset has 200 classes. Each class has 600 color images of size
64 × 64, of which 500 are used as the training set, 50 are used as the testing set and 50 for
the validation set.

5.2. (Hyper)Parameters

In the experiment, there are some important parameters. R is the number of global
communication rounds. E and BS denote the number of epochs and batch size for local
training, respectively. LR is the learning rate, M is the momentum, W is the weight decay
value, and the optimizer is set to the SGD optimizer.

For the CIFAR100 dataset, we set the total number of tasks to be 10. In the initial task,
the global model will learn the knowledge of the initial 10 classes. The remaining other
classes will be evenly distributed to P (P = (10− 1)) in the incremental task pool, and each
incremental task pool has PC (PC = (100− 10)/(10− 1)) classes. For the Tiny-ImageNet
dataset, we set the total number of tasks to be 10. In the initial task, the global model will
learn the knowledge of 20 classes. The remaining other classes will be evenly distributed
to P (P = (10 − 1)). In the incremental task pool, each incremental task pool has PC
(PC = (200− 20)/(10− 1)) classes.

We simulate the incremental tasks as follows. Each client randomly selects 60% of the
incremental tasks from the incremental task pool as the client’s local incremental tasks. The
random selection of incremental tasks ensures the objectivity of incremental task selection,
and 60% is used as a larger incremental ratio to meet the possibility of many sudden
increments in the objective world.

In the initial task, we set R = 50, E = 5, BS = 128, LR = 0.01, M = 0.9, and W = 5 ×10−4.
In incremental tasks, we set E = 5, BS = 128, LR = 0.005, M = 0.9, W = 2 ×10−4, and set
R = 10 (intensive task switching) and R=20 (sparse task switching) ) in two cases to conduct
the experiment. The settings of CIFAR-100 and Tiny-ImageNet are consistent.

5.3. Baseline Analysis

Full experimental results are given in Tables 2–5 and Figure 6.
For the low-base (TA-TF) setting, we found that in the absence of any constraints,

experimental performance decreases sharply as the task sequence progresses. For example,
in the intensive task assignment under the Cifar100 dataset in Table 2, the aggregation
accuracy was as high as 83.20% for the first task but plummeted to 36.95% after the intro-
duction of the second task sequence, and the model was only 8.04% accurate after the last
task was completed. The most important reason for this phenomenon is that incremental
tasks cannot overlap with previous tasks, and client-side incremental knowledge is also
heterogeneous. To address this issue, we used a variant of the loss function introduced in
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Section 4.1 and found significantly better results in the first two task transformations. For
example, in Table 4, the accuracy was 36.95% under the second task using the traditional
loss function (TA-TF) and 48.94% with the variant of the loss function (TA-PF), with an 8%
increase in accuracy under the third task and an average accuracy increase of about 5%
over the full task. With the introduction of a partially fused server (TF / PF) strategy, we
found a slight improvement in performance, e.g. an average increase in accuracy of about
1% in the full task in CIFAR100 (TA-TF/PF) and about 2% in the full task in (SA-TF/PF).
We find that the effect is not significant because the main effect of this method is the fusion
of heterogeneous outputs, a trend that is also satisfied with the Tiny-ImageNet dataset in
Tables 4 and 5.

Table 2. CIFAR100: Comprehensive performance on intensive tasks.

Methods 10 20 30 40 50 60 70 80 90 100 Avg.

Lower-Base(TA-TF) 83.20 36.95 23.56 18.02 15.91 13.71 11.42 9.86 8.32 8.04 22.89

Lower-Base(TA-PF) 83.20 39.50 23.70 18.67 15.97 13.71 11.29 9.93 8.42 8.04 23.24

Lower-Base(SA-TF) 83.20 48.94 33.19 26.97 23.18 17.48 15.08 13.61 11.13 10.84 28.37

Lower-Base(SA-PF) 83.20 56.30 39.13 31.79 27.39 19.71 16.45 13.95 11.58 11.2 31.06

Upper-Base(Self) 83.20 69.80 65.30 62.40 61.60 60.6 58.60 56.70 54.90 53.5 62.60

Upper-Base(Global) 83.20 77.60 70.70 66.32 66.11 63.59 60.54 58.95 57.11 55.41 65.90

Table 3. CIFAR100: Comprehensive performance on sparse tasks.

Methods 10 20 30 40 50 60 70 80 90 100 Avg.

Lower-Base(TA-TF) 83.20 37.10 23.29 18.15 16.07 13.65 11.51 9.84 8.39 7.95 22.91

Lower-Base(TA-PF) 83.20 39.70 23.40 18.50 15.90 13.60 11.25 10.0 8.38 8.00 23.19

Lower-Base(SA-TF) 83.20 48.40 33.16 26.49 23.34 17.45 14.72 13.41 11.35 10.88 28.24

Lower-Base(SA-PF) 83.20 55.94 39.63 31.72 27.68 20.20 15.80 13.77 12.11 11.00 31.08

Upper-Base(Self) 83.20 74.90 69.00 64.90 64.10 61.70 59.70 57.40 55.5 54.15 64.45

Upper-Base(Global) 83.20 78.60 71.40 67.30 65.20 63.50 60.60 59.80 57.20 56.90 66.37

Table 4. Tiny-ImageNet: Comprehensive performance on intensive tasks.

