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Abstract: This paper proposes a robust method for feature-based matching with potential for applica-
tion to synthetic aperture radar (SAR) automatic target recognition (ATR). The scarcity of measured
SAR data available for training classification algorithms leads to the replacement of such data with
synthetic data. As attributed scattering centers (ASCs) extracted from the SAR image reflect the
electromagnetic phenomenon of the SAR target, this is effective for classifying targets when purely
synthetic SAR images are used as the template. In the classification stage, following preparation of
the extracted template ASC dataset, some of the template ASCs were subsampled by the amplitude
and the neighbor matching algorithm to focus on the related points of the test ASCs. Then, the subset
of ASCs were reconstructed to the world view vector feature set, considering the point similarity and
structure similarity simultaneously. Finally, the matching scores between the two sets were calcu-
lated using weighted bipartite graph matching and then combined with several weights for overall
similarity. Experiments on synthetic and measured paired labeled experiment datasets, which are
publicly available, were conducted to verify the effectiveness and robustness of the proposed method.
The proposed method can be used in practical SAR ATR systems trained using simulated images.

Keywords: synthetic aperture radar; scattering center; world view vector; recognition; SAMPLE

1. Introduction

Over the last few years, automatic target recognition using synthetic aperture radar
(SAR ATR) has increasingly become important as a crucial means of surveillance [1–4]. SAR
images can be obtained in most weather types, day and night, and at a high resolution [5–8].
Based on these characteristics, SAR ATR algorithms have been evaluated on several targets,
including ground-based vehicles, aircrafts, and vessels, which are challenging for military
operations [9]. However, the sensitivity of SAR to sensor parameters, target configurations,
and environmental conditions make it challenging to implement SAR ATR [10–12].

SAR ATR algorithms can be divided into three basic steps: detection, discrimination,
and classification [13,14]. The first two steps are intended to extract potential target areas
and remove false alarms [15]. The purpose of target classification is to automatically classify
each input target image obtained by target detection and discrimination [16]. A large
number of efforts have been made to achieve robust SAR ATR. However, the classification
performances under extended operating conditions (EOCs) are insufficient for practical
applications. In real-world cases, most targets are likely to be camouflaged or blocked by
surrounding obstacles [11,17]. To improve the performance under EOCs within a SAR ATR
system, this paper focused on the classification stage.

Target classification methods are mainly divided into model-based and feature-based
methods [5]. Feature-based methods involve pattern recognition and rely solely on features
to represent the target, with many SAR target templates stored in advance. Once the
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features of the input target are extracted, the test target is classified as the category of the
matched template.

One of the promising features, attributed scattering center (ASC), provides a physically
relevant description of the target [4,18–21]. According to electromagnetic theory, the high
frequency scattering response of the target can be approximated by a sum of responses
from multiple ASCs [22]. The classification method based on ASCs reflects the specific
scattering structure of the target. In Refs. [16,23], an ASC-based model was proposed for
target classification, and they achieved higher accuracy than when not using the ASC
model. It has also been proven that the local descriptions contained in ASCs are beneficial
for reasoning under EOCs [19,24]. However, there are some problems associated with
point-pattern matching between test ASCs and template ASCs. Two ASC sets, even in the
same class, can have different numbers of points and subtly different positions according
to the SAR sensor operating conditions [25]. Therefore, one-to-one correspondence is
impractical, and similarity measurements of the two point sets are highly complex.

To solve these problems, several researchers have attempted to design optimal ASC-
based methods. In Ref. [26], the researchers introduced the world view vector (WVV) to
reconstruct the ASC features, then the weighted bipartite graph model (WBGM) was used.
As the WVV provides a robust description of the point location and spatial relationship
between the two sets, each weight on the line was allocated by computing the WVV-based
similarity of the two ASC sets. Therefore, the direct one-to-one matching problem was
solved. In Ref. [24], a similarity evaluation method for two ASC sets was introduced by
exploiting the structural information contained in the ASC set. Once ASC matching was
conducted using the Hungarian algorithm, point similarity and structure similarity were
fused to evaluate the overall similarity of the two ASC sets based on the Dempster–Shafer
theory of evidence. Meanwhile, a target reconstruction based on ASC was employed to
avoid precise one-to-one correspondence and complex similarity measures [19,27]. Using
the neighbor matching algorithm, only the template ASCs related to the test ASCs were
selected to reconstruct the template image, whereas all the test ASCs were used to recon-
struct the test image. Then, image correlation was employed to effectively measure the
similarity between the two ASC sets.

As a dataset for experiments, moving and stationary target acquisition and recognition
(MSTAR), which consists of a collection of one-foot-resolution SAR images, has been
widely used in the past two decades [5,9,22,28–30]. Unfortunately, the amount of measured
data needed to build a SAR ATR system is insufficient because of practical limitations in
operating sensors and targets [31]. Furthermore, measured data typically represent limited
environmental conditions, with very few articulation, configuration, and clutter changes,
along with few sensor collection geometry variations [8,32]. In this regard, computer-
generated synthetic data could serve as a valuable tool in the development of SAR ATR
systems, leading to training and testing using only synthetic data and measured data,
respectively [31,33]. Synthetic data are created using electromagnetic prediction software
involving a computer-aided design (CAD) model of the MSTAR. By replacing measured
data with synthetic data, many EOCs can be considered close to representing the real world,
which is necessary to enhance classification performance.

However, an apparent distribution gap between synthetic and measured distributions
exists due to differences in the CAD model and the real model, or the type of simulator used.
Despite effort to decrease the gap [33], some parts of the target that did not appear in the
measured data tend to be visible in the corresponding synthetic data (Figure 1). This could
be regarded as a target occlusion situation if we only considered the target appearance of
the image, which commonly happens in the real world [17,34]. Target occlusion inevitably
occurs due to radar sensor operation and the external environment, such as artificial or
natural objects, which make it difficult to classify the target using the traditional feature-
based method. Comprehensively, a similarity measurement method where the unique
features of the target can be captured is highly recommended for robustness to target
occlusion in practical SAR ATR.
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Figure 1. Examples of real and synthetic SAR images in SAMPLE, demonstrating substantial target
differences located in the middle of the images.

The previously proposed WVV-based method has a robust ATR capability using all
extracted ASCs [35]. The WVV is insensitive to translation, rescaling, random perturbation,
and random addition and deletion of points. However, the method is sensitive to partial
differences that may arise due to simulation limitations. Further, local feature matching
under imbalance from two sets is still a challenging and important point for classification
problems [36,37]. It is necessary to design a classification method that is less sensitive to the
partial difference between real and synthetic images. Therefore, we propose an improved
WVV-based ATR method using a subset of ASCs instead of using all ASCs to focus on
local similarity.

2. Target Classification with a WVV-Based Feature Set

To classify the target in SAR images, we designed the classification algorithm in terms
of local features matching. The ASCs were used as the unique features of the target in
the SAR image. Figure 2 illustrates a flowchart of the proposed method. The flowchart is
divided into five main steps: extraction of the scattering centers, sub-sampling of scatter
centers based on amplitude, neighbor matching, WVV-based feature reconstruction, and
similarity measurement. The ASCs of the template dataset extracted from each template
image were prepared offline in advance. The value of T in Figure 2 is the number of template
samples. In the classification algorithm, the extraction of scattering center from a test image
was first employed. To analyze the local similarity and the imbalance problem in two
ASC sets, some of the template ASCs were then selected by amplitude-based subsampling,
where the number of test ASCs was exploited to adjusting the number of template ASCs.
Afterwards, neighbor matching was applied to partially concentrate on the related points
between the test ASCs and template ASCs. The subset of ASCs was used to reconstruct the
world view vector feature set, thus considering the point similarity and structure similarity
simultaneously. Later, the matching scores between the two ASC sets were calculated using
weighted bipartite graph matching and then combined with several weights for overall
similarity. Regarding the WVV-based similarity as the weight of bipartite graph matching,
we found the optimal matching between the two sets. Finally, the overall similarity was
determined to recognize the target by combining the matching score with several weights
related to the matched/unmatched number of ASCs and selected/unselected number
of ASCs, which could not be exclusively applied to the WVV-based similarity only. By
repeating the process T times, the test image was consequently classified.
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2.1. Extraction of Scattering Centers

Several algorithms are available for extracting scatter centers in the image domain [38,39].
CLEAN is one of the most used algorithms for extracting scatter centers from SAR im-
ages [16,17,19,24,26,27,40–43]. The CLEAN algorithm employs a filter derived from the
point spread function (PSF), which is given by:

PSF(x, y) =
(

ej 4πfc
c (x+θcy) 4fcBΩ

c2

)
sin c

(
2B
c

x
)

sin c
(

2fcΩ
c

y
)

(1)

where (x, y) denotes the position of the scattering center; c is the speed of light; fc is the
center frequency; θc is the center azimuth; B is the frequency bandwidth of the radar; and
Ω is the azimuth aperture. To extract the scattering centers properly, the filter used in the
CLEAN algorithm has to incorporate the same smoothing window ω(x, y) used during
image formation, resulting in:

h(x, y) = psf(x, y)ω(x, y) (2)

This work used a −35 dB Taylor Window that was employed by the SAMPLE
dataset [31].

The CLEAN algorithm searches for the highest-amplitude pixel in the SAR image and
records its amplitude Ai and its image coordinates (xi, yi). Then, the filter h(x, y) shifts to
the center of the pixel location and is multiplied by Ai. Assuming a point spread function
(PSF) with a corresponding amplitude, the response of the imaging system is removed from
the complex image [44]. In general, the iterative process is repeated with the residual image
until a predetermined number of ASCs are extracted, or the amplitude of the extracted
scattering point is less than the threshold value.

In this study, we extracted scattering centers located in a target region if its amplitude
was greater than or equal to a threshold, which was intended to limit the number of ASCs.
The target region and shadow of a SAR image can be separated by some conventional
segmentation algorithms, including the K-means, the Otsu’s method, and the iterated
conditional modes (ICM). In this experiment, the ICM in Ref. [45] was used, but the ICM
processing speed was improved by using the initial segmented image by the K-means,
instead of the SAR image, as the input data of the ICM. Figure 3 shows the results of our
scattering-center extraction task using CLEAN. The reconstructed SAR image, using a total
of N scattering centers, shown in Figure 3b, was very similar to the real SAR image. The
segmentation results and the extracted scattering centers located only inside the target
region are shown in Figure 3c. At the end of the extraction process, the scattering centers
were stored in an N × 3 matrix, {Ai, xi, yi | i = 1, 2, . . . , N}. For the extracted scattering
centers, the coordinates of the range (in other words, the slant range) were converted to the
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ground range to facilitate the matching analysis of scattering centers between SAR images
taken from different depression angles, as follows:

xg
i = xi/cos

(
θdepression

)
(3)

where θdepression denotes the depression angle. Hereafter, xi is referred to as ground range
coordinated, xg

i .
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In this paper, we used the ASC location (xi, yi) and normalized amplitude (
∣∣ANorm

i

∣∣) for
the SAR ATR. The locations describe the spatial distribution of ASCs, and the normalized
amplitudes reflect the relative intensities of different ASCs. Therefore, the direct relevance
to the target physical structures benefits the ATR performance. The N-scattering center
feature set G was defined as follows [26]:

G =
{(

xi, yi,
∣∣∣ANorm

i

∣∣∣) | i = 1, 2, . . . , N
}

(4)

2.2. Amplitude-Based Selection

The apparent distribution difference between the amplitude distributions of synthetic
and real SAR images is a challenge in training synthetic data. The statistical differences
between the synthetic and measured data of SAMPLE were investigated by Ref. [33] to
plot histograms of the image means and variances. The synthetic data tended to have
a lower mean and variance than the measured data. The mean image difference was
approximately 0.1 when we extracted scattering centers from real and synthetic images.
There was a difference in the number of SCs extracted between the synthetic and real
images. This could be due to the clear differences in the overall structure of the targets,
as well as fine differences in the target details. However, it could also be due to the use
of unequal minimum amplitudes to alleviate the difference in amplitude values. Before
neighbor matching, a subset of the scatter points in the template image was selected in the
order of their amplitude values.

The number of scatter points in subset M′ was equal to the number of scatter points
in the test image. However, the amplitude of the scattering points extracted from SAR
images varied depending on subtle changes in the target’s pose and imaging geometry (e.g.,
depression angle), and it is desirable to extract the points with a small buffer according to
Aratio as follows:

M′ = min(M, N×Aratio) (5)

where N and M are the numbers of scatter points in the test and template images, re-
spectively. More ASCs in the template (synthetic) image can be expected (i.e., Aratio > 1),
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considering the possible partial and random occlusion of the test image and the full set of
scattering centers of the synthetic image (at least no occlusion). In addition, a maximum
value should be set to control the imbalance of extracted ASC numbers between the real
and synthetic images. In our experiments, the best results were achieved when the Aratio
was around 1.3, which was used in the following analysis.