Methods 10 20 30 40 50 60 70 80 90 100 Avg.

Lower-Base(TA-TF) 78.10 40.20 23.10 17.67 15.45 12.95 10.44 9.91 8.23 7.49 22.35

Lower-Base(TA-PF) 78.10 39.80 24.50 18.00 15.37 12.58 10.10 9.91 8.16 7.50 22.40

Lower-Base(SA-TF) 78.10 48.50 34.90 26.30 20.90 15.30 13.00 11.40 9.16 8.17 26.57

Lower-Base(SA-PF) 78.10 55.80 41.00 28.40 22.90 16.40 13.90 12.17 9.71 9.03 28.74

Upper-Base(Self) 78.10 69.90 63.20 59.10 58.40 58.50 56.50 55.80 54.10 53.20 60.68

Upper-Base(Global) 78.10 74.10 68.10 64.87 64.85 64.36 62.11 61.16 60.65 58.85 65.71

Table 5. Tiny-ImageNet: Comprehensive performance on sparse tasks.

Methods 10 20 30 40 50 60 70 80 90 100 Avg.

Lower-Base (TA-TF) 78.10 40.30 23.49 18.60 15.70 13.15 10.59 10.23 8.28 7.85 22.63

Lower-Base (TA-PF) 78.10 40.50 23.63 18.37 15.45 12.83 10.18 10.17 8.23 7.73 22.52

Lower-Base (SA-TF) 78.10 58.60 37.50 22.27 17.82 14.04 11.00 10.86 8.61 8.04 26.68

Lower-Base (SA-PF) 78.10 62.50 39.06 24.20 18.70 15.03 12.08 11.11 8.85 8.26 27.78

Upper-Base (Self) 78.10 72.40 64.43 61.50 60.68 59.70 57.71 56.25 55.13 53.35 61.92

Upper-Base (Global) 78.10 74.00 68.63 65.70 64.80 63.51 61.28 61.22 60.05 59.03 65.63
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(a) (b)

(c) (d)

Figure 6. Experimental performance under different combinations. (a) CIFAR100: intensive task.
(b) CIFAR100: sparse task. (c) Tiny-ImageNet: intensive task. (d) Tiny-ImageNet: sparse task.

For other upper-bound baseline settings, we find that the global-upper bound is
slightly better than the self-upper bound, which is expected as it uses historical samples
from all clients. For example, in Tables 2–5, the accuracy improvement is about 2–3% in
cifar100 and about 4–5% in Tiny-imgenet for both intensive and sparse tasks.

In addition, after changing the sparse task to the intensive task setting, we found that
the upper baseline performance decreased, but the lower baseline performance did not
change significantly. Moreover, in the partial lower baseline intensive task setting, there
are also slightly better results than in the sparse task setting. For example, in the sparse
task assignment in Table 3, after the first task is trained, the model has the same accuracy
as the intensive task in Table 2, and after the second task is introduced the model has a
37.10% accuracy, which is a slight increase compared to the dense task, but as the task
increases the accuracy decreases and the final accuracy is only 7.95%. This occurs because
sparse task transitions give each task more time to train, but cause greater forgetting of the
previous task.

6. Conclusions & Discussion

In this paper, we present a framework for the new generation federated learning that
breaks the shackles of existing federated learning and enables free task integration. Unlike
existing cross-applications of incremental and federated learning, which mainly address the
problem of task forgetfulness while neglecting the primary problem of model heterogeneity,
NGFL is a true combination that properly addresses the problem of task mutual knowledge
and heterogeneous output fusion through task alignment tables.

We discuss a classic work as well as a recent one and describe their limitations. For
example, one of the most popular research works is [11], which proposed a basic method
of saving partial sample replay and achieved good results by combining it with knowledge
distillation; many works were based on it. For the first time, it uses the feature extractor to
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obtain the average features of participating samples’ classes {C} by µC = 1
K ∑x∈X C Φ(x),

and sorts them according to the two-norm (‖ · ‖) obtained by each type of sample, so
as to select the best representative sample set for a single client. However, in federated
learning, because of the diversity of participating clients, we prefer more features to
participate in training, and this simple strategy lacking interaction ignores the distribution
of global features and may lose some performance. The latest GLFC [6] progress also
uses the example retention strategy of IcaRL and uses the same old model distillation
knowledge supplement to complete the training strategy as ICaRL. In particular, the
old model is the best fusion of the old global model in history ("Global Catastrophic
Forgetting Compensation"). But the server requires definition of additional networks for
the client to provide local example gradients and reconstruct example images. In terms
of performance, this strategy has brought considerable benefits, but it still does not solve
the fundamental problem of federated incremental learning (integration of heterogeneous
models, knowledge interaction), and increases the overhead. None of them, including
the latest work, properly describe and address the challenges we present, and we make it
possible to combine federal learning with incremental learning.

7. Limitation & Future Works

As an exploration of the new generation of federation learning, this paper still has
some limitations. For example, although we have addressed the basic problem of combin-
ing incremental learning with federated learning (aggregation of heterogeneous output
layers), we have not fully addressed the challenge of knowledge forgetting and have only
suggested possible research directions to address this challenge. In future work, we will
propose theoretical support for the integration of incremental and federated learning, and
conduct more research in, for example, incremental task interaction and heterogeneous
knowledge fusion.
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