2.3. Neighbor Matching

As shown in Figure 1, scattering centers with strong amplitudes in synthetic images
are often invisible in real SAR images. In addition, the scattering centers of a part of the
target may not appear in the real image because of the occlusion of the target. Therefore,
considering the above reasons (difference from synthetic images and target occlusion),
we focused on local similarity rather than identification using all scattering centers. For
local similarity, the WVV descriptor should be reconstructed using scattering centers in
the target overlap area (i.e., adjacent scattering centers). In this study, after selecting only
the adjacent points between two sets of scattering centers through the neighbor-matching
algorithm, we evaluated the similarity. First, the positions of the test ASCs were taken
as the centers to form a binary region combined by all circles. When the template ASC
was in the constructed binary region, it was selected; otherwise, it was discarded. The
positions of the template ASCs were then reversed. The radius set for neighbor matching
was chosen to be {0.3, 0.4, and 0.5 m} based on the resolution of MSTAR images, as well as
the experimental observations [19,27].

Figure 4 presents an illustration of neighbor matching when the radius was set to
0.5 m. Neighbor matching was first conducted on the test ASCs (Figure 3a) and then
on the template ASCs (Figure 3b). The corresponding matching results are shown in
Figure 3a,b. Matched template ASCs, unmatched template ASCs, matched test ASCs, and
unmatched test ASCs are represented by different markers. As shown in Figure 3c, the ratio
of unmatched to matched points can be used to distinguish different targets. It is clear that
the selected number of ASCs in the template was smaller when the type was not similar.
Therefore, the matching results can provide discriminability for correct target recognition.
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2.4. WVV-Based Feature Reconstruction

To solve the difficulties of similarity calculation, as mentioned before, the correspon-
dence was established based on the existing feature descriptor, the WVV [26]. Test ASCs
and matched template ASCs were used to construct each WVV-based feature set. The de-
tailed procedure of the WVV-based feature reconstruction is illustrated in Algorithm 1 [26].
First, WVV establishes a polar coordinate system, taking the ith scattering center as the
origin. The location of i is represented by the polar radii and polar angles of the remaining
SCs. Next, the WVVi is defined by sorting the polar radii according to their polar angles,
and the radii are linearly interpolated at 1◦ intervals. The WVV is mapped into a vector
of length 360. Finally, to avoid sensitivity to rescaling, the elements in the interpolated
WVV are normalized by the maximum element. After iteration as the number of scattering
centers, the scattering center feature set will consequently be the WVV-based feature set.

Algorithm 1: WVV-based scattering center feature reconstruction

Input: Scattering center feature set G =
{(

xi, yi,
∣∣ANorm

i
∣∣)∣∣i = 1, 2, . . . , N

}
.

For i = 1:N
1. Establish a polar coordinate system with the origin at ith point.
2. Compute the polar radii rik and the polar angles θik (k = 1, . . . , N, k 6= i) of the rest N − 1
points.
3. Sort the polar radii rik corresponding to their polar angles θik and define ith WVV as
WVVi = {rik|k = 1, . . . , N; k 6= i; θik ≤ θik+1}.
4. Interpolate linearly the polar radii.
5. Construct the interpolated WVV, WVVinterp

i which consists of rij (j = 1, . . . , 360).

6. Normalize the rij by the maximum element, rNorm
ij = rij/ max

k=1,...,360

{
rij

}
.

WVVinterp
i ={rNorm

ij |j = 1, . . . , 360}.
End

Output: WVV-based feature set, G′ =
{(

WVVinterp
i ,

∣∣ANorm
i

∣∣) ∣∣∣ i = 1, 2, . . . N
}

Figure 5 shows an example of WVV-based feature reconstruction using 2S1 ASCs
from the SAMPLE dataset. Figure 5a,b show the 56-ASC set and interpolated 23rd WVV,
respectively. In Figure 5b, the blue point at the origin is the 23rd ASC. At this point, the
WVV23 comprises the polar radii of the remaining points. Subsequently, the WVV23 was
linearly interpolated at 1◦ intervals, and the elements were normalized by the maximum
element. After iterations, the WVV-based feature set will have 56 interpolated WVV sets
and normalized amplitudes. When some ASCs are randomly removed, the WVV-based
features, consisting of the remaining ASCs, can maintain their spatial structures. Therefore,
the proposed method is not sensitive to random noise removal.
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2.5. Similarity Calculation

In ATR, it is important to design a similarity measurement between the input test image
and archive templates. The structural similarity between two sets of scattering centers is
obtained through WVV reconstruction of the scattering centers, and several weights related
to the number of scattering centers and the number of matches are proposed.

2.5.1. Matching Score

After the WVV-based feature reconstruction, target classification based on point match-
ing was conducted. The WVV provides a robust description of scattering centers. The
Euclidean distance between the locations of the scattering centers is generally used when
evaluating the point-to-point similarity between two sets of SCs. Meanwhile, spatial
structure relationships were characterized by WVV-based features.

Comparing G′test, the WVV-based feature set of the test, and template dataset{
B′k
∣∣k = 1, . . . T

}
with Equation (4) S(G′test, B′k) below, the most similar template was selected.

S(G′test, B′k) = ∑ s
(

g′l , b′l
)
, l = 1, . . . , min(M, N) (6)

where g′l ∈ G′test and b′l ∈ B′k are the matching pairs and N and M are the number of SCs in
the test and k-th template, respectively.

There was no strict one-to-one correspondence between the two sets. We needed to
find an optimal assignment to maximize S between the two point sets. Based on weighted
bipartite graph matching (WBGM), the similarity of the matching pairs was calculated as

s
(

g′i , b′j
)
= F

(
g′i , b′j

)(
360− ‖WVVinterp

g′i
−WVVinterp

b′j
‖ 2
)

/(360)/(1 + D) (7)

F
(

g′i , b′j
)
=

{
1, D

(
g′i , b′j

)
≤ R

0, otherwise
(8)

where D
(

g′i , b′j
)

are the Euclidean distances between the test ASC and template ASC. If
D is greater than R, which is the distance (meter) for neighbor matching, 0 is assigned
to s

(
g′i , b′j

)
to prevent matching between points that are too far away. Accordingly, the

number of matched pairs, Kmatch was applied to normalize the similarity measurement.

SNorm
(
G′test, B′k

)
=

S
(
G′test, B′k

)
Kmatch

(9)

2.5.2. Weight Design

The previously obtained WVV-based matching score did not consider the difference
in the number of scattering centers that occurs when the types of targets are different.
Therefore, it was necessary to properly design the weights based on the number of matches
and the number of points that were not matched, and reflect them in the overall degree
of similarity.

Although the type was different from the test, if the template points around the test
point were gathered, the WVV-based similarity was calculated to be high by neighbor
matching (Figure 6a). The WVV-based matching score is higher in Figure 6a than that
in Figure 6b, but in Figure 6a, the difference between the number of test and template
scattering centers is substantial. Because the number of points in the template will be
similar for targets of the same type, it is necessary to consider the difference in the number
of points between the test and the template.
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Figure 6. WVV-based similarity matching results between two sets of scattering centers. (a) Different
types of test and template SCs, (b) same target type of test and template SCs.

Unmatched test scattering centers (MA: Missing Alarm) and unmatched template
scattering centers (FA, False Alarm) were considered in the matching score. Here, we used
the following quadratic weights presented by Ref. [24]:

wa = 1−
(

s + q
N + m

)2
(10)

where s and q represent the number of MA and FA, respectively, and s + q can be calculated
as N + m − 2 × Kmatch, where m is the number of matched template ASCs by the neighbor
matching algorithm. Because of noise and extraction errors, it is common to observe the
appearance of a few MAs and FAs. As the proportion of MAs and FAs increases, the weight
wa decreases more quickly.

In addition, when the test and template are of the same type, the number of scattering
centers within the radius tends to be large during neighbor matching. Therefore, along
with SNorm and wa, the ratio of the number of selected points to the total number of points
was used as a weight. The overall matching score adopted in this study was defined as:

MS = SNorm(G′test, B′k) × Wa × n/N × m/M (11)

In Equation (11), n/N is the ratio of the number of scattering centers extracted from
the test image to the test ASCs adjacent to the template ASCs, and m/M is the ratio of the
number of template ASCs to the number of neighboring ASCs to the number of test ASCs.

The procedure for the proposed target WVV-based matching method is shown in
Figure 2. The entire algorithm was programmed in MATLAB® R2021a (9.10), employing
Matlab’s Parallel Computing Toolbox. First, because it is impossible to define a one-to-one
correspondence between the test and template, subsampling based on amplitude and
neighbor matching was conducted to reduce the imbalance. The similarity matrix of the
WVV sets was obtained using Equation (7) s

(
g′i , b′j

)
, and then all the similarities were
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employed as weights for the WBGM. By repeating the above process based on the number
of template databases, the type of test target could be determined as a category according
to the template with the maximum matching score.

3. Experiments
3.1. Experimental Settings

To evaluate the classification performance of the proposed method, experiments were
conducted on SAMPLE datasets under standard operation conditions (SOC) and EOC,
including random and partial occlusions. The SAMPLE dataset consisted of real and
synthetic SAR images using CAD models of 10-class MSTAR targets, which are listed in
Table 1 [31]. Furthermore, the optical images of 10-class targets are shown in Figure 7; they
are ground vehicles, carriers, and trucks (you can see more targets in SAR images and types
of targets in Refs. [46–49]). The data had a spatial resolution of one foot. Unfortunately,
only some parts of the SAMPLE dataset are publicly available, which is appropriate for
small-scale operations. They were collected at azimuth angles of 10–80◦ with depression
angles from 14–17◦. To validate the proposed method for 10 targets, we used target chips
with depression angles of 16◦ and 17◦. In Table 1, the number of SAMPLE datasets for each
target class is listed according to the depression angle.

Table 1. Number of SAR images in the test and training sets of the SAMPLE dataset.

Type 2S1 BMP2 BTR70 M1 M2 M35 M60 M548 T72 ZSU23

Test set (real 16◦)
Train set (syn 16◦) 50 55 43 52 52 52 52 51 56 50

Test set (real 17◦)
Train set (syn 17◦) 58 52 49 51 53 53 53 60 52 58
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for target identification. 

Figure 7. Examples of optical images of SAMPLE dataset targets.

When using CLEAN, scattering centers with a minimum amplitude or higher were
extracted. The distribution between the amplitude in the clutter around the target and that
of the target may be considered when selecting the threshold value for the extraction of scat-
tering centers. Because a difference in amplitude exists between real and synthetic images,
scattering centers with an amplitude of 0.25 or higher for real and 0.14 or more for synthetic
images were extracted considering the difference in amplitude between synthetic and real
data of SAMPLE [33,50]. The statistical values of the number of extracted scattering centers
are shown in Figure 8; evidently, the number of scattering centers extracted by CLEAN was
different for each target. BMP2 and BTR70 had an average of 30–50 scattering centers, which
was less than that in the other targets. Meanwhile, M548 and M60 had numerous scattering
centers. Thus, this imbalance in the number of scattering centers caused matching to be
challenging, although valuable information was obtained for target identification.
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Figure 8. Box plot of the number of scattering centers. (a) Real SAR image (16◦, 17◦) and (b) synthetic
SAR image (16◦, 17◦).

For neighbor matching, the radius must be determined. Although the WVV descriptor
is not affected by the translation of the scattering point, translation may affect the identifica-
tion performance because only a part of the template remains based on the test point after
neighbor matching. In Refs. [17,24], the researchers applied several different radii (e.g.,
0.3, 0.4, and 0.5) for neighbor matching, and then the averages of all the similarities were
employed to determine the final similarity between the test and its corresponding template.

In the experiment of this study, when the number of extracted scattering centers was
small, the identification rate increased when a high value of 0.5 was used, rather than a low
value of 0.3 m. Conversely, when a high value of 0.5 was used, there was no change in the
identification rate, even when the number of scattering centers was large. We may need to
consider the possibility of a translation transformation between the target and template
before applying the neighbor-matching algorithm. Therefore, we used a single value of 0.5
so that the effect of the centering error of the test image could be mitigated.

Figure 9 shows an example of the processing according to the proposed algorithm
(Figure 2), in which the test image BTR 70 was well recognized in the ambiguous template
images (BTR 70 and ZSU23). First, the scattering points of each template image were
selected in order of amplitude so that the number of scattering points of the test image
did not exceed 48 × 1.3 (=62.4), where the parameter 1.3 means Aratio, as mentioned in
Section 2.2. Consequently, all 46 scattering points extracted from template BTR70 were
selected, and only 62 of the 69 scattering points of template ZSU23 were selected. The
point ratio selected by neighbor matching had a lower value for template ZSU23 than
BTR70. The test ASCs and matched template ASCs were used to reconstruct the WVV
set, and the similarity between the test and template WVV sets was measured. The
WVV-based similarity (SNorm) of template ZSU23 was higher than that of template BTR70.
Contrastingly, the number of pairs matched by the WBGM of template ZSU23 was smaller
than that of template BTR70; therefore, the Wa of ZSU23 was lower. Finally, after WBGM,
the matching score was calculated using Equation (9), giving a value of 0.63 for the template
image of BTR70 and 0.59 for ZSU23. Although the WVV-based similarity alone did not
show good recognition results, the performance was considerably improved using the
proposed weights.
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Figure 9. Example of recognition results obtained using the proposed algorithm.

3.2. Standard Operating Condition

The proposed method was first evaluated under SOC on 10 classes of targets for
overall classification accuracy. An actual image was used as the test target chip and a
simulated image was used as the template. In the identification performance experiment
using a synthetic image as a template, a simulated image can be used under the same
observation conditions (depression angle) as the real image. However, owing to the
characteristics of the SAR image, the distribution of scattering centers may vary depending
on the imaging parameters, such as the depression angle or subtle changes in the pose of
the target. In addition, because there is a difference between synthetic and real images, it
is more advantageous for target identification to use not only the same observation angle
data, but also adjacent observation angle data, as the template image. The merged training
data were generated by combining the synthetic data with depression angles of 16◦ and
17◦ for 1052 chips.

Tables 2 and 3 show the confusion matrix of the proposed method using a real 17◦

and 16◦ as the test image and a synthetic 16◦/17◦ as the template. The performance was
expressed by the percentage of correct classifications (PCCs). The average PCCs of all
10 targets in Table 2 were 90.7%, whereas the M2 target was recognized with PCCs under
80%, and the remaining targets were over 86%. For the result of real 16◦ data (Table 3), not
only M2 but also BMP2 and M548 showed PCCs under 80%. Meanwhile, T72 and ZSU23
showed higher PCCs than the real 17◦ data. For real 16◦ and 17◦ data identifications, when
only synthetic 16◦ and 17◦ data corresponding to each other were used as template data,
the recognition rates were 87.0% and 88.0%, respectively. When synthetic 16◦/17◦ data
were used to identify real 16◦ and 17◦ data, the identification rates were improved to 87.3%
and 90.7%, respectively. With the merged data from synthetic 16◦ and 17◦ angles, the real
17◦ data improved the recognition performance by 2.7%, while the real 16◦ data improved
by only 0.3%.
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Table 2. Recognition results obtained using the proposed method within 10 target classification tests
(test image: real 17◦, template image: synthetic 16◦/17◦).

Type 2S1 BMP2 BTR70 M1 M2 M35 M548 M60 T72 ZSU23 PCC
(%)

2S1 54 0 1 0 1 0 0 0 0 2 93.10
BMP2 4 47 1 0 0 0 0 0 0 0 90.38
BTR70 2 0 47 0 0 0 0 0 0 0 95.92

M1 0 0 0 50 1 0 0 0 0 0 98.04
M2 4 4 0 0 41 0 0 0 1 3 77.36

M35 0 0 0 0 0 52 1 0 0 0 98.11
M548 0 0 0 0 0 3 49 0 0 1 92.45
M60 3 0 0 4 0 0 0 52 1 0 86.67
T72 1 3 0 0 1 0 0 2 45 0 86.54

ZSU23 6 0 0 0 1 0 0 0 0 51 87.93
Average 90.65

Table 3. Recognition results obtained using the proposed method within 10 target classification tests
(test image: real 16◦; template image: synthetic 16◦/17◦).

Type 2S1 BMP2 BTR70 M1 M2 M35 M548 M60 T72 ZSU23 PCC
(%)

2S1 44 0 2 0 0 0 0 0 0 4 88.00
BMP2 10 42 1 0 2 0 0 0 0 0 76.36
BTR70 0 0 41 0 1 0 0 0 0 1 95.35

M1 0 0 0 52 0 0 0 0 0 0 100.00
M2 4 3 0 0 40 0 0 0 1 4 76.92

M35 0 0 7 0 0 43 0 0 0 2 82.69
M548 0 0 7 0 0 2 41 0 0 2 78.85
M60 3 0 0 5 0 0 0 42 1 0 82.35
T72 0 0 0 0 0 0 0 1 55 0 98.21

ZSU23 2 0 1 0 0 0 0 0 0 47 94.00
Average 87.27

We attempted to prove the effectiveness of our proposed method using a subset of
ASCs. There are three types of ASCs: ASCall means that all the test and template ASCs are
used in WVV-based feature reconstruction as in Ref. [26], ASCsubset(neighbor) indicates that
the subset of ASCs is selected by neighbor matching, and ASCsubset(amp,neighbor) indicates
that the subset of ASCs is selected by amplitude-based sub-sampling followed by neighbor
matching. Figure 10 shows the recognition rate of the 10 targets according to the ASC types
used for classification. As described above, the merged data from synthetic 16◦ and 17◦ an-
gles were used as a single template. This is the result of averaging the respective recognition
performance obtained by using real 16◦ and 17◦ data as the test images. The overall perfor-
mance of ASCall using all extracted ASCs suggested by Ref. [26] was lower than the results
achieved by our proposed methods. When using the ASCall , the recognition rate of BMP2
was very low, at about 70%. The ASCsubset(amp,neighbor) showed a high recognition rate of
about 85% or more in all targets except M2, and the performance variance for the 10 targets
was the smallest among the three types of ASC. The results of ASCsubset(amp,neighbor) were
appropriate for the 10-class target classification, and in particular, the recognition rate of
BMP2, BTR70, and T72 was greatly improved, by more than 5% compared to ASCall .
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3.3. Occlusion and Random Missed Pixels

In the real world, the occlusion of a target by the external environment, such as ar-
tificial or natural objects, can always occur. The performance of the proposed method
was investigated using directional occlusions. Similarly, the test samples in Table 1 were
simulated to obtain samples with different levels of directional occlusion for classification.
Figure 11 shows the recognition rate for each method with varying levels of directional
occlusions. When the target was partially occluded, only part of the local structure was dis-
criminative for the target. The WVV-based reconstruction with ASCs selected by neighbor
matching made it possible to consider the local similarity between the test and the template.
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When the test was occluded randomly from different directions, the performance of
the proposed method, ASCsubset(amp,neighbor), remained at a high level of over 70% until
the occlusion level was 20%. Compared to the overall recognition rate of ASCall , it was
improved by 1–4%. When the WVV was reconstructed with a part selected as a neighbor
rather than the entire scattering center, better results were obtained with less than 20%
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occlusion. In addition, the method applying ASCsubset(amp,neighbor) was maintained at
approximately 3% higher than the neighbor subset, although there was no considerable
difference in value. However, when >25% occlusion occurred, it was better to use ASCall .
In the case of occlusion of 20% or more, the average recognition rate was lowered to 70% or
less. That is, the overall reliability of the performance was too low to be used in practice.
Therefore, it is better to use a subset instead of all ASCs, assuming a low occlusion rate, for
a high recognition rate.

The ASCs could be interrupted by noise and differences in image resolution. A
sensitivity analysis for randomly missed points was also performed. We randomly removed
them according to the percentage of missed points. The remaining SCs were used to
reconstruct WVV-based features that were matched with the templates. The percentage of
missed points varied from 0 to 50%, and 10 Monte Carlo simulations were conducted for
each percentage.

As shown in Figure 12, ASCsubset(neighbor) always showed a higher recognition rate
than ASCall , verifying its robustness to random occlusion. The high performance of over
80% in ASCsubset(neighbor) was maintained until a removal level of 45%. On the other
hand, ASCsubset(amp,neighbor) showed better results than ASCall only up to 15% random
occlusion. This is because the ASCs in the test image were randomly removed, while
the ASCs in the template image were removed based on the amplitude of ASCs, so the
relevance between the remaining pixels decreased significantly as the percentage of random
occlusion increased.
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We achieved high performances using the SAMPLE dataset, with 100% synthetic data
in the training set. When the experiments were conducted by changing the types of ASCs
used, the overall recognition rate under SOC (no occlusion and no random missed pixels)
was improved about 4% compared to ASCall . Additionally, the proposed method was less
sensitive to a small amount of partial occlusion and random pixel removal.

We compared the proposed method with existing methods [39] to illustrate its perfor-
mance. The experimental results, where the average recognition rate was 24.97% when
solely synthetic data were used in the training batch, were initially presented by Ref. [31],
the creators of the SAMPLE dataset. Their algorithm was based on a convolutional neural
network (CNN). They then achieved average accuracies of 51.58% by training DenseNet
with the assistance of a generative adversarial network (GAN) in their most recent work [25].
Their deep learning-based performances seem to be superior to our proposed method in
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Refs. [51,52]. However, the accuracy dropped notably below 85% when they used 100%
synthetic data in training. Consequently, our proposed method had a higher performance,
which was also more stable when using 100% synthetic data as the training dataset.

In terms of the validity under EOCs, our performances were also compared to other
previous works where they used the SAMPLE dataset for experiments, but the organization
of data setting (number of classes, depression angle, etc.) was not same as our dataset. For
example, the target recognition rate decreased by 30% during 50% random occlusion in
Ref. [17], when they use a measured dataset (MSTAR) for both testing and training, but
only by 10.6% in our study using ASCsubset(neighbor). This was the best performance under
random occlusion among the previous works. Compared to the results of other methods,
our similarity measure can effectively overcome the recognition difficulties caused by
random occlusion when ASCsubset(neighbor) is used, though the same condition with our
dataset was not applied in the methods. We believe that the advantage of the proposed
algorithm is that it mostly focuses on the local features related to the intersected target
parts to improve the feasibility of the SAR ATR system in response to a realistic scenario.
However, there are several limitations resulting from human intervention. One is the
existence of an empirical threshold for amplitude-based subsampling, and the need to set a
specific radius in neighbor matching, which can cause significant performance degradation
in our algorithm when most parts of the target are occluded. To resolve these limitations,
we will also consider how to integrate global similarities with the proposed method in the
case of target occlusion.

4. Conclusions

A robust algorithm is required to identify partial differences between real and synthetic
images to perform target identification based on a dataset of synthetic images, such as
SAMPLE. We proposed an improved WVV-based ATR method using a subset of the
template’s ASCs, using the ASCs’ amplitude and the proximity of the scattering center
location, which is less susceptible to the partial differences between two ASC sets. The
SAMPLE dataset, with 10 classes of military targets, was used in the experiments. With the
merged template of synthetic 16◦/17◦ images, the recognition rates were 87.3% for the 16◦

real images and 90.7% for the 17◦ real images. The performance with occlusion remained
above 70% until the occlusion level reached 20%. In addition, the subset of ASCs selected
by neighbor matching achieved recognition rates great than 80% until the proportion of
randomly missed points reached 45%. Therefore, we expect that the proposed method will
be useful in practical SAR ATR systems using synthetic images with partial and random
differences in ASCs due to occlusion.

Author Contributions: Conceptualization, methodology, formal analysis, investigation, resources,
data curation, visualization, S.L. and S.-W.K.; writing—original draft preparation, S.L.; writing—
review and editing, supervision, project administration, funding acquisition, S.-W.K. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was supported in part by the Agency for Defense Development (ADD) in
South Korea (No. UD200004FD).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The SAMPLE dataset was obtained in accordance with the instructions
contained in Ref. [31] and is available online: https://github.com/benjaminlewis-afrl/SAMPLE_
dataset_public (accessed on 25 August 2022).

Acknowledgments: The authors would like to thank the US Air Force Research Lab for providing
the public SAMPLE datasets.

Conflicts of Interest: The authors declare no conflict of interest.

https://github.com/benjaminlewis-afrl/SAMPLE_dataset_public
https://github.com/benjaminlewis-afrl/SAMPLE_dataset_public


Sensors 2022, 22, 8528 17 of 18

References
1. Wang, L.; Bai, X.; Zhou, F. SAR ATR of ground vehicles based on ESENet. Remote Sens. 2019, 11, 1316. [CrossRef]
2. Brusch, S.; Lehner, S.; Fritz, T.; Soccorsi, M.; Soloviev, A.; van Schie, B. Ship surveillance with TerraSAR-X. IEEE Trans. Geosci.

Remote Sens. 2010, 49, 1092–1103. [CrossRef]
3. Song, D.; Zhen, Z.; Wang, B.; Li, X.; Gao, L.; Wang, N.; Xie, T.; Zhang, T. A novel marine oil spillage identification scheme based on

convolution neural network feature extraction from fully polarimetric SAR imagery. IEEE Access 2020, 8, 59801–59820. [CrossRef]
4. Fu, K.; Dou, F.-Z.; Li, H.-C.; Diao, W.-H.; Sun, X.; Xu, G.-L. Aircraft recognition in SAR images based on scattering structure

feature and template matching. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 4206–4217. [CrossRef]
5. El-Darymli, K.; Gill, E.W.; Mcguire, P.; Power, D.; Moloney, C. Automatic target recognition in synthetic aperture radar imagery:

A state-of-the-art review. IEEE Access 2016, 4, 6014–6058. [CrossRef]
6. Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A tutorial on synthetic aperture radar. IEEE

Geosci. Remote Sens. Mag. 2013, 1, 6–43. [CrossRef]
7. Park, J.-H.; Seo, S.-M.; Yoo, J.-H. SAR ATR for limited training data using DS-AE network. Sensors 2021, 21, 4538. [CrossRef]
8. Paulson, C.; Nolan, A.; Goley, S.; Nehrbass, S.; Zelnio, E. Articulation study for SAR ATR baseline algorithm. In Algorithms for

Synthetic Aperture Radar Imagery XXVI; SPIE: Bellingham, WA, USA, 2019; Volume 10987, pp. 73–89.
9. Kechagias-Stamatis, O.; Aouf, N. Automatic target recognition on synthetic aperture radar imagery: A survey. IEEE Aerosp.

Electron. Syst. Mag. 2021, 36, 56–81. [CrossRef]
10. Dogaru, T.; Phelan, B.; Liao, D. Imaging of buried targets using UAV-based, ground penetrating, synthetic aperture radar. In

Radar Sensor Technology XXIII; SPIE: Bellingham, WA, USA, 2019; Volume 11003, pp. 18–35.
11. Ross, T.D.; Bradley, J.J.; Hudson, L.J.; O’connor, M.P. SAR ATR: So what’s the problem? An MSTAR perspective. In Algorithms for

Synthetic Aperture Radar Imagery VI; SPIE: Bellingham, WA, USA, 1999; Volume 3721, pp. 662–672.
12. Keydel, E.R.; Lee, S.W.; Moore, J.T. MSTAR extended operating conditions: A tutorial. Algorithms Synth. Aperture Radar Imag. III

1996, 2757, 228–242.
13. Chen, S.; Wang, H.; Xu, F.; Jin, Y.-Q. Target classification using the deep convolutional networks for SAR images. IEEE Trans.

Geosci. Remote Sens. 2016, 54, 4806–4817. [CrossRef]
14. Dudgeon, D.E.; Lacoss, R.T. An Overview of Automatic Target Recognition. Linc. Lab. J. 1993, 6, 3–9.
15. Liang, W.; Zhang, T.; Diao, W.; Sun, X.; Zhao, L.; Fu, K.; Wu, Y. SAR target classification based on sample spectral regularization.

Remote Sens. 2020, 12, 3628. [CrossRef]
16. Feng, S.; Ji, K.; Zhang, L.; Ma, X.; Kuang, G. SAR target classification based on integration of ASC parts model and deep learning

algorithm. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 10213–10225. [CrossRef]
17. Lu, C.; Fu, X.; Lu, Y. Recognition of occluded targets in SAR images based on matching of attributed scattering centers. Remote

Sens. Lett. 2021, 12, 932–943. [CrossRef]
18. Potter, L.C.; Moses, R.L. Attributed scattering centers for SAR ATR. IEEE Trans. Image Process. 1997, 6, 79–91. [CrossRef]
19. Fan, J.; Tomas, A. Target Reconstruction Based on Attributed Scattering Centers with Application to Robust SAR ATR. Remote

Sens. 2018, 10, 655. [CrossRef]
20. Liu, Z.; Wang, L.; Wen, Z.; Li, K.; Pan, Q. Multi-Level Scattering Center and Deep Feature Fusion Learning Framework for SAR

Target Recognition. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5227914.
21. Ding, B.; Wen, G.; Ma, C.; Yang, X. An efficient and robust framework for SAR target recognition by hierarchically fusing global

and local features. IEEE Trans. Image Process. 2018, 27, 5983–5995. [CrossRef]
22. Lv, J.; Liu, Y. Data augmentation based on attributed scattering centers to train robust CNN for SAR ATR. IEEE Access 2019, 7,

25459–25473. [CrossRef]
23. Feng, S.; Ji, K.; Wang, F.; Zhang, L.; Ma, X.; Kuang, G. Electromagnetic Scattering Feature (ESF) Module Embedded Network

Based on ASC Model for Robust and Interpretable SAR ATR. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5235415. [CrossRef]
24. Ding, B.; Wen, G.; Zhong, J.; Ma, C.; Yang, X. Robust method for the matching of attributed scattering centers with application to

synthetic aperture radar automatic target recognition. J. Appl. Remote Sens. 2016, 10, 016010. [CrossRef]
25. Lewis, B.; DeGuchy, O.; Sebastian, J.; Kaminski, J. Realistic SAR data augmentation using machine learning techniques. In

Algorithms for Synthetic Aperture Radar Imagery XXVI; SPIE: Bellingham, WA, USA, 2019; Volume 10987, pp. 12–28.
26. Tian, S.; Yin, K.; Wang, C.; Zhang, H. An SAR ATR method based on scattering centre feature and bipartite graph matching. IETE

Tech. Rev. 2015, 32, 364–375. [CrossRef]
27. Ding, B.; Wen, G. Target reconstruction based on 3-D scattering center model for robust SAR ATR. IEEE Trans. Geosci. Remote Sens.

2018, 56, 3772–3785. [CrossRef]
28. Diemunsch, J.R.; Wissinger, J. Moving and stationary target acquisition and recognition (MSTAR) model-based automatic target

recognition: Search technology for a robust ATR. In Algorithms for synthetic aperture radar Imagery V; SPIE: Bellingham, WA, USA,
1998; Volume 3370, pp. 481–492.

29. Camus, B.; Barbu, C.L.; Monteux, E. Robust SAR ATR on MSTAR with Deep Learning Models trained on Full Synthetic MOCEM
data. arXiv 2022, arXiv:2206.07352.

30. Vernetti, A.; Scarnati, T.; Mulligan, M.; Paulson, C.; Vela, R. Target Pose Estimation using Fused Radio Frequency Data within
Ensembled Neural Networks. In Proceedings of the 2022 IEEE Radar Conference (RadarConf22), New York, NY, USA, 21–25
March 2022; pp. 1–6.

http://doi.org/10.3390/rs11111316
http://doi.org/10.1109/TGRS.2010.2071879
http://doi.org/10.1109/ACCESS.2020.2979219
http://doi.org/10.1109/JSTARS.2018.2872018
http://doi.org/10.1109/ACCESS.2016.2611492
http://doi.org/10.1109/MGRS.2013.2248301
http://doi.org/10.3390/s21134538
http://doi.org/10.1109/MAES.2021.3049857
http://doi.org/10.1109/TGRS.2016.2551720
http://doi.org/10.3390/rs12213628
http://doi.org/10.1109/JSTARS.2021.3116979
http://doi.org/10.1080/2150704X.2021.1946197
http://doi.org/10.1109/83.552098
http://doi.org/10.3390/rs10040655
http://doi.org/10.1109/TIP.2018.2863046
http://doi.org/10.1109/ACCESS.2019.2900522
http://doi.org/10.1109/TGRS.2022.3208333
http://doi.org/10.1117/1.JRS.10.016010
http://doi.org/10.1080/02564602.2015.1019941
http://doi.org/10.1109/TGRS.2018.2810181


Sensors 2022, 22, 8528 18 of 18

31. Lewis, B.; Scarnati, T.; Sudkamp, E.; Nehrbass, J.; Rosencrantz, S.; Zelnio, E. A SAR dataset for ATR development: The Synthetic
and Measured Paired Labeled Experiment (SAMPLE). In Algorithms for Synthetic Aperture Radar Imagery XXVI; SPIE: Bellingham,
WA, USA, 2019; Volume 10987, pp. 39–54.

32. Arnold, J.M.; Moore, L.J.; Zelnio, E.G. Blending synthetic and measured data using transfer learning for synthetic aperture
radar (SAR) target classification. In Algorithms for Synthetic Aperture Radar Imagery XXV; SPIE: Bellingham, WA, USA, 2018;
Volume 10647, pp. 48–57.

33. Inkawhich, N.; Inkawhich, M.J.; Davis, E.K.; Majumder, U.K.; Tripp, E.; Capraro, C.; Chen, Y. Bridging a gap in SAR-ATR: Training
on fully synthetic and testing on measured data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 2942–2955. [CrossRef]

34. Bhanu, B.; Jones, G. Target recognition for articulated and occluded objects in synthetic aperture radar imagery. In Proceedings
of the Proceedings of the 1998 IEEE Radar Conference, RADARCON’98. Challenges in Radar Systems and Solutions (Cat.
No.98CH36197), Dallas, TX, USA, 14 May 1998; pp. 245–250.

35. Murtagh, F. A new approach to point pattern matching. Publ. Astron. Soc. Pac. 1992, 104, 301. [CrossRef]
36. Chen, Y.; Huang, D.; Xu, S.; Liu, J.; Liu, Y. Guide Local Feature Matching by Overlap Estimation. arXiv 2022, arXiv:2202.09050.

[CrossRef]
37. Sarlin, P.-E.; DeTone, D.; Malisiewicz, T.; Rabinovich, A. Superglue: Learning feature matching with graph neural networks. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020;
pp. 4938–4947.

38. Yun, D.-J.; Lee, J.-I.; Bae, K.-U.; Song, W.-Y.; Myung, N.-H. Accurate Three-Dimensional Scattering Center Extraction for ISAR
Image Using the Matched Filter-Based CLEAN Algorithm. IEICE Trans. Commun. 2018, 101, 418–425. [CrossRef]

39. Araujo, G.F.; Machado, R.; Pettersson, M.I. Non-Cooperative SAR Automatic Target Recognition Based on Scattering Centers
Models. Sensors 2022, 22, 1293. [CrossRef]

40. Högbom, J. Aperture synthesis with a non-regular distribution of interferometer baselines. Astron. Astrophys. Suppl. Ser. 1974,
15, 417.

41. Ding, B.; Wen, G. Combination of global and local filters for robust SAR target recognition under various extended operating
conditions. Inf. Sci. 2019, 476, 48–63. [CrossRef]

42. Ding, B.; Wen, G.; Zhong, J.; Ma, C.; Yang, X. A robust similarity measure for attributed scattering center sets with application to
SAR ATR. Neurocomputing 2017, 219, 130–143. [CrossRef]

43. Tang, T.; Su, Y. Object recognition based on feature matching of scattering centers in SAR imagery. In Proceedings of the 2012 5th
International Congress on Image and Signal Processing, Chongqing, China, 16–18 October 2012; pp. 1073–1076.

44. Ozdemir, C. Inverse Synthetic Aperture Radar Imaging with MATLAB Algorithms; John Wiley & Sons: Hoboken, NJ, USA, 2012.
45. Demirkaya, O.; Asyali, M.H.; Sahoo, P.K. Image Processing with MATLAB: Applications in Medicine and Biology; CRC Press: Boca

Raton, FL, USA, 2008.
46. Novak, L.M.; Owirka, G.J.; Brower, W.S. Performance of 10-and 20-target MSE classifiers. IEEE Trans. Aerosp. Electron. Syst. 2000,

36, 1279–1289.
47. Karine, A.; Toumi, A.; Khenchaf, A.; El Hassouni, M. Radar target recognition using salient keypoint descriptors and multitask

sparse representation. Remote Sens. 2018, 10, 843. [CrossRef]
48. Yu, J.; Zhou, G.; Zhou, S.; Yin, J. A Lightweight Fully Convolutional Neural Network for SAR Automatic Target Recognition.

Remote Sens. 2021, 13, 3029. [CrossRef]
49. Gao, F.; Huang, T.; Sun, J.; Wang, J.; Hussain, A.; Yang, E. A new algorithm for SAR image target recognition based on an

improved deep convolutional neural network. Cogn. Comput. 2019, 11, 809–824. [CrossRef]
50. Choi, Y. Simulated SAR Target Recognition using Image-to-Image Translation Based on Complex-Valued CycleGAN. J. Korean

Inst. Inf. Technol. 2022, 20, 19–28.
51. Inkawhich, N.A.; Davis, E.K.; Inkawhich, M.J.; Majumder, U.K.; Chen, Y. Training SAR-ATR models for reliable operation in

open-world environments. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 3954–3966. [CrossRef]
52. Sellers, S.R.; Collins, P.J.; Jackson, J.A. Augmenting simulations for SAR ATR neural network training. In Proceedings of the 2020

IEEE International Radar Conference (RADAR), Washington, DC, USA, 28–30 April 2020; pp. 309–314.

http://doi.org/10.1109/JSTARS.2021.3059991
http://doi.org/10.1086/132993
http://doi.org/10.1609/aaai.v36i1.19913
http://doi.org/10.1587/transcom.2017ISP0005
http://doi.org/10.3390/s22031293
http://doi.org/10.1016/j.ins.2018.10.001
http://doi.org/10.1016/j.neucom.2016.09.007
http://doi.org/10.3390/rs10060843
http://doi.org/10.3390/rs13153029
http://doi.org/10.1007/s12559-018-9563-z
http://doi.org/10.1109/JSTARS.2021.3068944

	Introduction 
	Target Classification with a WVV-Based Feature Set 
	Extraction of Scattering Centers 
	Amplitude-Based Selection 
	Neighbor Matching 
	WVV-Based Feature Reconstruction 
	Similarity Calculation 
	Matching Score 
	Weight Design 


	Experiments 
	Experimental Settings 
	Standard Operating Condition 
	Occlusion and Random Missed Pixels 

	Conclusions 
	References

